File: xw22.py

package info (click to toggle)
plplot 5.3.1-4
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 26,248 kB
  • ctags: 11,687
  • sloc: ansic: 86,045; xml: 17,249; sh: 12,400; tcl: 8,113; cpp: 6,824; perl: 4,383; python: 3,915; makefile: 2,899; java: 2,788; fortran: 290; sed: 5; awk: 1
file content (193 lines) | stat: -rw-r--r-- 4,351 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
from plplot import *
from Numeric import *

# Pairs of points making the line segments used to plot the user defined arrow
arrow_x = [-0.5, 0.5, 0.3, 0.5, 0.3, 0.5]
arrow_y = [0.0, 0.0, 0.2, 0.0, -0.2, 0.0]
arrow2_x = [-0.5, 0.3, 0.3, 0.5, 0.3, 0.3]
arrow2_y = [0.0, 0.0,   0.2, 0.0, -0.2, 0.0]


def circulation():

    nx = 20
    ny = 20

    dx = 1.0
    dy = 1.0

    xmin = -nx/2*dx
    xmax = nx/2*dx
    ymin = -ny/2*dy
    ymax = ny/2*dy

    # Create data - circulation around the origin.
    ix = ones(nx)
    iy = ones(ny)
    x = arange(nx)+0.5-nx/2.0
    y = arange(ny)+0.5-ny/2.0
    xg = multiply.outer(x,iy)
    yg = multiply.outer(ix,y)
    u = yg
    v = -xg

    # Plot vectors with default arrows
    plenv(xmin, xmax, ymin, ymax, 0, 0)
    pllab("(x)", "(y)", "#frPLplot Example 22 - circulation")
    plcol0(2)
    scaling = 0.0
    plvect(u,v,scaling,pltr2,xg,yg)
    plcol0(1)


# Vector plot of flow through a constricted pipe
def constriction():

    nx = 20
    ny = 20

    dx = 1.0
    dy = 1.0

    xmin = -nx/2*dx
    xmax = nx/2*dx
    ymin = -ny/2*dy
    ymax = ny/2*dy

    Q = 2.0
    ix = ones(nx)
    iy = ones(ny)
    x = (arange(nx)-nx/2+0.5)*dx
    y = (arange(ny)-ny/2+0.5)*dy
    xg = multiply.outer(x,iy)
    yg = multiply.outer(ix,y)
    b = ymax/4.0*(3-cos(pi*x/xmax))
    b2 = multiply.outer(b,iy)
    mask = greater.outer(b,abs(y))
    dbdx = ymax/4.0*(sin(pi*xg/xmax)*yg/b2)
    u = Q*ymax/b2*mask
    v = dbdx*u

    plenv(xmin, xmax, ymin, ymax, 0, 0)
    pllab("(x)", "(y)", "#frPLplot Example 22 - constriction")
    plcol0(2)
    scaling=-0.5
    plvect(u,v,scaling,pltr2,xg,yg)
    plcol0(1)


# Vector plot of the gradient of a shielded potential (see example 9)
def potential():
    nper = 100
    nlevel = 10
    nr = 20
    ntheta = 20
  
    # Create data to be contoured
    r = 0.5+arange(nr)
    r.shape = (-1,1)
    theta = (2.*pi/float(ntheta-1))*(0.5+arange(ntheta-1))
    xg = r*cos(theta)
    yg = r*sin(theta)

    rmax = nr
    xmin = min(xg.flat)
    xmax = max(xg.flat)
    ymin = min(yg.flat)
    ymax = max(yg.flat)

    x = xg
    y = yg

    # Potential inside a conducting cylinder (or sphere) by method of images.
    # Charge 1 is placed at (d1, d1), with image charge at (d2, d2).
    # Charge 2 is placed at (d1, -d1), with image charge at (d2, -d2).
    # Also put in smoothing term at small distances.

    eps = 2.

    q1 = 1.
    d1 = rmax/4.

    q1i = - q1*rmax/d1
    d1i = rmax**2/d1

    q2 = -1.
    d2 = rmax/4.

    q2i = - q2*rmax/d2
    d2i = rmax**2/d2

    div1 = sqrt((x-d1)**2 + (y-d1)**2 + eps**2)
    div1i = sqrt((x-d1i)**2 + (y-d1i)**2 + eps**2)
    div2 = sqrt((x-d2)**2 + (y+d2)**2 + eps**2)
    div2i = sqrt((x-d2i)**2 + (y+d2i)**2 + eps**2)
    zg = q1/div1 + q1i/div1i + q2/div2 + q2i/div2i
    zmin = min(zg.flat)
    zmax = max(zg.flat)

    ug = -q1*(x-d1)/div1**3 - q1i*(x-d1i)/div1i**3 \
	- q2*(x-d2)/div2**3 - q2i*(x-d2i)/div2i**3
    vg = -q1*(y-d1)/div1**3 - q1i*(y-d1i)/div1i**3 \
	- q2*(y+d2)/div2**3 - q2i*(y+d2i)/div2i**3

    umin = min(ug.flat)
    umax = max(ug.flat)
    vmin = min(vg.flat)
    vmax = max(vg.flat)

    plenv(xmin, xmax, ymin, ymax, 0, 0)
    pllab("(x)", "(y)", "#frPLplot Example 22 - potential gradient vector plot")
    # Plot contours of the potential
    dz = (zmax-zmin)/float(nlevel)
    clevel = zmin + (arange(20)+0.5)*dz
    du = (umax-umin)/float(nlevel)
    clevelu = umin + (arange(20)+0.5)*du
    dv = (vmax-vmin)/float(nlevel)
    clevelv = vmin + (arange(20)+0.5)*dv

    plcol0(3)
    pllsty(2)
    plcont(zg,clevel,pltr2,xg,yg)
    pllsty(1)
    plcol0(1)
    
    # Plot the vectors of the gradient of the potential
    plcol0(2)
    scaling = 25.0
    plvect(ug,vg,scaling,pltr2,xg,yg)
    plcol0(1)

    # Perimeter
    t = (2.*pi/(nper-1))*arange(nper)
    px = rmax*cos(t)
    py = rmax*sin(t)
    plline(px,py)
    
# main
#
# Does a series of vector plots
#
def main():

    circulation()

    narr = 6
    fill = 0

# Set arrow style using arrow_x and arrow_y then 
# plot using these arrows.
    plsvect(arrow_x, arrow_y, fill)
    constriction()

# Set arrow style using arrow2_x and arrow2_y then 
# plot using these filled arrows.
    fill = 1
    plsvect(arrow2_x, arrow2_y, fill)
    constriction()

    potential()


# Vector plot of the circulation about the origin 
main()