1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
#----------------------------------------------------------------------------
# $Id: x22.tcl,v 1.1 2004/05/21 15:09:27 andrewross Exp $
#----------------------------------------------------------------------------
# Vector plot demo.
proc x22 {{w loopback}} {
matrix arrow_x f 6 = {-0.5, 0.5, 0.3, 0.5, 0.3, 0.5}
matrix arrow_y f 6 = {0.0, 0.0, 0.2, 0.0, -0.2, 0.0}
matrix arrow2_x f 6 = {-0.5, 0.3, 0.3, 0.5, 0.3, 0.3}
matrix arrow2_y f 6 = {0.0, 0.0, 0.2, 0.0, -0.2, 0.0}
circulation $w
set narr 6
set fill 0
$w cmd plsvect arrow_x arrow_y $narr $fill
constriction $w
set fill 1
$w cmd plsvect arrow2_x arrow2_y $narr $fill
constriction $w
potential $w
}
# Vector plot of circulation about the origin
proc circulation {w} {
set nx 20
set ny 20
set dx 1.0
set dy 1.0
set xmin [expr (-$nx/2*$dx)]
set xmax [expr ($nx/2*$dx)]
set ymin [expr (-$ny/2*$dy)]
set ymax [expr ($ny/2*$dy)]
matrix xg f $nx $ny
matrix yg f $nx $ny
matrix u f $nx $ny
matrix v f $nx $ny
# Create data - circulation around the origin.
for {set i 0} {$i < $nx} {incr i} {
set x [expr (($i-$nx/2+0.5)*$dx) ]
for {set j 0} {$j < $ny} {incr j} {
set y [expr (($j-$ny/2+0.5)*$dy)]
xg $i $j = $x
yg $i $j = $y
u $i $j = $y
v $i $j = [expr (-1.0*$x)]
}
}
# Plot vectors with default arrows
$w cmd plenv $xmin $xmax $ymin $ymax 0 0
$w cmd pllab "(x)" "(y)" "#frPLplot Example 22 - circulation"
$w cmd plcol0 2
$w cmd plvect u v 0.0 "pltr2" xg yg
$w cmd plcol0 1
}
# Vector plot of flow through a constricted pipe
proc constriction {w} {
set pi 3.14159265358979323846
set nx 20
set ny 20
set dx 1.0
set dy 1.0
set xmin [expr (-$nx/2*$dx)]
set xmax [expr ($nx/2*$dx)]
set ymin [expr (-$ny/2*$dy)]
set ymax [expr ($ny/2*$dy)]
matrix xg f $nx $ny
matrix yg f $nx $ny
matrix u f $nx $ny
matrix v f $nx $ny
set Q 2.0
# Create data - circulation around the origin.
for {set i 0} {$i < $nx} {incr i} {
set x [expr (($i-$nx/2+0.5)*$dx) ]
for {set j 0} {$j < $ny} {incr j} {
set y [expr (($j-$ny/2+0.5)*$dy)]
xg $i $j = $x
yg $i $j = $y
set b [expr ($ymax/4.0*(3.0-cos($pi*$x/$xmax)))]
if {abs($y) < $b} {
set dbdx [expr ($ymax/4.0*sin($pi*$x/$xmax)*$y/$b)]
u $i $j = [expr ($Q*$ymax/$b)]
v $i $j = [expr ($Q*$ymax/$b*$dbdx)]
} else {
u $i $j = 0.0
v $i $j = 0.0
}
}
}
# Plot vectors with default arrows
$w cmd plenv $xmin $xmax $ymin $ymax 0 0
$w cmd pllab "(x)" "(y)" "#frPLplot Example 22 - constriction"
$w cmd plcol0 2
$w cmd plvect u v -0.5 "pltr2" xg yg
$w cmd plcol0 1
}
# Vector plot of the gradient of a shielded potential (see example 9)
proc potential {w} {
set pi 3.14159265358979323846
set nr 20
set ntheta 20
set nper 100
set nlevel 10
matrix xg f $nr $ntheta
matrix yg f $nr $ntheta
matrix u f $nr $ntheta
matrix v f $nr $ntheta
matrix z f $nr $ntheta
# Potential inside a conducting cylinder (or sphere) by method of images.
# Charge 1 is placed at (d1, d1), with image charge at (d2, d2).
# Charge 2 is placed at (d1, -d1), with image charge at (d2, -d2).
# Also put in smoothing term at small distances.
set rmax $nr
set eps [expr 2.]
set q1 [expr 1.]
set d1 [expr $rmax/4.]
set q1i [expr - $q1*$rmax/$d1]
set d1i [expr pow($rmax,2)/$d1]
set q2 [expr -1.]
set d2 [expr $rmax/4.]
set q2i [expr - $q2*$rmax/$d2]
set d2i [expr pow($rmax,2)/$d2]
for {set i 0} {$i < $nr} {incr i} {
set r [expr 0.5 + $i]
for {set j 0} {$j < $ntheta} {incr j} {
set theta [expr {(2. * $pi / ($ntheta - 1.))*(0.5 + $j)}]
set x [expr {$r * cos($theta)}]
set y [expr {$r * sin($theta)}]
xg $i $j = $x
yg $i $j = $y
set div1 [expr {sqrt(pow($x-$d1,2) + pow($y-$d1,2) +
pow($eps,2))}]
set div1i [expr {sqrt(pow($x-$d1i,2) + pow($y-$d1i,2) + pow($eps,2))}]
set div2 [expr {sqrt(pow($x-$d2,2) + pow($y+$d2,2) +
pow($eps,2))}]
set div2i [expr {sqrt(pow($x-$d2i,2) + pow($y+$d2i,2) + pow($eps,2))}]
z $i $j = [expr {$q1/$div1 + $q1i/$div1i + $q2/$div2 + $q2i/$div2i}]
u $i $j = [expr {-$q1*($x-$d1)/pow($div1,3) - $q1i*($x-$d1i)/pow($div1i,3) -
$q2*($x-$d2)/pow($div2,3) - $q2i*($x-$d2i)/pow($div2i,3)}]
v $i $j = [expr {-$q1*($y-$d1)/pow($div1,3) - $q1i*($y-$d1i)/pow($div1i,3) -
$q2*($y+$d2)/pow($div2,3) - $q2i*($y+$d2i)/pow($div2i,3)}]
}
}
set xmin [xg 0 0]
set xmax $xmin
set ymin [yg 0 0]
set ymax $ymin
set zmin [z 0 0]
set zmax $zmin
for {set i 0} {$i < $nr} {incr i} {
for {set j 0} {$j < $ntheta} {incr j} {
if {[xg $i $j] < $xmin} { set xmin [xg $i $j] }
if {[xg $i $j] > $xmax} { set xmax [xg $i $j] }
if {[yg $i $j] < $ymin} { set ymin [yg $i $j] }
if {[yg $i $j] > $ymax} { set ymax [yg $i $j] }
if {[z $i $j] < $zmin} { set zmin [z $i $j] }
if {[z $i $j] > $zmax} { set zmax [z $i $j] }
}
}
$w cmd plenv $xmin $xmax $ymin $ymax 0 0
$w cmd pllab "(x)" "(y)" "#frPLplot Example 22 - potential gradient vector plot"
# Plot contours of the potential
set dz [expr (($zmax-$zmin)/$nlevel)]
matrix clevel f $nlevel
for {set i 0} {$i < $nlevel} {incr i} {
clevel $i = [expr {$zmin + ($i + 0.5)*$dz}]
}
$w cmd plcol0 3
$w cmd pllsty 2
$w cmd plcont z clevel "pltr2" xg yg
$w cmd pllsty 1
$w cmd plcol0 1
# Plot vectors with default arrows
$w cmd plcol0 2
$w cmd plvect u v 25.0 "pltr2" xg yg
$w cmd plcol0 1
# Plot the perimeter of the cylinder
matrix px f $nper
matrix py f $nper
set dtheta [expr (2.0*$pi/($nper-1.0))]
for {set i 0} {$i < $nper} {incr i} {
set theta [expr $dtheta*$i]
px $i = [expr ($rmax*cos($theta))]
py $i = [expr ($rmax*sin($theta))]
}
$w cmd plline $nper px py
}
|