1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
from plplot import *
from Numeric import *
# Pairs of points making the line segments used to plot the user defined arrow
arrow_x = [-0.5, 0.5, 0.3, 0.5, 0.3, 0.5]
arrow_y = [0.0, 0.0, 0.2, 0.0, -0.2, 0.0]
arrow2_x = [-0.5, 0.3, 0.3, 0.5, 0.3, 0.3]
arrow2_y = [0.0, 0.0, 0.2, 0.0, -0.2, 0.0]
def circulation():
nx = 20
ny = 20
dx = 1.0
dy = 1.0
xmin = -nx/2*dx
xmax = nx/2*dx
ymin = -ny/2*dy
ymax = ny/2*dy
# Create data - circulation around the origin.
ix = ones(nx)
iy = ones(ny)
x = arange(nx)+0.5-nx/2.0
y = arange(ny)+0.5-ny/2.0
xg = multiply.outer(x,iy)
yg = multiply.outer(ix,y)
u = yg
v = -xg
# Plot vectors with default arrows
plenv(xmin, xmax, ymin, ymax, 0, 0)
pllab("(x)", "(y)", "#frPLplot Example 22 - circulation")
plcol0(2)
scaling = 0.0
plvect(u,v,scaling,pltr2,xg,yg)
plcol0(1)
# Vector plot of flow through a constricted pipe
def constriction():
nx = 20
ny = 20
dx = 1.0
dy = 1.0
xmin = -nx/2*dx
xmax = nx/2*dx
ymin = -ny/2*dy
ymax = ny/2*dy
Q = 2.0
ix = ones(nx)
iy = ones(ny)
x = (arange(nx)-nx/2+0.5)*dx
y = (arange(ny)-ny/2+0.5)*dy
xg = multiply.outer(x,iy)
yg = multiply.outer(ix,y)
b = ymax/4.0*(3-cos(pi*x/xmax))
b2 = multiply.outer(b,iy)
mask = greater.outer(b,abs(y))
dbdx = ymax/4.0*(sin(pi*xg/xmax)*yg/b2)
u = Q*ymax/b2*mask
v = dbdx*u
plenv(xmin, xmax, ymin, ymax, 0, 0)
pllab("(x)", "(y)", "#frPLplot Example 22 - constriction")
plcol0(2)
scaling=-0.5
plvect(u,v,scaling,pltr2,xg,yg)
plcol0(1)
# Vector plot of the gradient of a shielded potential (see example 9)
def potential():
nper = 100
nlevel = 10
nr = 20
ntheta = 20
# Create data to be contoured
r = 0.5+arange(nr)
r.shape = (-1,1)
theta = (2.*pi/float(ntheta-1))*(0.5+arange(ntheta-1))
xg = r*cos(theta)
yg = r*sin(theta)
rmax = nr
xmin = min(xg.flat)
xmax = max(xg.flat)
ymin = min(yg.flat)
ymax = max(yg.flat)
x = xg
y = yg
# Potential inside a conducting cylinder (or sphere) by method of images.
# Charge 1 is placed at (d1, d1), with image charge at (d2, d2).
# Charge 2 is placed at (d1, -d1), with image charge at (d2, -d2).
# Also put in smoothing term at small distances.
eps = 2.
q1 = 1.
d1 = rmax/4.
q1i = - q1*rmax/d1
d1i = rmax**2/d1
q2 = -1.
d2 = rmax/4.
q2i = - q2*rmax/d2
d2i = rmax**2/d2
div1 = sqrt((x-d1)**2 + (y-d1)**2 + eps**2)
div1i = sqrt((x-d1i)**2 + (y-d1i)**2 + eps**2)
div2 = sqrt((x-d2)**2 + (y+d2)**2 + eps**2)
div2i = sqrt((x-d2i)**2 + (y+d2i)**2 + eps**2)
zg = q1/div1 + q1i/div1i + q2/div2 + q2i/div2i
zmin = min(zg.flat)
zmax = max(zg.flat)
ug = -q1*(x-d1)/div1**3 - q1i*(x-d1i)/div1i**3 \
- q2*(x-d2)/div2**3 - q2i*(x-d2i)/div2i**3
vg = -q1*(y-d1)/div1**3 - q1i*(y-d1i)/div1i**3 \
- q2*(y+d2)/div2**3 - q2i*(y+d2i)/div2i**3
umin = min(ug.flat)
umax = max(ug.flat)
vmin = min(vg.flat)
vmax = max(vg.flat)
plenv(xmin, xmax, ymin, ymax, 0, 0)
pllab("(x)", "(y)", "#frPLplot Example 22 - potential gradient vector plot")
# Plot contours of the potential
dz = (zmax-zmin)/float(nlevel)
clevel = zmin + (arange(20)+0.5)*dz
du = (umax-umin)/float(nlevel)
clevelu = umin + (arange(20)+0.5)*du
dv = (vmax-vmin)/float(nlevel)
clevelv = vmin + (arange(20)+0.5)*dv
plcol0(3)
pllsty(2)
plcont(zg,clevel,pltr2,xg,yg)
pllsty(1)
plcol0(1)
# Plot the vectors of the gradient of the potential
plcol0(2)
scaling = 25.0
plvect(ug,vg,scaling,pltr2,xg,yg)
plcol0(1)
# Perimeter
t = (2.*pi/(nper-1))*arange(nper)
px = rmax*cos(t)
py = rmax*sin(t)
plline(px,py)
# main
#
# Does a series of vector plots
#
def main():
circulation()
narr = 6
fill = 0
# Set arrow style using arrow_x and arrow_y then
# plot using these arrows.
plsvect(arrow_x, arrow_y, fill)
constriction()
# Set arrow style using arrow2_x and arrow2_y then
# plot using these filled arrows.
fill = 1
plsvect(arrow2_x, arrow2_y, fill)
constriction()
potential()
# Vector plot of the circulation about the origin
main()
|