File: r6rs-lib-Z-H-12.html

package info (click to toggle)
plt-scheme 4.0.1-2
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 74,572 kB
  • ctags: 54,545
  • sloc: ansic: 305,271; cpp: 65,061; sh: 30,815; lisp: 10,555; asm: 8,532; makefile: 5,174; perl: 2,930; java: 2,652; pascal: 2,011; yacc: 755; lex: 258; sed: 93; xml: 12; python: 8
file content (1200 lines) | stat: -rw-r--r-- 67,319 bytes parent folder | download | duplicates (15)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
<!doctype html public "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!--

Generated from r6rs-lib.tex by tex2page, v 20070803
(running on MzScheme 371, unix), 
(c) Dorai Sitaram, 
http://www.ccs.neu.edu/~dorai/tex2page/tex2page-doc.html

-->
<head>
<title>
r6rs-lib
</title>
<link rel="stylesheet" type="text/css" href="r6rs-lib-Z-S.css" title=default>
<meta name=robots content="index,follow">
</head>
<body>
<div id=slidecontent>
<div align=right class=navigation>[Go to <span><a href="r6rs-lib.html">first</a>, <a href="r6rs-lib-Z-H-11.html">previous</a></span><span>, <a href="r6rs-lib-Z-H-13.html">next</a></span> page<span>; &nbsp;&nbsp;</span><span><a href="r6rs-lib-Z-H-1.html#node_toc_start">contents</a></span><span><span>; &nbsp;&nbsp;</span><a href="r6rs-lib-Z-H-21.html#node_index_start">index</a></span>]</div>
<p></p>
<a name="node_chap_11"></a>
<h1 class=chapter>
<div class=chapterheading><a href="r6rs-lib-Z-H-1.html#node_toc_node_chap_11">Chapter 11</a></div><br>
<a href="r6rs-lib-Z-H-1.html#node_toc_node_chap_11">Arithmetic</a></h1>
<p>
<a name="node_idx_850"></a></p>
<p>
This chapter describes Scheme&#8217;s libraries for more specialized
numerical operations: fixnum and flonum arithmetic, as well as bitwise
operations on exact integer objects.  </p>
<p>
</p>
<a name="node_sec_11.1"></a>
<h2 class=section><a href="r6rs-lib-Z-H-1.html#node_toc_node_sec_11.1">11.1&nbsp;&nbsp;Bitwise operations</a></h2>
<p>A number of procedures operate on the binary two&#8217;s-complement
representations of exact integer objects: Bit positions within an
exact integer object are counted from the right, i.e. bit 0 is the
least significant bit.  Some procedures allow extracting <a name="node_idx_852"></a><em>bit
fields</em>, i.e., number objects representing subsequences of the
binary representation of an exact integer object.  Bit fields are
always positive, and always defined using a finite number of bits.</p>
<p>
</p>
<a name="node_sec_11.2"></a>
<h2 class=section><a href="r6rs-lib-Z-H-1.html#node_toc_node_sec_11.2">11.2&nbsp;&nbsp;Fixnums</a></h2>
<p></p>
<p>
Every implementation must define its fixnum range as a closed
interval
</p>
<div align=left><img src="r6rs-lib-Z-G-4.gif" border="0" alt="[r6rs-lib-Z-G-4.gif]"></div><p>
such that <em>w</em> is a (mathematical) integer <em>w</em> &ge; 24.  Every
mathematical integer within an implementation&#8217;s fixnum range must
correspond to an exact integer object that is representable within the
implementation.
A fixnum is an exact integer object whose value lies within this
fixnum range.</p>
<p>
This section describes the <tt>(rnrs arithmetic fixnums (6))</tt><a name="node_idx_854"></a>library,
which defines various operations on fixnums.
Fixnum operations perform integer arithmetic on their fixnum
arguments, but raise an exception with condition type
<tt>&amp;implementation-restriction</tt> if the result is not a fixnum.</p>
<p>
This section uses <i>fx</i>, <i>fx<sub>1</sub></i>, <i>fx<sub>2</sub></i>, etc., as parameter
names for arguments that must be fixnums.</p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_856"></a>fixnum?<i> obj</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
Returns <tt>#t</tt> if <i>obj</i> is an exact
integer object within the fixnum range, <tt>#f</tt> otherwise.
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_858"></a>fixnum-width<i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_860"></a>least-fixnum<i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_862"></a>greatest-fixnum<i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
These procedures return <em>w</em>,
 <tt>-</tt> 2<sup><em>w</em><tt>-</tt>1</sup> and 2<sup><em>w</em><tt>-</tt>1</sup>  <tt>-</tt>  1: the
width, minimum and the maximum value of the fixnum range, respectively.
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_864"></a>fx=?<i> <i>fx<sub>1</sub></i> <i>fx<sub>2</sub></i> <i>fx<sub>3</sub></i> <tt>...</tt></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_866"></a>fx&gt;?<i> <i>fx<sub>1</sub></i> <i>fx<sub>2</sub></i> <i>fx<sub>3</sub></i> <tt>...</tt></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_868"></a>fx&lt;?<i> <i>fx<sub>1</sub></i> <i>fx<sub>2</sub></i> <i>fx<sub>3</sub></i> <tt>...</tt></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_870"></a>fx&gt;=?<i> <i>fx<sub>1</sub></i> <i>fx<sub>2</sub></i> <i>fx<sub>3</sub></i> <tt>...</tt></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_872"></a>fx&lt;=?<i> <i>fx<sub>1</sub></i> <i>fx<sub>2</sub></i> <i>fx<sub>3</sub></i> <tt>...</tt></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
These procedures return <tt>#t</tt> if their arguments are (respectively):
equal, monotonically increasing, monotonically decreasing,
monotonically nondecreasing, or monotonically nonincreasing,
<tt>#f</tt> otherwise.
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_874"></a>fxzero?<i> fx</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_876"></a>fxpositive?<i> fx</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_878"></a>fxnegative?<i> fx</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_880"></a>fxodd?<i> fx</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_882"></a>fxeven?<i> fx</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
These numerical predicates test a fixnum for a particular property,
returning <tt>#t</tt> or <tt>#f</tt>.  The five properties tested by
these procedures are: whether the number object is zero, greater than zero,
less than zero, odd, or even.
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_884"></a>fxmax<i> <i>fx<sub>1</sub></i> <i>fx<sub>2</sub></i> <tt>...</tt></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_886"></a>fxmin<i> <i>fx<sub>1</sub></i> <i>fx<sub>2</sub></i> <tt>...</tt></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
These procedures return the maximum or minimum of their arguments.
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_888"></a>fx+<i> <i>fx<sub>1</sub></i> <i>fx<sub>2</sub></i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_890"></a>fx*<i> <i>fx<sub>1</sub></i> <i>fx<sub>2</sub></i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
These procedures return the sum or product of their arguments,
provided that sum or product is a fixnum.  An exception with condition
type <tt>&amp;implementation-restriction</tt> is raised if
that sum or product is not a fixnum.
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_892"></a>fx-<i> <i>fx<sub>1</sub></i> <i>fx<sub>2</sub></i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_894"></a>fx-<i> fx</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
With two arguments, this procedure returns the difference
<i>fx<sub>1</sub></i> <tt>-</tt> <i>fx<sub>2</sub></i>, provided that difference is a fixnum.</p>
<p>
With one argument, this procedure returns the additive
inverse of its argument, provided that integer object is a
fixnum.</p>
<p>
An exception with condition type <tt>&amp;assertion</tt> is raised if the
mathematically correct result of this procedure is not a fixnum.</p>
<p>
</p>

<tt>(fx-&nbsp;(least-fixnum))&nbsp;&nbsp;&nbsp;&nbsp;<tt>&nbsp;&amp;assertion</tt>&nbsp;<i>exception</i><p></tt>
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_896"></a>fxdiv-and-mod<i> <i>fx<sub>1</sub></i> <i>fx<sub>2</sub></i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_898"></a>fxdiv<i> <i>fx<sub>1</sub></i> <i>fx<sub>2</sub></i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_900"></a>fxmod<i> <i>fx<sub>1</sub></i> <i>fx<sub>2</sub></i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_902"></a>fxdiv0-and-mod0<i> <i>fx<sub>1</sub></i> <i>fx<sub>2</sub></i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_904"></a>fxdiv0<i> <i>fx<sub>1</sub></i> <i>fx<sub>2</sub></i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_906"></a>fxmod0<i> <i>fx<sub>1</sub></i> <i>fx<sub>2</sub></i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
<i>Fx<sub>2</sub></i> must be nonzero.
These procedures implement number-theoretic integer division and
return the results of the corresponding mathematical operations
specified in report section&nbsp;on &#8220;Integer division&#8221;.</p>
<p>
</p>

<tt>(fxdiv&nbsp;<i>fx<sub>1</sub></i>&nbsp;<i>fx<sub>2</sub></i>)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;<i>fx<sub>1</sub></i>&nbsp;<em>d</em><em>i</em><em>v</em>&nbsp;<i>fx<sub>2</sub></i><br>
(fxmod&nbsp;<i>fx<sub>1</sub></i>&nbsp;<i>fx<sub>2</sub></i>)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;<i>fx<sub>1</sub></i>&nbsp;<em>m</em><em>o</em><em>d</em>&nbsp;<i>fx<sub>2</sub></i><br>
(fxdiv-and-mod&nbsp;<i>fx<sub>1</sub></i>&nbsp;<i>fx<sub>2</sub></i>)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;<i>fx<sub>1</sub></i>&nbsp;<em>d</em><em>i</em><em>v</em>&nbsp;<i>fx<sub>2</sub></i>,&nbsp;<i>fx<sub>1</sub></i>&nbsp;<em>m</em><em>o</em><em>d</em>&nbsp;<i>fx<sub>2</sub></i><br>
;&nbsp;two&nbsp;return&nbsp;values<br>
(fxdiv0&nbsp;<i>fx<sub>1</sub></i>&nbsp;<i>fx<sub>2</sub></i>)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;<i>fx<sub>1</sub></i>&nbsp;<em>d</em><em>i</em><em>v</em>sb0&nbsp;<i>fx<sub>2</sub></i><br>
(fxmod0&nbsp;<i>fx<sub>1</sub></i>&nbsp;<i>fx<sub>2</sub></i>)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;<i>fx<sub>1</sub></i>&nbsp;<em>m</em><em>o</em><em>d</em>sb0&nbsp;<i>fx<sub>2</sub></i><br>
(fxdiv0-and-mod0&nbsp;<i>fx<sub>1</sub></i>&nbsp;<i>fx<sub>2</sub></i>)&nbsp;&nbsp;&nbsp;<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;<i>fx<sub>1</sub></i>&nbsp;<i>fx<sub>1</sub></i>&nbsp;<em>d</em><em>i</em><em>v</em>sb0&nbsp;<i>fx<sub>2</sub></i>,&nbsp;<i>fx<sub>1</sub></i>&nbsp;<em>m</em><em>o</em><em>d</em>sb0&nbsp;<i>fx<sub>2</sub></i><br>
;&nbsp;two&nbsp;return&nbsp;values<p></tt>
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_908"></a>fx+/carry<i> <i>fx<sub>1</sub></i> <i>fx<sub>2</sub></i> <i>fx<sub>3</sub></i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
Returns the two fixnum results of the following computation:
</p>

<tt>(let*&nbsp;((s&nbsp;(+&nbsp;<i>fx<sub>1</sub></i>&nbsp;<i>fx<sub>2</sub></i>&nbsp;<i>fx<sub>3</sub></i>))<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(s0&nbsp;(mod0&nbsp;s&nbsp;(expt&nbsp;2&nbsp;(fixnum-width))))<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(s1&nbsp;(div0&nbsp;s&nbsp;(expt&nbsp;2&nbsp;(fixnum-width)))))<br>
&nbsp;&nbsp;(values&nbsp;s0&nbsp;s1))<p></tt>
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_910"></a>fx-/carry<i> <i>fx<sub>1</sub></i> <i>fx<sub>2</sub></i> <i>fx<sub>3</sub></i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
Returns the two fixnum results of the following computation:
</p>

<tt>(let*&nbsp;((d&nbsp;(-&nbsp;<i>fx<sub>1</sub></i>&nbsp;<i>fx<sub>2</sub></i>&nbsp;<i>fx<sub>3</sub></i>))<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(d0&nbsp;(mod0&nbsp;d&nbsp;(expt&nbsp;2&nbsp;(fixnum-width))))<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(d1&nbsp;(div0&nbsp;d&nbsp;(expt&nbsp;2&nbsp;(fixnum-width)))))<br>
&nbsp;&nbsp;(values&nbsp;d0&nbsp;d1))<p></tt>
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_912"></a>fx*/carry<i> <i>fx<sub>1</sub></i> <i>fx<sub>2</sub></i> <i>fx<sub>3</sub></i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
Returns the two fixnum results of the following computation:
</p>

<tt>(let*&nbsp;((s&nbsp;(+&nbsp;(*&nbsp;<i>fx<sub>1</sub></i>&nbsp;<i>fx<sub>2</sub></i>)&nbsp;<i>fx<sub>3</sub></i>))<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(s0&nbsp;(mod0&nbsp;s&nbsp;(expt&nbsp;2&nbsp;(fixnum-width))))<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(s1&nbsp;(div0&nbsp;s&nbsp;(expt&nbsp;2&nbsp;(fixnum-width)))))<br>
&nbsp;&nbsp;(values&nbsp;s0&nbsp;s1))<p></tt>
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_914"></a>fxnot<i> <i>fx</i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
Returns the unique fixnum that is congruent
mod 2<sup><em>w</em></sup> to the one&#8217;s-complement of <i>fx</i>.
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_916"></a>fxand<i> <i>fx<sub>1</sub></i> <tt>...</tt></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_918"></a>fxior<i> <i>fx<sub>1</sub></i> <tt>...</tt></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_920"></a>fxxor<i> <i>fx<sub>1</sub></i> <tt>...</tt></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
These procedures return the fixnum that is the bit-wise &#8220;and&#8221;,
&#8220;inclusive or&#8221;, or &#8220;exclusive or&#8221; of the two&#8217;s complement
representations of their arguments.  If they are passed only one
argument, they return that argument.  If they are passed no arguments,
they return the fixnum (either  <tt>-</tt> 1 or 0) that acts as identity for the
operation.
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_922"></a>fxif<i> <i>fx<sub>1</sub></i> <i>fx<sub>2</sub></i> <i>fx<sub>3</sub></i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
Returns the fixnum that is the bit-wise &#8220;if&#8221; of the two&#8217;s complement
representations of its arguments, i.e. for each bit, if it is 1 in
<i>fx<sub>1</sub></i>, the corresponding bit in <i>fx<sub>2</sub></i> becomes the value of
the corresponding bit in the result, and if it is 0, the corresponding
bit in <i>fx<sub>3</sub></i> becomes the corresponding bit in the value of the
result.  This is the fixnum result of the following computation:
</p>

<tt>(fxior&nbsp;(fxand&nbsp;<i>fx<sub>1</sub></i>&nbsp;<i>fx<sub>2</sub></i>)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(fxand&nbsp;(fxnot&nbsp;<i>fx<sub>1</sub></i>)&nbsp;<i>fx<sub>3</sub></i>))<p></tt>
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_924"></a>fxbit-count<i> <i>fx</i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
If <i>fx</i> is non-negative, this procedure returns the
number of 1 bits in the two&#8217;s complement representation of <i>fx</i>.
Otherwise it returns the result of the following computation:
</p>

<tt>(fxnot&nbsp;(fxbit-count&nbsp;(fxnot&nbsp;<i>ei</i>)))<p></tt>
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_926"></a>fxlength<i> <i>fx</i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
Returns the number of bits needed to represent <i>fx</i> if it is
positive, and the number of bits needed to represent <tt>(fxnot
<i>fx</i>)</tt> if it is negative, which is the fixnum result of the
following computation:
</p>

<tt>(do&nbsp;((result&nbsp;0&nbsp;(+&nbsp;result&nbsp;1))<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(bits&nbsp;(if&nbsp;(fxnegative?&nbsp;<i>fx</i>)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(fxnot&nbsp;<i>fx</i>)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<i>fx</i>)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(fxarithmetic-shift-right&nbsp;bits&nbsp;1)))<br>
&nbsp;&nbsp;&nbsp;&nbsp;((fxzero?&nbsp;bits)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;result))<p></tt>
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_928"></a>fxfirst-bit-set<i> <i>fx</i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
Returns the index of the least significant 1 bit in
the two&#8217;s complement representation of <i>fx</i>.  If 
<i>fx</i> is 0, then  <tt>-</tt> 1 is returned.
</p>

<tt>(fxfirst-bit-set&nbsp;0)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;&nbsp;-1<br>
(fxfirst-bit-set&nbsp;1)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;&nbsp;0<br>
(fxfirst-bit-set&nbsp;-4)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;&nbsp;2<p></tt>
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_930"></a>fxbit-set?<i> <i>fx<sub>1</sub></i> <i>fx<sub>2</sub></i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
<i>Fx<sub>2</sub></i> must be non-negative and less than <tt>(fixnum-width)</tt>.  The <tt>fxbit-set?</tt> procedure returns
<tt>#t</tt> if the <i>fx<sub>2</sub></i>th bit is 1 in the two&#8217;s complement
representation of <i>fx<sub>1</sub></i>, and <tt>#f</tt> otherwise.  This is the
fixnum result of the following computation:
</p>

<tt>(not<br>
&nbsp;&nbsp;(fxzero?<br>
&nbsp;&nbsp;&nbsp;&nbsp;(fxand&nbsp;<i>fx<sub>1</sub></i><br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(fxarithmetic-shift-left&nbsp;1&nbsp;<i>fx<sub>2</sub></i>))))<p></tt>
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_932"></a>fxcopy-bit<i> <i>fx<sub>1</sub></i> <i>fx<sub>2</sub></i> <i>fx<sub>3</sub></i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
<i>Fx<sub>2</sub></i> must be non-negative and less than <tt>(fixnum-width)</tt>. <i>Fx<sub>3</sub></i> must be 0 or
1.  The <tt>fxcopy-bit</tt> procedure returns the result of replacing
the <i>fx<sub>2</sub></i>th bit of <i>fx<sub>1</sub></i> by <i>fx<sub>3</sub></i>, which is
the result of the following computation:
</p>

<tt>(let*&nbsp;((mask&nbsp;(fxarithmetic-shift-left&nbsp;1&nbsp;<i>fx<sub>2</sub></i>)))<br>
&nbsp;&nbsp;(fxif&nbsp;mask<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(fxarithmetic-shift-left&nbsp;<i>fx<sub>3</sub></i>&nbsp;<i>fx<sub>2</sub></i>)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<i>fx<sub>1</sub></i>))<p></tt>
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_934"></a>fxbit-field<i> <i>fx<sub>1</sub></i> <i>fx<sub>2</sub></i> <i>fx<sub>3</sub></i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
<i>Fx<sub>2</sub></i> and <i>fx<sub>3</sub></i> must be non-negative and less than
<tt>(fixnum-width)</tt>.  Moreover, <i>fx<sub>2</sub></i> must be less than or
equal to <i>fx<sub>3</sub></i>.  The <tt>fxbit-field</tt> procedure returns the
number represented by the bits at the positions from <i>fx<sub>2</sub></i> (inclusive) to
<i>fx<sub>3</sub></i> (exclusive), which is
the fixnum result of the following computation:
</p>

<tt>(let*&nbsp;((mask&nbsp;(fxnot<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(fxarithmetic-shift-left&nbsp;-1&nbsp;<i>fx<sub>3</sub></i>))))<br>
&nbsp;&nbsp;(fxarithmetic-shift-right&nbsp;(fxand&nbsp;<i>fx<sub>1</sub></i>&nbsp;mask)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<i>fx<sub>2</sub></i>))<p></tt>
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_936"></a>fxcopy-bit-field<i> <i>fx<sub>1</sub></i> <i>fx<sub>2</sub></i> <i>fx<sub>3</sub></i> <i>fx<sub>4</sub></i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
<i>Fx<sub>2</sub></i> and <i>fx<sub>3</sub></i> must be non-negative and less than
<tt>(fixnum-width)</tt>.  Moreover, <i>fx<sub>2</sub></i> must be less than or
equal to <i>fx<sub>3</sub></i>.  The <tt>fxcopy-bit-field</tt> procedure returns
the result of replacing in <i>fx<sub>1</sub></i> the bits at positions from
<i>fx<sub>2</sub></i> (inclusive) to <i>fx<sub>3</sub></i> (exclusive) by the corresponding bits in <i>fx<sub>4</sub></i>, which
is the fixnum result of the following computation:
</p>

<tt>(let*&nbsp;((to&nbsp;&nbsp;&nbsp;&nbsp;<i>fx<sub>1</sub></i>)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(start&nbsp;<i>fx<sub>2</sub></i>)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(end&nbsp;&nbsp;&nbsp;<i>fx<sub>3</sub></i>)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(from&nbsp;&nbsp;<i>fx<sub>4</sub></i>)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(mask1&nbsp;(fxarithmetic-shift-left&nbsp;-1&nbsp;start))<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(mask2&nbsp;(fxnot<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(fxarithmetic-shift-left&nbsp;-1&nbsp;end)))<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(mask&nbsp;(fxand&nbsp;mask1&nbsp;mask2)))<br>
&nbsp;&nbsp;(fxif&nbsp;mask<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(fxarithmetic-shift-left&nbsp;from&nbsp;start)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;to))<p></tt>
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_938"></a>fxarithmetic-shift<i> <i>fx<sub>1</sub></i> <i>fx<sub>2</sub></i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
The absolute value of <i>fx<sub>2</sub></i> must be less than 
<tt>(fixnum-width)</tt>.  If
</p>

<tt>(floor&nbsp;(*&nbsp;<i>fx<sub>1</sub></i>&nbsp;(expt&nbsp;2&nbsp;<i>fx<sub>2</sub></i>)))<p></tt>
is a fixnum, then that fixnum is returned.  Otherwise an exception
with condition type <tt>&amp;implementation-restriction</tt> is
raised.
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_940"></a>fxarithmetic-shift-left<i> <i>fx<sub>1</sub></i> <i>fx<sub>2</sub></i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_942"></a>fxarithmetic-shift-right<i> <i>fx<sub>1</sub></i> <i>fx<sub>2</sub></i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
<i>Fx<sub>2</sub></i> must be non-negative, and less than <tt>(fixnum-width)</tt>.
The <tt>fxarithmetic-shift-left</tt> procedure behaves the same as <tt>fxarithmetic-shift</tt>, and <tt>(fxarithmetic-shift-right <i>fx<sub>1</sub></i>
<i>fx<sub>2</sub></i>)</tt> behaves the same as <tt>(fxarithmetic-shift <i>fx<sub>1</sub></i>
(fx- <i>fx<sub>2</sub></i>))</tt>.
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_944"></a>fxrotate-bit-field<i> <i>fx<sub>1</sub></i> <i>fx<sub>2</sub></i> <i>fx<sub>3</sub></i> <i>fx<sub>4</sub></i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
<i>Fx<sub>2</sub></i>, <i>fx<sub>3</sub></i>, and <i>fx<sub>4</sub></i> must be non-negative
and less than <tt>(fixnum-width)</tt>.  <i>Fx<sub>2</sub></i> must be less than or
equal to <i>fx<sub>3</sub></i>. <i>Fx<sub>4</sub></i> must be less than the difference
between <i>fx<sub>3</sub></i> and <i>fx<sub>2</sub></i>.  The <tt>fxrotate-bit-field</tt>
procedure returns the result of cyclically permuting in <i>fx<sub>1</sub></i> the
bits at positions from <i>fx<sub>2</sub></i> (inclusive) to <i>fx<sub>3</sub></i>
(exclusive) by <i>fx<sub>4</sub></i> bits
towards the more significant bits, which is the result of the
following computation:
</p>

<tt>(let*&nbsp;((n&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<i>fx<sub>1</sub></i>)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(start&nbsp;<i>fx<sub>2</sub></i>)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(end&nbsp;&nbsp;&nbsp;<i>fx<sub>3</sub></i>)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(count&nbsp;<i>fx<sub>4</sub></i>)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(width&nbsp;(fx-&nbsp;end&nbsp;start)))<br>
&nbsp;&nbsp;(if&nbsp;(fxpositive?&nbsp;width)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(let*&nbsp;((count&nbsp;(fxmod&nbsp;count&nbsp;width))<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(field0<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(fxbit-field&nbsp;n&nbsp;start&nbsp;end))<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(field1<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(fxarithmetic-shift-left<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;field0&nbsp;count))<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(field2<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(fxarithmetic-shift-right<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;field0&nbsp;(fx-&nbsp;width&nbsp;count)))<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(field&nbsp;(fxior&nbsp;field1&nbsp;field2)))<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(fxcopy-bit-field&nbsp;n&nbsp;start&nbsp;end&nbsp;field))<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;n))<p></tt></p>
<p>
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_946"></a>fxreverse-bit-field<i> <i>fx<sub>1</sub></i> <i>fx<sub>2</sub></i> <i>fx<sub>3</sub></i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
<i>Fx<sub>2</sub></i> and <i>fx<sub>3</sub></i> must be non-negative and less than
<tt>(fixnum-width)</tt>.  Moreover, <i>fx<sub>2</sub></i> must be less than or
equal to <i>fx<sub>3</sub></i>.  The <tt>fxreverse-bit-field</tt> procedure
returns
the fixnum obtained from <i>fx<sub>1</sub></i> by reversing the
order of the bits at positions from <i>fx<sub>2</sub></i> (inclusive) to
<i>fx<sub>3</sub></i> (exclusive).
</p>

<tt>(fxreverse-bit-field&nbsp;<tt>#</tt>b1010010&nbsp;1&nbsp;4)&nbsp;&nbsp;&nbsp;&nbsp;<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;&nbsp;88&nbsp;;&nbsp;<tt>#</tt>b1011000<p></tt></p>
<p>
</p>
<p></p>
<p>
</p>
<a name="node_sec_11.3"></a>
<h2 class=section><a href="r6rs-lib-Z-H-1.html#node_toc_node_sec_11.3">11.3&nbsp;&nbsp;Flonums</a></h2>
<p></p>
<p>
This section describes the <tt>(rnrs arithmetic flonums (6))</tt><a name="node_idx_948"></a>library.</p>
<p>
This section uses <i>fl</i>, <i>fl<sub>1</sub></i>, <i>fl<sub>2</sub></i>, etc., as
parameter names for arguments that must be flonums, and <i>ifl</i>
as a name for arguments that 
must be integer-valued flonums, i.e., flonums for which the
<tt>integer-valued?</tt> predicate returns true.</p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_950"></a>flonum?<i> obj</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
Returns <tt>#t</tt> if <i>obj</i> is a flonum, <tt>#f</tt> otherwise.
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_952"></a>real-&gt;flonum<i> x</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
Returns the best flonum representation of
<i>x</i>.</p>
<p>
The value returned is a flonum that is numerically closest to the
argument.</p>
<p>
</p>
<blockquote><em>Note:&nbsp;&nbsp;</em>
If flonums are represented in binary floating point, then
implementations should break ties by preferring
the floating-point representation whose least significant bit is
zero.
</blockquote>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_954"></a>fl=?<i> <i>fl<sub>1</sub></i> <i>fl<sub>2</sub></i> <i>fl<sub>3</sub></i> <tt>...</tt></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_956"></a>fl&lt;?<i> <i>fl<sub>1</sub></i> <i>fl<sub>2</sub></i> <i>fl<sub>3</sub></i> <tt>...</tt></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_958"></a>fl&lt;=?<i> <i>fl<sub>1</sub></i> <i>fl<sub>2</sub></i> <i>fl<sub>3</sub></i> <tt>...</tt></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_960"></a>fl&gt;?<i> <i>fl<sub>1</sub></i> <i>fl<sub>2</sub></i> <i>fl<sub>3</sub></i> <tt>...</tt></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_962"></a>fl&gt;=?<i> <i>fl<sub>1</sub></i> <i>fl<sub>2</sub></i> <i>fl<sub>3</sub></i> <tt>...</tt></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
These procedures return <tt>#t</tt> if their arguments are (respectively):
equal, monotonically increasing, monotonically decreasing,
monotonically nondecreasing, or monotonically nonincreasing,
<tt>#f</tt> otherwise.  These
predicates must be transitive.</p>
<p>
</p>

<tt>(fl=&nbsp;+inf.0&nbsp;+inf.0)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;&nbsp;<tt>#t</tt><br>
(fl=&nbsp;-inf.0&nbsp;+inf.0)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;&nbsp;<tt>#f</tt><br>
(fl=&nbsp;-inf.0&nbsp;-inf.0)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;&nbsp;<tt>#t</tt><br>
(fl=&nbsp;0.0&nbsp;-0.0)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;&nbsp;<tt>#t</tt><br>
(fl&lt;&nbsp;0.0&nbsp;-0.0)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;&nbsp;<tt>#f</tt><br>
(fl=&nbsp;+nan.0&nbsp;<i>fl</i>)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;&nbsp;<tt>#f</tt><br>
(fl&lt;&nbsp;+nan.0&nbsp;<i>fl</i>)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;&nbsp;<tt>#f</tt><p></tt>
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_964"></a>flinteger?<i> fl</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_966"></a>flzero?<i> fl</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_968"></a>flpositive?<i> fl</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_970"></a>flnegative?<i> fl</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_972"></a>flodd?<i> ifl</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_974"></a>fleven?<i> ifl</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_976"></a>flfinite?<i> fl</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_978"></a>flinfinite?<i> fl</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_980"></a>flnan?<i> fl</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
These numerical predicates test a flonum for a particular property,
returning <tt>#t</tt> or <tt>#f</tt>.
The <tt>flinteger?</tt> procedure tests whether the number object is an integer,
<tt>flzero?</tt> tests whether
it is <tt>fl=?</tt> to zero, <tt>flpositive?</tt> tests whether it is greater
than zero, <tt>flnegative?</tt> tests whether it is less
than zero, <tt>flodd?</tt> tests whether it is odd, 
<tt>fleven?</tt> tests whether it is even,
<tt>flfinite?</tt> tests whether it is not an infinity and not a NaN,
<tt>flinfinite?</tt> tests whether it is an infinity, and
<tt>flnan?</tt> tests whether it is a NaN.</p>
<p>
</p>

<tt>(flnegative?&nbsp;-0.0)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;<tt>#f</tt><br>
(flfinite?&nbsp;+inf.0)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;<tt>#f</tt><br>
(flfinite?&nbsp;5.0)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;<tt>#t</tt><br>
(flinfinite?&nbsp;5.0)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;<tt>#f</tt><br>
(flinfinite?&nbsp;+inf.0)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;<tt>#t</tt><p></tt></p>
<p>
</p>
<blockquote><em>Note:&nbsp;&nbsp;</em>
<tt>(flnegative? -0.0)</tt> must return <tt>#f</tt>,
else it would lose the correspondence with
<tt>(fl&lt; -0.0 0.0)</tt>, which is <tt>#f</tt>
according to IEEE 754&nbsp;[<a href="r6rs-lib-Z-H-21.html#node_bib_7">7</a>].
</blockquote>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_982"></a>flmax<i> <i>fl<sub>1</sub></i> <i>fl<sub>2</sub></i> <tt>...</tt></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_984"></a>flmin<i> <i>fl<sub>1</sub></i> <i>fl<sub>2</sub></i> <tt>...</tt></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
These procedures return the maximum or minimum of their arguments.
They always return a NaN when one or more of the arguments is a NaN.
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_986"></a>fl+<i> <i>fl<sub>1</sub></i> <tt>...</tt></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_988"></a>fl*<i> <i>fl<sub>1</sub></i> <tt>...</tt></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
These procedures return the flonum sum or product of their flonum
arguments.  In general, they should return the flonum that best
approximates the mathematical sum or product.  (For implementations
that represent flonums using IEEE binary floating point, the
meaning of &#8220;best&#8221; is defined by the IEEE standards.)</p>
<p>
</p>

<tt>(fl+&nbsp;+inf.0&nbsp;-inf.0)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;&nbsp;+nan.0<br>
(fl+&nbsp;+nan.0&nbsp;<i>fl</i>)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;&nbsp;+nan.0<br>
(fl*&nbsp;+nan.0&nbsp;<i>fl</i>)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;&nbsp;+nan.0<p></tt>
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_990"></a>fl-<i> <i>fl<sub>1</sub></i> <i>fl<sub>2</sub></i> <tt>...</tt></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_992"></a>fl-<i> fl</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_994"></a>fl/<i> <i>fl<sub>1</sub></i> <i>fl<sub>2</sub></i> <tt>...</tt></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_996"></a>fl/<i> fl</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
With two or more arguments, these procedures return the flonum
difference or quotient of their flonum arguments, associating to the
left.  With one argument, however, they return the additive or
multiplicative flonum inverse of their argument.  In general, they
should return the flonum that best approximates the mathematical
difference or quotient.  (For implementations that represent flonums
using IEEE binary floating point, the meaning of &#8220;best&#8221; is
reasonably well-defined by the IEEE standards.)</p>
<p>
</p>

<tt>(fl-&nbsp;+inf.0&nbsp;+inf.0)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;&nbsp;+nan.0<p></tt></p>
<p>
For undefined quotients, <tt>fl/</tt> behaves as specified by the
IEEE standards:</p>
<p>
</p>

<tt>(fl/&nbsp;1.0&nbsp;0.0)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;+inf.0<br>
(fl/&nbsp;-1.0&nbsp;0.0)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;-inf.0<br>
(fl/&nbsp;0.0&nbsp;0.0)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;+nan.0<p></tt>
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_998"></a>flabs<i> fl</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
Returns the absolute value of <i>fl</i>.
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_1000"></a>fldiv-and-mod<i> <i>fl<sub>1</sub></i> <i>fl<sub>2</sub></i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_1002"></a>fldiv<i> <i>fl<sub>1</sub></i> <i>fl<sub>2</sub></i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_1004"></a>flmod<i> <i>fl<sub>1</sub></i> <i>fl<sub>2</sub></i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_1006"></a>fldiv0-and-mod0<i> <i>fl<sub>1</sub></i> <i>fl<sub>2</sub></i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_1008"></a>fldiv0<i> <i>fl<sub>1</sub></i> <i>fl<sub>2</sub></i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_1010"></a>flmod0<i> <i>fl<sub>1</sub></i> <i>fl<sub>2</sub></i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
These procedures implement number-theoretic integer division and
return the results of the corresponding mathematical operations
specified in report section&nbsp;on &#8220;Integer division&#8221;.  For zero divisors, these
procedures may return a NaN or some unspecified flonum.</p>
<p>
</p>

<tt>(fldiv&nbsp;<i>fl<sub>1</sub></i>&nbsp;<i>fl<sub>2</sub></i>)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;<i>fl<sub>1</sub></i>&nbsp;<em>d</em><em>i</em><em>v</em>&nbsp;<i>fl<sub>2</sub></i><br>
(flmod&nbsp;<i>fl<sub>1</sub></i>&nbsp;<i>fl<sub>2</sub></i>)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;<i>fl<sub>1</sub></i>&nbsp;<em>m</em><em>o</em><em>d</em>&nbsp;<i>fl<sub>2</sub></i><br>
(fldiv-and-mod&nbsp;<i>fl<sub>1</sub></i>&nbsp;<i>fl<sub>2</sub></i>)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;<i>fl<sub>1</sub></i>&nbsp;<em>d</em><em>i</em><em>v</em>&nbsp;<i>fl<sub>2</sub></i>,&nbsp;<i>fl<sub>1</sub></i>&nbsp;<em>m</em><em>o</em><em>d</em>&nbsp;<i>fl<sub>2</sub></i><br>
;&nbsp;two&nbsp;return&nbsp;values<br>
(fldiv0&nbsp;<i>fl<sub>1</sub></i>&nbsp;<i>fl<sub>2</sub></i>)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;<i>fl<sub>1</sub></i>&nbsp;<em>d</em><em>i</em><em>v</em><sub>0</sub>&nbsp;<i>fl<sub>2</sub></i><br>
(flmod0&nbsp;<i>fl<sub>1</sub></i>&nbsp;<i>fl<sub>2</sub></i>)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;<i>fl<sub>1</sub></i>&nbsp;<em>m</em><em>o</em><em>d</em><sub>0</sub>&nbsp;<i>fl<sub>2</sub></i><br>
(fldiv0-and-mod0&nbsp;<i>fl<sub>1</sub></i>&nbsp;<i>fl<sub>2</sub></i>)&nbsp;&nbsp;&nbsp;<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;<i>fl<sub>1</sub></i>&nbsp;<em>d</em><em>i</em><em>v</em><sub>0</sub>&nbsp;<i>fl<sub>2</sub></i>,&nbsp;<i>fl<sub>1</sub></i>&nbsp;<em>m</em><em>o</em><em>d</em><sub>0</sub>&nbsp;<i>fl<sub>2</sub></i><br>
;&nbsp;two&nbsp;return&nbsp;values<p></tt></p>
<p>
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_1012"></a>flnumerator<i> fl</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_1014"></a>fldenominator<i> fl</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
These procedures return the numerator or denominator of <i>fl</i>
as a flonum; the result is computed as if <i>fl</i> was represented as
a fraction in lowest terms.  The denominator is always positive.  The
denominator of 0.0 is defined to be 1.0.
</p>

<tt>(flnumerator&nbsp;+inf.0)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;&nbsp;+inf.0<br>
(flnumerator&nbsp;-inf.0)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;&nbsp;-inf.0<br>
(fldenominator&nbsp;+inf.0)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;&nbsp;1.0<br>
(fldenominator&nbsp;-inf.0)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;&nbsp;1.0<br>
(flnumerator&nbsp;0.75)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;&nbsp;3.0&nbsp;;&nbsp;probably<br>
(fldenominator&nbsp;0.75)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;&nbsp;4.0&nbsp;;&nbsp;probably<p></tt></p>
<p>
Implementations should implement following behavior:</p>
<p>
</p>

<tt>(flnumerator&nbsp;-0.0)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;-0.0<p></tt>
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_1016"></a>flfloor<i> fl</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_1018"></a>flceiling<i> fl</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_1020"></a>fltruncate<i> fl</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_1022"></a>flround<i> fl</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
These procedures return integral flonums for flonum arguments that are
not infinities or NaNs.  For such arguments, <tt>flfloor</tt> returns the
largest integral flonum not larger than <i>fl</i>.  The <tt>flceiling</tt>
procedure
returns the smallest integral flonum not smaller than <i>fl</i>.
The <tt>fltruncate</tt> procedure returns the integral flonum closest to <i>fl</i> whose
absolute value is not larger than the absolute value of <i>fl</i>.
The <tt>flround</tt> procedure returns the closest integral flonum to <i>fl</i>,
rounding to even when <i>fl</i> represents a number halfway between two integers.</p>
<p>
Although infinities and NaNs are not integer objects, these procedures return
an infinity when given an infinity as an argument, and a NaN when
given a NaN:</p>
<p>
</p>

<tt>(flfloor&nbsp;+inf.0)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;&nbsp;+inf.0<br>
(flceiling&nbsp;-inf.0)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;&nbsp;-inf.0<br>
(fltruncate&nbsp;+nan.0)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;&nbsp;+nan.0<p></tt>
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_1024"></a>flexp<i> fl</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_1026"></a>fllog<i> fl</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_1028"></a>fllog<i> <i>fl<sub>1</sub></i> <i>fl<sub>2</sub></i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_1030"></a>flsin<i> fl</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_1032"></a>flcos<i> fl</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_1034"></a>fltan<i> fl</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_1036"></a>flasin<i> fl</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_1038"></a>flacos<i> fl</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_1040"></a>flatan<i> fl</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_1042"></a>flatan<i> <i>fl<sub>1</sub></i> <i>fl<sub>2</sub></i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
These procedures compute the usual transcendental functions.  
The <tt>flexp</tt> procedure computes the base-<em>e</em> exponential of <i>fl</i>.
The <tt>fllog</tt> procedure with a single argument computes the natural logarithm of
<i>fl</i> (not the base ten logarithm); <tt>(fllog <i>fl<sub>1</sub></i>
<i>fl<sub>2</sub></i>)</tt> computes the base-<i>fl<sub>2</sub></i> logarithm of <i>fl<sub>1</sub></i>.
The <tt>flasin</tt>, <tt>flacos</tt>, and <tt>flatan</tt> procedures compute arcsine,
arccosine, and arctangent, respectively.  <tt>(flatan <i>fl<sub>1</sub></i>
<i>fl<sub>2</sub></i>)</tt> computes the arc tangent of <i>fl<sub>1</sub></i>/<i>fl<sub>2</sub></i>.</p>
<p>
See report
section&nbsp;on &#8220;Transcendental functions&#8221; for the underlying
mathematical operations.  In the event that these operations do not
yield a real result for the given arguments, the result may be a NaN,
or may be some unspecified flonum.</p>
<p>
Implementations that use IEEE binary floating-point arithmetic 
should follow the relevant standards for these procedures.</p>
<p>
</p>

<tt>(flexp&nbsp;+inf.0)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;+inf.0<br>
(flexp&nbsp;-inf.0)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;0.0<br>
(fllog&nbsp;+inf.0)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;+inf.0<br>
(fllog&nbsp;0.0)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;-inf.0<br>
(fllog&nbsp;-0.0)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;<i>unspecified</i><br>
;&nbsp;if&nbsp;-0.0&nbsp;is&nbsp;distinguished<br>
(fllog&nbsp;-inf.0)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;+nan.0<br>
(flatan&nbsp;-inf.0)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;-1.5707963267948965<br>
;&nbsp;approximately<br>
(flatan&nbsp;+inf.0)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;1.5707963267948965<br>
;&nbsp;approximately<p></tt>
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_1044"></a>flsqrt<i> fl</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
Returns the principal square root of <i>fl</i>. For  <tt>-</tt> 0.0,
<tt>flsqrt</tt> should return  <tt>-</tt> 0.0; for other negative arguments,
the result may be a NaN or some unspecified flonum.</p>
<p>
</p>

<tt>(flsqrt&nbsp;+inf.0)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;&nbsp;+inf.0<br>
(flsqrt&nbsp;-0.0)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;&nbsp;-0.0<p></tt>
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_1046"></a>flexpt<i> <i>fl<sub>1</sub></i> <i>fl<sub>2</sub></i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
Either <i>fl<sub>1</sub></i> should be non-negative, or, if <i>fl<sub>1</sub></i> is
negative, <i>fl<sub>2</sub></i> should be an integer object.
The <tt>flexpt</tt> procedure returns <i>fl<sub>1</sub></i> raised to the power <i>fl<sub>2</sub></i>.  If <i>fl<sub>1</sub></i> is
negative and <i>fl<sub>2</sub></i> is not an integer object, the result may be a
NaN, or may be some unspecified flonum.  If <i>fl<sub>1</sub></i> is zero, then
the result is zero.
</p>
<p></p>
<p>
</p>
<p><a name="node_idx_1048"></a></p>
<div align=left><tt><tt>&amp;no-infinities</tt></tt>&nbsp;&nbsp;&nbsp;&nbsp;condition type&nbsp;</div>

<div align=left><tt>(<a name="node_idx_1050"></a>make-no-infinities-violation<i> obj</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_1052"></a>no-infinities-violation?<i> obj</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<a name="node_idx_1054"></a><div align=left><tt><tt>&amp;no-nans</tt></tt>&nbsp;&nbsp;&nbsp;&nbsp;condition type&nbsp;</div>

<div align=left><tt>(<a name="node_idx_1056"></a>make-no-nans-violation<i> obj</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_1058"></a>no-nans-violation?<i> obj</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
These condition types could be defined by the following code:</p>
<p>
</p>

<tt>(define-condition-type&nbsp;&amp;no-infinities<br>
&nbsp;&nbsp;&nbsp;&nbsp;&amp;implementation-restriction<br>
&nbsp;&nbsp;make-no-infinities-violation<br>
&nbsp;&nbsp;no-infinities-violation?)<br>
<br>
(define-condition-type&nbsp;&amp;no-nans<br>
&nbsp;&nbsp;&nbsp;&nbsp;&amp;implementation-restriction<br>
&nbsp;&nbsp;make-no-nans-violation&nbsp;no-nans-violation?)<p></tt></p>
<p>
These types describe that a program has executed an arithmetic
operations that is specified to return an infinity or a NaN,
respectively, on a Scheme implementation that is not able to represent
the infinity or NaN.  (See report section&nbsp;on &#8220;Representability of infinities and NaNs&#8221;.)
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_1060"></a>fixnum-&gt;flonum<i> fx</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
Returns a flonum that is numerically closest to <i>fx</i>.</p>
<p>
</p>
<blockquote><em>Note:&nbsp;&nbsp;</em>
The result of this procedure may not be
numerically equal to <i>fx</i>, because the fixnum precision
may be greater than the flonum precision.
</blockquote>
<p></p>
<p>
</p>
<a name="node_sec_11.4"></a>
<h2 class=section><a href="r6rs-lib-Z-H-1.html#node_toc_node_sec_11.4">11.4&nbsp;&nbsp;Exact bitwise arithmetic</a></h2>
<p></p>
<p>
This section describes the <tt>(rnrs arithmetic bitwise (6))</tt><a name="node_idx_1062"></a>library.  The exact bitwise arithmetic provides generic operations on
exact integer objects.  This section uses <i>ei</i>, <i>ei<sub>1</sub></i>, <i>ei<sub>2</sub></i>, etc.,
as parameter names that must be exact integer objects.</p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_1064"></a>bitwise-not<i> ei</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
Returns the exact integer object whose two&#8217;s complement representation is the
one&#8217;s complement of the two&#8217;s complement representation of <i>ei</i>.
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_1066"></a>bitwise-and<i> <i>ei<sub>1</sub></i> <tt>...</tt></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_1068"></a>bitwise-ior<i> <i>ei<sub>1</sub></i> <tt>...</tt></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_1070"></a>bitwise-xor<i> <i>ei<sub>1</sub></i> <tt>...</tt></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
These procedures return the exact integer object that is the bit-wise
&#8220;and&#8221;, &#8220;inclusive or&#8221;, or &#8220;exclusive or&#8221; of the two&#8217;s complement
representations of their arguments.  If they are passed only one
argument, they return that argument.  If they are passed no arguments,
they return the integer object (either  <tt>-</tt> 1 or 0) that acts as identity for
the operation.
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_1072"></a>bitwise-if<i> <i>ei<sub>1</sub></i> <i>ei<sub>2</sub></i> <i>ei<sub>3</sub></i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
Returns the exact integer object that is the bit-wise &#8220;if&#8221; of the two&#8217;s complement
representations of its arguments, i.e. for each bit, if it is 1 in
<i>ei<sub>1</sub></i>, the corresponding bit in <i>ei<sub>2</sub></i> becomes the value of
the corresponding bit in the result, and if it is 0, the corresponding
bit in <i>ei<sub>3</sub></i> becomes the corresponding bit in the value of the
result.
This is the result of the following computation:
</p>

<tt>(bitwise-ior&nbsp;(bitwise-and&nbsp;<i>ei<sub>1</sub></i>&nbsp;<i>ei<sub>2</sub></i>)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(bitwise-and&nbsp;(bitwise-not&nbsp;<i>ei<sub>1</sub></i>)&nbsp;<i>ei<sub>3</sub></i>))<p></tt>
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_1074"></a>bitwise-bit-count<i> ei</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
If <i>ei</i> is non-negative, this procedure returns the number of
1 bits in the two&#8217;s complement representation of <i>ei</i>.
Otherwise it returns the result of the following computation:
</p>

<tt>(bitwise-not&nbsp;(bitwise-bit-count&nbsp;(bitwise-not&nbsp;<i>ei</i>)))<p></tt>
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_1076"></a>bitwise-length<i> ei</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
Returns the number of bits needed to represent <i>ei</i> if it is
positive, and the number of bits needed to represent <tt>(bitwise-not
<i>ei</i>)</tt> if it is negative, which is the exact integer object that
is the result of the following computation:
</p>

<tt>(do&nbsp;((result&nbsp;0&nbsp;(+&nbsp;result&nbsp;1))<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(bits&nbsp;(if&nbsp;(negative?&nbsp;<i>ei</i>)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(bitwise-not&nbsp;<i>ei</i>)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<i>ei</i>)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(bitwise-arithmetic-shift&nbsp;bits&nbsp;-1)))<br>
&nbsp;&nbsp;&nbsp;&nbsp;((zero?&nbsp;bits)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;result))<p></tt>
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_1078"></a>bitwise-first-bit-set<i> ei</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
Returns the index of the least significant 1
bit in the two&#8217;s complement representation of <i>ei</i>.
If <i>ei</i> is 0, then  <tt>-</tt> 1 is returned.
</p>

<tt>(bitwise-first-bit-set&nbsp;0)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;&nbsp;-1<br>
(bitwise-first-bit-set&nbsp;1)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;&nbsp;0<br>
(bitwise-first-bit-set&nbsp;-4)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;&nbsp;2<p></tt>
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_1080"></a>bitwise-bit-set?<i> <i>ei<sub>1</sub></i> <i>ei<sub>2</sub></i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
<i>Ei<sub>2</sub></i> must be non-negative.
The <tt>bitwise-bit-set?</tt> procedure returns
<tt>#t</tt> if the <i>ei<sub>2</sub></i>th bit is 1 in the two&#8217;s complement
representation of <i>ei<sub>1</sub></i>, and <tt>#f</tt>
otherwise.  This is the result of the following computation:
</p>

<tt>(not&nbsp;(zero?<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(bitwise-and<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(bitwise-arithmetic-shift-left&nbsp;1&nbsp;<i>ei<sub>2</sub></i>)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<i>ei<sub>1</sub></i>)))<p></tt>
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_1082"></a>bitwise-copy-bit<i> <i>ei<sub>1</sub></i> <i>ei<sub>2</sub></i> <i>ei<sub>3</sub></i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
<i>Ei<sub>2</sub></i> must be non-negative, and <i>ei<sub>3</sub></i>
must be either 0 or 1.
The <tt>bitwise-copy-bit</tt> procedure returns the result of replacing
the <i>ei<sub>2</sub></i>th bit of <i>ei<sub>1</sub></i> by the <i>ei<sub>2</sub></i>th bit of <i>ei<sub>3</sub></i>, which is
the result of the following computation:
</p>

<tt>(let*&nbsp;((mask&nbsp;(bitwise-arithmetic-shift-left&nbsp;1&nbsp;<i>ei<sub>2</sub></i>)))<br>
&nbsp;&nbsp;(bitwise-if&nbsp;mask<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(bitwise-arithmetic-shift-left&nbsp;<i>ei<sub>3</sub></i>&nbsp;<i>ei<sub>2</sub></i>)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<i>ei<sub>1</sub></i>))<p></tt>
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_1084"></a>bitwise-bit-field<i> <i>ei<sub>1</sub></i> <i>ei<sub>2</sub></i> <i>ei<sub>3</sub></i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
<i>Ei<sub>2</sub></i> and <i>ei<sub>3</sub></i> must be non-negative, and
<i>ei<sub>2</sub></i> must be less than or equal to <i>ei<sub>3</sub></i>.
The <tt>bitwise-bit-field</tt> procedure returns the
number represented by the bits at the positions from <i>ei<sub>2</sub></i>
(inclusive) to <i>ei<sub>3</sub></i> (exclusive), which is
the result of the following computation:
</p>

<tt>(let&nbsp;((mask<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(bitwise-not<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(bitwise-arithmetic-shift-left&nbsp;-1&nbsp;<i>ei<sub>3</sub></i>))))<br>
&nbsp;&nbsp;(bitwise-arithmetic-shift-right<br>
&nbsp;&nbsp;&nbsp;&nbsp;(bitwise-and&nbsp;<i>ei<sub>1</sub></i>&nbsp;mask)<br>
&nbsp;&nbsp;&nbsp;&nbsp;<i>ei<sub>2</sub></i>))<p></tt>
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_1086"></a>bitwise-copy-bit-field<i> <i>ei<sub>1</sub></i> <i>ei<sub>2</sub></i> <i>ei<sub>3</sub></i> <i>ei<sub>4</sub></i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
<i>Ei<sub>2</sub></i> and <i>ei<sub>3</sub></i> must be non-negative,
and <i>ei<sub>2</sub></i> must be less than or equal to <i>ei<sub>3</sub></i>.
The <tt>bitwise-copy-bit-field</tt> procedure returns
the result of replacing in <i>ei<sub>1</sub></i> the bits at positions from
<i>ei<sub>2</sub></i> (inclusive) to <i>ei<sub>3</sub></i> (exclusive) by the corresponding bits in <i>ei<sub>4</sub></i>, which
is the fixnum result of the following computation:
</p>

<tt>(let*&nbsp;((to&nbsp;&nbsp;&nbsp;&nbsp;<i>ei<sub>1</sub></i>)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(start&nbsp;<i>ei<sub>2</sub></i>)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(end&nbsp;&nbsp;&nbsp;<i>ei<sub>3</sub></i>)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(from&nbsp;&nbsp;<i>ei<sub>4</sub></i>)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(mask1<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(bitwise-arithmetic-shift-left&nbsp;-1&nbsp;start))<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(mask2<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(bitwise-not<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(bitwise-arithmetic-shift-left&nbsp;-1&nbsp;end)))<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(mask&nbsp;(bitwise-and&nbsp;mask1&nbsp;mask2)))<br>
&nbsp;&nbsp;(bitwise-if&nbsp;mask<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(bitwise-arithmetic-shift-left&nbsp;from<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;start)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;to))<p></tt>
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_1088"></a>bitwise-arithmetic-shift<i> <i>ei<sub>1</sub></i> <i>ei<sub>2</sub></i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
Returns the result of the following computation:
</p>

<tt>(floor&nbsp;(*&nbsp;<i>ei<sub>1</sub></i>&nbsp;(expt&nbsp;2&nbsp;<i>ei<sub>2</sub></i>)))<p></tt></p>
<p>
Examples:
</p>

<tt>(bitwise-arithmetic-shift&nbsp;-6&nbsp;-1)&nbsp;<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;-3<br>
(bitwise-arithmetic-shift&nbsp;-5&nbsp;-1)&nbsp;<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;-3<br>
(bitwise-arithmetic-shift&nbsp;-4&nbsp;-1)&nbsp;<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;-2<br>
(bitwise-arithmetic-shift&nbsp;-3&nbsp;-1)&nbsp;<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;-2<br>
(bitwise-arithmetic-shift&nbsp;-2&nbsp;-1)&nbsp;<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;-1<br>
(bitwise-arithmetic-shift&nbsp;-1&nbsp;-1)&nbsp;<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;-1<p></tt>
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_1090"></a>bitwise-arithmetic-shift-left<i> <i>ei<sub>1</sub></i> <i>ei<sub>2</sub></i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>

<div align=left><tt>(<a name="node_idx_1092"></a>bitwise-arithmetic-shift-right<i> <i>ei<sub>1</sub></i> <i>ei<sub>2</sub></i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
<i>Ei<sub>2</sub></i> must be non-negative.  The <tt>bitwise-arithmetic-shift-left</tt> procedure returns the same result as <tt>bitwise-arithmetic-shift</tt>, and
</p>

<tt>(bitwise-arithmetic-shift-right&nbsp;<i>ei<sub>1</sub></i>&nbsp;<i>ei<sub>2</sub></i>)<p></tt>
returns the same result as 
</p>

<tt>(bitwise-arithmetic-shift&nbsp;<i>ei<sub>1</sub></i>&nbsp;(-&nbsp;<i>ei<sub>2</sub></i>)).<p></tt>
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_1094"></a>bitwise-rotate-bit-field<i> <i>ei<sub>1</sub></i> <i>ei<sub>2</sub></i> <i>ei<sub>3</sub></i> <i>ei<sub>4</sub></i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
<i>Ei<sub>2</sub></i>, <i>ei<sub>3</sub></i>, <i>ei<sub>4</sub></i> must be non-negative, 
<i>ei<sub>2</sub></i> must be less than or equal to <i>ei<sub>3</sub></i>, and
<i>ei<sub>4</sub></i> must be non-negative.
procedure returns the result of cyclically permuting in <i>ei<sub>1</sub></i> the
bits at positions from <i>ei<sub>2</sub></i> (inclusive) to <i>ei<sub>3</sub></i> (exclusive) by <i>ei<sub>4</sub></i> bits
towards the more significant bits, which is the result of the
following computation:
</p>

<tt>(let*&nbsp;((n&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<i>ei<sub>1</sub></i>)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(start&nbsp;<i>ei<sub>2</sub></i>)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(end&nbsp;&nbsp;&nbsp;<i>ei<sub>3</sub></i>)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(count&nbsp;<i>ei<sub>4</sub></i>)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(width&nbsp;(-&nbsp;end&nbsp;start)))<br>
&nbsp;&nbsp;(if&nbsp;(positive?&nbsp;width)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(let*&nbsp;((count&nbsp;(mod&nbsp;count&nbsp;width))<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(field0<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(bitwise-bit-field&nbsp;n&nbsp;start&nbsp;end))<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(field1&nbsp;(bitwise-arithmetic-shift-left<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;field0&nbsp;count))<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(field2&nbsp;(bitwise-arithmetic-shift-right<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;field0<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(-&nbsp;width&nbsp;count)))<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(field&nbsp;(bitwise-ior&nbsp;field1&nbsp;field2)))<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(bitwise-copy-bit-field&nbsp;n&nbsp;start&nbsp;end&nbsp;field))<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;n))<p></tt>
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_1096"></a>bitwise-reverse-bit-field<i> <i>ei<sub>1</sub></i> <i>ei<sub>2</sub></i> <i>ei<sub>3</sub></i></i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;procedure&nbsp;</div>
<p>
<i>Ei<sub>2</sub></i> and <i>ei<sub>3</sub></i> must be non-negative, and
<i>ei<sub>2</sub></i> must be less than or equal to <i>ei<sub>3</sub></i>.  The <tt>bitwise-reverse-bit-field</tt> procedure returns
the result obtained from <i>ei<sub>1</sub></i> by reversing the
order of the bits at positions from <i>ei<sub>2</sub></i> (inclusive) to
<i>ei<sub>3</sub></i> (exclusive).
</p>

<tt>(bitwise-reverse-bit-field&nbsp;<tt>#</tt>b1010010&nbsp;1&nbsp;4)&nbsp;&nbsp;&nbsp;<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&rArr;&nbsp;&nbsp;88&nbsp;;&nbsp;<tt>#</tt>b1011000<p></tt>
</p>
<p></p>
<p>
   </p>
<p></p>
<div class=smallskip></div>
<p style="margin-top: 0pt; margin-bottom: 0pt">
<div align=right class=navigation>[Go to <span><a href="r6rs-lib.html">first</a>, <a href="r6rs-lib-Z-H-11.html">previous</a></span><span>, <a href="r6rs-lib-Z-H-13.html">next</a></span> page<span>; &nbsp;&nbsp;</span><span><a href="r6rs-lib-Z-H-1.html#node_toc_start">contents</a></span><span><span>; &nbsp;&nbsp;</span><a href="r6rs-lib-Z-H-21.html#node_index_start">index</a></span>]</div>
</p>
<p></p>
</div>
</body>
</html>