1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
|
<!doctype html public "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!--
Generated from r6rs-lib.tex by tex2page, v 20070803
(running on MzScheme 371, unix),
(c) Dorai Sitaram,
http://www.ccs.neu.edu/~dorai/tex2page/tex2page-doc.html
-->
<head>
<title>
r6rs-lib
</title>
<link rel="stylesheet" type="text/css" href="r6rs-lib-Z-S.css" title=default>
<meta name=robots content="index,follow">
</head>
<body>
<div id=slidecontent>
<div align=right class=navigation>[Go to <span><a href="r6rs-lib.html">first</a>, <a href="r6rs-lib-Z-H-6.html">previous</a></span><span>, <a href="r6rs-lib-Z-H-8.html">next</a></span> page<span>; </span><span><a href="r6rs-lib-Z-H-1.html#node_toc_start">contents</a></span><span><span>; </span><a href="r6rs-lib-Z-H-21.html#node_index_start">index</a></span>]</div>
<p></p>
<a name="node_chap_6"></a>
<h1 class=chapter>
<div class=chapterheading><a href="r6rs-lib-Z-H-1.html#node_toc_node_chap_6">Chapter 6</a></div><br>
<a href="r6rs-lib-Z-H-1.html#node_toc_node_chap_6">Records</a></h1>
<p>
<a name="node_idx_264"></a>This section describes abstractions for creating new data types
representing records.</p>
<p>
A record is a compound data structure with a fixed number of
components, called <i>fields</i><a name="node_idx_266"></a>. Each record has
an associated type specified by a <a name="node_idx_268"></a><em>record-type descriptor</em>,
which is an object that specifies the fields of the record and various
other properties that all records of that type share. Record objects
are created by a <a name="node_idx_270"></a><em>record constructor</em>, a procedure that
creates a fresh record object and initializes its fields to values.
Records of different types can be distinguished from each other and
from other types of objects by <i>record predicates</i>. A record predicate
returns <tt>#t</tt> when passed a record of the type specified by the
record-type descriptor and <tt>#f</tt> otherwise.
An <a name="node_idx_272"></a><em>accessor</em> extracts from a record
the component associated with a field, and a <a name="node_idx_274"></a><em>mutator</em>
changes the component to a different value.</p>
<p>
Record types can be extended via single inheritance, allowing record
types to model hierarchies that occur in applications like algebraic
data types as well as single-inheritance class systems. If a record
type <i>t</i> extends another record type <i>p</i>, each record of type
<i>t</i> is also a record of type <i>p</i>, and the predicate,
accessors, and mutators applicable to a record of type <i>p</i> are
also applicable to a record of type <i>t</i>. The extension
relationship is transitive in the sense that a type extends its
parent’s parent, if any, and so on. A record type that does not
extend another record type is called a <a name="node_idx_276"></a><em>base record type</em>.</p>
<p>
A
record type can be <a name="node_idx_278"></a><em>sealed</em> to prevent it from being
extended. Moreover, a record type can be <a name="node_idx_280"></a><em>nongenerative</em>,
i.e., it is globally identified by a “uid”, and new, compatible
definitions of a nongenerative record type with the same uid as a
previous always yield the same record type.</p>
<p>
The record mechanism spans three libraries:</p>
<p>
</p>
<ul>
<li><p>the <tt>(rnrs records syntactic (6))</tt> library,
a syntactic layer for defining a record type and
associated constructor, predicate, accessor, and mutators,
</p>
<li><p>the <tt>(rnrs records procedural (6))</tt> library,
a procedural layer for creating and manipulating record types and creating
constructors, predicates, accessors, and mutators;
</p>
<li><p>the <tt>(rnrs records inspection (6))</tt> library,
a set of inspection procedures.
</p>
</ul><p>
The inspection procedures allow programs to obtain from a record
instance a descriptor for the type and from there obtain access to the
fields of the record instance. This facility allows the creation of
portable printers and inspectors. A program may prevent access to a
record’s type—and thereby protect the information stored in the
record from the inspection mechanism—by declaring the type opaque.
Thus, opacity as presented here can be used to enforce abstraction
barriers.</p>
<p>
Any of the standard types mentioned in this report may or may not be
implemented as an opaque record type. Thus, it may be possible to use
inspection on objects of the standard types.</p>
<p>
The procedural layer is particularly useful for writing interpreters
that construct host-compatible record types. It may also serve as a
target for expansion of the syntactic layers. The
record operations provided through the procedural layer may, however, be
less efficient than the operations provided through the
syntactic layer, which is designed to allow expand-time determination
of record-instance sizes and field offsets. Therefore, alternative implementations
of syntactic record-type definition should, when possible, expand into
the syntactic layer rather than the procedural layer.</p>
<p>
The syntactic layer is used more commonly and therefore described
first. This chapter uses the <i>rtd</i> and
<i>constructor-descriptor</i> parameter names for arguments that must
be record-type descriptors and constructor descriptors, respectively
(see section <a href="#node_sec_6.3">6.3</a>).</p>
<p>
</p>
<a name="node_sec_6.1"></a>
<h2 class=section><a href="r6rs-lib-Z-H-1.html#node_toc_node_sec_6.1">6.1 Mutability and equivalence of records</a></h2>
<p></p>
<p>
The fields of a record type are designated <i>mutable</i> or
<i>immutable</i>. Correspondingly, a record type with no mutable
field is called <i>immutable</i><a name="node_idx_282"></a><a name="node_idx_284"></a>, and all records of that type
are immutable objects. All other record types are <i>mutable</i>,
and so are their records.</p>
<p>
Each call to a record constructor returns a new record with a fresh
location (see report section on “Storage
model”). Consequently, for two records <i>obj<sub>1</sub></i> and <i>obj<sub>2</sub></i>,
the return value of <tt>(eqv? <i>obj<sub>1</sub></i> <i>obj<sub>2</sub></i>)</tt>, as well as the
return value of <tt>(eq? <i>obj<sub>1</sub></i> <i>obj<sub>2</sub></i>)</tt>, adheres to
the following criteria (see report
section on “Equivalence predicates”):</p>
<p>
</p>
<ul>
<li><p>If <i>obj<sub>1</sub></i> and <i>obj<sub>2</sub></i> have different record types (i.e.,
their record-type descriptors are not <tt>eqv?</tt>), <tt>eqv?</tt>
returns <tt>#f</tt>.
</p>
<li><p>If <i>obj<sub>1</sub></i> and <i>obj<sub>2</sub></i> are both records of the
same record type, and are the results of two separate calls to
record constructors, then <tt>eqv?</tt> returns <tt>#f</tt>.
</p>
<li><p>If <i>obj<sub>1</sub></i> and <i>obj<sub>2</sub></i> are both the result of a single call to a
record constructor, then <tt>eqv?</tt> returns <tt>#t</tt>.
</p>
<li><p>If <i>obj<sub>1</sub></i> and <i>obj<sub>2</sub></i> are both records of the same
record type, where applying an accessor to both yields results
for which <tt>eqv?</tt> returns <tt>#f</tt>, then <tt>eqv?</tt> returns <tt>#f</tt>.
</p>
</ul><p></p>
<p>
</p>
<a name="node_sec_6.2"></a>
<h2 class=section><a href="r6rs-lib-Z-H-1.html#node_toc_node_sec_6.2">6.2 Syntactic layer</a></h2>
<p></p>
<p>
The syntactic layer is provided by the <tt>(rnrs records
syntactic (6))</tt><a name="node_idx_286"></a>library. Some details of the specification are
explained in terms of the specification of the procedural layer below.</p>
<p>
The record-type-defining form <tt>define-record-type</tt> is a definition and
can appear anywhere any other <definition> can appear.</p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_288"></a>define-record-type<i> <name spec> <record clause>*</i>)</tt> syntax </div>
<a name="node_idx_290"></a><div align=left><tt>fields</tt> auxiliary syntax </div>
<a name="node_idx_292"></a><div align=left><tt>mutable</tt> auxiliary syntax </div>
<a name="node_idx_294"></a><div align=left><tt>immutable</tt> auxiliary syntax </div>
<a name="node_idx_296"></a><div align=left><tt>parent</tt> auxiliary syntax </div>
<a name="node_idx_298"></a><div align=left><tt>protocol</tt> auxiliary syntax </div>
<a name="node_idx_300"></a><div align=left><tt>sealed</tt> auxiliary syntax </div>
<a name="node_idx_302"></a><div align=left><tt>opaque</tt> auxiliary syntax </div>
<a name="node_idx_304"></a><div align=left><tt>nongenerative</tt> auxiliary syntax </div>
<a name="node_idx_306"></a><div align=left><tt>parent-rtd</tt> auxiliary syntax </div>
<p>
A <tt>define-record-type</tt> form defines a record type along with
associated constructor descriptor and constructor, predicate, field
accessors, and field mutators. The <tt>define-record-type</tt> form expands into
a set of definitions in the environment where <tt>define-record-type</tt>
appears; hence, it is possible to refer to the bindings (except for
that of the record type itself) recursively.</p>
<p>
The <name spec> specifies the names of the record type,
constructor, and predicate. It must take one of the following
forms:</p>
<p>
</p>
<tt>(<record name> <constructor name> <predicate name>)<br>
<record name><p></tt></p>
<p>
<Record name>, <constructor name>, and <predicate
name> must all be identifiers.</p>
<p>
<Record name>, taken as a symbol, becomes the name of the record
type. (See the description of <tt>make-record-type-descriptor</tt>
below.)
Additionally, it is bound by this definition to an expand-time or run-time
representation of the record type and can be used as parent name in
syntactic record-type definitions that extend this definition. It can
also be used as a handle to gain access to the underlying record-type
descriptor and constructor descriptor (see <tt>record-type-descriptor</tt> and <tt>record-constructor-descriptor</tt>
below).</p>
<p>
<Constructor name> is defined by this definition to be a
constructor for the defined record type, with a protocol specified by
the <tt>protocol</tt> clause, or, in its absence, using a default protocol. For
details, see the description of the <tt>protocol</tt> clause below.</p>
<p>
<Predicate name> is defined by this definition to a predicate
for the defined record type.</p>
<p>
The second form of <name spec> is an abbreviation for the first
form, where the name of the constructor is generated by prefixing the
record name with <tt>make-</tt>, and the predicate name is generated by
adding a question mark (<tt>?</tt>) to the end of the record name. For
example, if the record name is <tt>frob</tt>, the name of the
constructor is <tt>make-frob</tt>, and the predicate name is
<tt>frob?</tt>.</p>
<p>
Each <record clause> must take one of the following forms; it is
a syntax violation if multiple <record clause>s of the same kind appear in a
<tt>define-record-type</tt> form.</p>
<p>
<tt>(fields <field spec>*)</tt></p>
<p>
Each <field spec> has one of the following forms</p>
<p>
</p>
<tt>(immutable <field name> <accessor name>)<br>
(mutable <field name><br>
<accessor name> <mutator name>)<br>
(immutable <field name>)<br>
(mutable <field name>)<br>
<field name><p></tt></p>
<p>
<Field name>, <accessor name>, and <mutator name>
must all be identifiers. The first form declares an immutable field
called <field name>, with the corresponding accessor named
<accessor name>. The second form declares a mutable field called
<field name>, with the corresponding accessor named
<accessor name>, and with the corresponding mutator named
<mutator name>.</p>
<p>
If <field spec> takes the third or fourth form, the accessor
name is generated by appending the record name and field name with a
hyphen separator, and the mutator name (for a mutable field) is
generated by adding a <tt>-set!</tt> suffix to the accessor name. For
example, if the record name is <tt>frob</tt> and the field name is <tt>widget</tt>, the accessor name is <tt>frob-widget</tt> and the mutator name
is <tt>frob-widget-set!</tt>.</p>
<p>
If <field spec> is just a <field name> form, it is an
abbreviation for <tt>(immutable <field name>)</tt>.</p>
<p>
The <field name>s become, as symbols, the names of the fields in
the record-type descriptor being created, in the same order.</p>
<p>
The <tt>fields</tt> clause may be absent; this is equivalent to an empty
<tt>fields</tt> clause.</p>
<p>
<tt>(parent <parent name>)</tt></p>
<p>
Specifies that the record type is to have parent type <parent
name>, where <parent name> is the <record name> of a
record type previously defined using <tt>define-record-type</tt>.
The record-type definition
associated with <parent name> must not be sealed.
If
no <tt>parent</tt> clause and no <tt>parent-rtd</tt> (see below) clause
is present, the record type is a base type. </p>
<p>
<tt>(protocol <expression>)</tt></p>
<p>
<Expression> is evaluated in the same environment as the
<tt>define-record-type</tt> form, and must evaluate to a protocol appropriate
for the record type being defined.</p>
<p>
The protocol is used to create a record-constructor descriptor as
described below. If no <tt>protocol</tt> clause is specified, a
constructor descriptor is still created using a default protocol. The
clause can be absent only if the record type being defined has no parent
type, or if the parent definition does not specify a protocol.</p>
<p>
<tt>(sealed <tt>#t</tt>)</tt><br>
<tt>(sealed <tt>#f</tt>)</tt></p>
<p>
If this option is specified with operand <tt>#t</tt>, the defined record
type is sealed, i.e., no extensions of the record type can be created.
If this option is specified with operand <tt>#f</tt>, or is absent, the
defined record type is not sealed.</p>
<p>
<tt>(opaque <tt>#t</tt>)</tt><br>
<tt>(opaque <tt>#f</tt>)</tt></p>
<p>
If this option is specified with operand <tt>#t</tt>, or if an opaque
parent record type is specified, the defined record type is opaque.
Otherwise, the defined record type is not opaque. See the
specification of <tt>record-rtd</tt> below for details.</p>
<p>
<tt>(nongenerative <uid>)</tt><br>
<tt>(nongenerative)</tt></p>
<p>
This specifies that the record type is nongenerative with uid
<uid>, which must be an <identifier>.
If <uid> is absent, a unique uid is generated at macro-expansion time.
If two record-type definitions specify the same <i>uid</i>, then
the record-type definitions should be equivalent, i.e.,
the implied arguments to <tt>make-record-type-descriptor</tt>
must be equivalent as described under <tt>make-record-type-descriptor</tt>. See section <a href="#node_sec_6.3">6.3</a>.
If this condition is not met, it is either considered a syntax violation or
an exception with condition type <tt>&assertion</tt> is raised.
If the condition is met, a single record type is generated for both
definitions.</p>
<p>
In the absence of a <tt>nongenerative</tt> clause, a new record type is
generated every time a <tt>define-record-type</tt> form is evaluated:</p>
<p>
</p>
<tt>(let ((f (lambda (x)<br>
(define-record-type r <tt>...</tt>)<br>
(if x r? (make-r <tt>...</tt>)))))<br>
((f <tt>#t</tt>) (f <tt>#f</tt>))) ⇒ <tt>#f</tt><br>
<p></tt></p>
<p>
<tt>(parent-rtd <parent rtd> <parent cd>)</tt></p>
<p>
Specifies that the record type is to have its parent type specified by
<parent rtd>, which should be an expression evaluating to a
record-type descriptor, and <parent cd>, which should be an
expression evaluating to a constructor descriptor (see below). The
record-type definition associated with the value of <parent rtd>
must not be sealed. Moreover, a record-type definition must not have
both a <tt>parent</tt> and a <tt>parent-rtd</tt> clause.</p>
<p>
</p>
<blockquote><em>Note: </em>
The syntactic layer is designed to allow record-instance sizes and field
offsets to be determined at expand time, i.e., by a macro definition of
<tt>define-record-type</tt>, as long as the parent (if any) is known.
Implementations that take advantage of this may generate less
efficient constructor, accessor, and mutator code when the
<tt>parent-rtd</tt> clause is used, since the type of the parent is
generally not known until run time.
The <tt>parent</tt> clause should therefore be used instead when possible.
</blockquote><p>
All bindings created by <tt>define-record-type</tt> (for the record type,
the constructor, the predicate, the accessors, and the
mutators) must have names that are pairwise distinct.</p>
<p>
The constructor created by a <tt>define-record-type</tt> form is a
procedure as follows:
</p>
<ul>
<li><p>If there is no <tt>parent</tt> clause and no <tt>protocol</tt> clause,
the constructor accepts as many arguments as there are fields, in
the same order as they appear in the <tt>fields</tt> clause, and
returns a record object with the fields initialized to the
corresponding arguments.
</p>
<li><p>If there is no <tt>parent</tt> or <tt>parent-rtd</tt> clause and a
<tt>protocol</tt> clause,
the protocol expression must evaluate to a procedure that accepts a
single argument. The protocol procedure is called once during the
evaluation of the <tt>define-record-type</tt> form with a
procedure <i>p</i> as its argument. It should return a procedure,
which will become the constructor bound to <constructor name>.
The procedure <i>p</i> accepts as many arguments as there are fields,
in the same order as they appear in the <tt>fields</tt> clause, and
returns a record object with the fields initialized to the
corresponding arguments.</p>
<p>
The constructor returned by the protocol procedure can accept an
arbitrary number of arguments, and should call <i>p</i> once to
construct a record object, and return that record object.</p>
<p>
For example, the following protocol expression for a record-type
definition with three fields creates a constructor that accepts
values for all fields, and initialized them in the reverse order of
the arguments:
</p>
<tt> <br>
(lambda (p)<br>
(lambda (v1 v2 v3)<br>
(p v3 v2 v1)))<p></tt></p>
<p>
</p>
<li><p>If there is both a <tt>parent</tt> clause and a <tt>protocol</tt>
clause, then the protocol procedure is called once with a procedure
<i>n</i> as its argument. As in the previous case, the protocol
procedure should return a procedure, which will become the
constructor bound to <constructor name>. However, <i>n</i> is
different from <i>p</i> in the previous case: It accepts arguments
corresponding to the arguments of the constructor of the parent
type. It then returns a procedure <i>p</i> that accepts as many
arguments as there are (additional) fields in this type, in the same order as in
the <tt>fields</tt> clause, and returns a record object with the fields
of the parent record types initialized according to their
constructors and the arguments to <i>n</i>, and the fields of
this record type initialized to its arguments of <i>p</i>.</p>
<p>
The constructor returned by the protocol procedure can accept an
arbitrary number of arguments, and should call <i>n</i> once to
construct the procedure <i>p</i>, and call <i>p</i> once to create the
record object, and finally return that record object.</p>
<p>
For example, the following protocol expression assumes that the
constructor of the parent type takes three arguments:
</p>
<tt>(lambda (n)<br>
(lambda (v1 v2 v3 x1 x2 x3 x4)<br>
(let ((p (n v1 v2 v3)))<br>
(p x1 x2 x3 x4))))<p></tt>
The resulting constructor accepts seven arguments, and initializes
the fields of the parent types according to the constructor of the
parent type, with <tt>v1</tt>, <tt>v2</tt>, and <tt>v3</tt> as arguments. It
also initializes the fields of this record type to the values of <tt>x1</tt>, <tt>...</tt>, <tt>x4</tt>.</p>
<p>
</p>
<li><p>If there is a <tt>parent</tt> clause, but no <tt>protocol</tt> clause,
then the parent type must not have a
<tt>protocol</tt> clause itself. The constructor bound to
<constructor name> is a procedure that accepts arguments corresponding to the
parent types’ constructor first, and then one argument for each field in the same
order as in the <tt>fields</tt> clause. The constructor
returns a record object with the fields initialized to the corresponding
arguments.
</p>
<li><p>If there is a <tt>parent-rtd</tt> clause, then the constructor is
as with a <tt>parent</tt> clause, except that the constructor of the
parent type is determined by the constructor descriptor of the <tt>parent-rtd</tt> clause.
</p>
</ul><p></p>
<p>
A protocol may perform other actions consistent with the requirements
described above, including mutation of the new record or other side
effects, before returning the record.
</p>
<p></p>
<p>
Any definition that takes advantage of implicit naming for the
constructor, predicate, accessor, and mutator names can be rewritten
trivially to a definition that specifies all names explicitly. For
example, the implicit-naming record definition:</p>
<p>
</p>
<tt>(define-record-type frob<br>
(fields (mutable widget))<br>
(protocol<br>
(lambda (p)<br>
(lambda (n) (p (make-widget n))))))<p></tt></p>
<p>
is equivalent to the following explicit-naming record definition.</p>
<p>
</p>
<tt>(define-record-type (frob make-frob frob?)<br>
(fields (mutable widget<br>
frob-widget<br>
frob-widget-set!))<br>
(protocol<br>
(lambda (p)<br>
(lambda (n) (p (make-widget n))))))<p></tt></p>
<p>
Also, the implicit-naming record definition:</p>
<p>
</p>
<tt>(define-record-type point (fields x y))<p></tt></p>
<p>
is equivalent to the following explicit-naming record
definition:</p>
<p>
</p>
<tt>(define-record-type (point make-point point?)<br>
(fields <br>
(immutable x point-x)<br>
(immutable y point-y)))<p></tt></p>
<p>
With implicit naming, it is still possible to specify some of
the names explicitly; for example, the following overrides the choice
of accessor and mutator names for the widget field.</p>
<p>
</p>
<tt>(define-record-type frob<br>
(fields (mutable widget getwid setwid!))<br>
(protocol<br>
(lambda (p)<br>
(lambda (n) (p (make-widget n))))))<p></tt></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_308"></a>record-type-descriptor<i> <record name></i>)</tt> syntax </div>
<p>
Evaluates to the record-type descriptor (see below) associated with the type
specified by <record name>.</p>
<p>
</p>
<blockquote><em>Note: </em>
The <tt>record-type-descriptor</tt> procedure works on both opaque and non-opaque record
types.
</blockquote>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_310"></a>record-constructor-descriptor<i> <record name></i>)</tt> syntax </div>
<p>
Evaluates to the record-constructor descriptor (see below) associated with
<record name>.
</p>
<p></p>
<p>
The following example uses the <tt>record?</tt> procedure from the
<tt>(rnrs records inspection (6))</tt> library (section
<a href="#node_sec_6.4">6.4</a>):</p>
<p>
</p>
<tt>(define-record-type (point make-point point?)<br>
(fields (immutable x point-x)<br>
(mutable y point-y set-point-y!))<br>
(nongenerative<br>
point-4893d957-e00b-11d9-817f-00111175eb9e))<br>
<br>
(define-record-type (cpoint make-cpoint cpoint?)<br>
(parent point)<br>
(protocol<br>
(lambda (n)<br>
(lambda (x y c) <br>
((n x y) (color->rgb c)))))<br>
(fields<br>
(mutable rgb cpoint-rgb cpoint-rgb-set!)))<br>
<br>
(define (color->rgb c)<br>
(cons ’rgb c))<br>
<br>
(define p1 (make-point 1 2))<br>
(define p2 (make-cpoint 3 4 ’red))<br>
<br>
(point? p1) ⇒ <tt>#t</tt><br>
(point? p2) ⇒ <tt>#t</tt><br>
(point? (vector)) ⇒ <tt>#f</tt><br>
(point? (cons ’a ’b)) ⇒ <tt>#f</tt><br>
(cpoint? p1) ⇒ <tt>#f</tt><br>
(cpoint? p2) ⇒ <tt>#t</tt><br>
(point-x p1) ⇒ 1<br>
(point-y p1) ⇒ 2<br>
(point-x p2) ⇒ 3<br>
(point-y p2) ⇒ 4<br>
(cpoint-rgb p2) ⇒ (rgb . red)<br>
<br>
(set-point-y! p1 17) ⇒ <i>unspecified</i><br>
(point-y p1) ⇒ 17)<br>
<br>
(record-rtd p1) <br> ⇒ (record-type-descriptor point)<br>
<br>
(define-record-type (ex1 make-ex1 ex1?)<br>
(protocol (lambda (p) (lambda a (p a))))<br>
(fields (immutable f ex1-f)))<br>
<br>
(define ex1-i1 (make-ex1 1 2 3))<br>
(ex1-f ex1-i1) ⇒ (1 2 3)<br>
<br>
(define-record-type (ex2 make-ex2 ex2?)<br>
(protocol<br>
(lambda (p) (lambda (a . b) (p a b))))<br>
(fields (immutable a ex2-a)<br>
(immutable b ex2-b)))<br>
<br>
(define ex2-i1 (make-ex2 1 2 3))<br>
(ex2-a ex2-i1) ⇒ 1<br>
(ex2-b ex2-i1) ⇒ (2 3)<br>
<br>
(define-record-type (unit-vector<br>
make-unit-vector<br>
unit-vector?)<br>
(protocol<br>
(lambda (p)<br>
(lambda (x y z)<br>
(let ((length <br>
(sqrt (+ (* x x)<br>
(* y y)<br>
(* z z)))))<br>
(p (/ x length)<br>
(/ y length)<br>
(/ z length))))))<br>
(fields (immutable x unit-vector-x)<br>
(immutable y unit-vector-y)<br>
(immutable z unit-vector-z)))<br>
<br>
(define *ex3-instance* <tt>#f</tt>)<br>
<br>
(define-record-type ex3<br>
(parent cpoint)<br>
(protocol<br>
(lambda (n)<br>
(lambda (x y t)<br>
(let ((r ((n x y ’red) t)))<br>
(set! *ex3-instance* r)<br>
r))))<br>
(fields <br>
(mutable thickness))<br>
(sealed <tt>#t</tt>) (opaque <tt>#t</tt>))<br>
<br>
(define ex3-i1 (make-ex3 1 2 17))<br>
(ex3? ex3-i1) ⇒ <tt>#t</tt><br>
(cpoint-rgb ex3-i1) ⇒ (rgb . red)<br>
(ex3-thickness ex3-i1) ⇒ 17<br>
(ex3-thickness-set! ex3-i1 18) <br> ⇒ <i>unspecified</i><br>
(ex3-thickness ex3-i1) ⇒ 18<br>
*ex3-instance* ⇒ ex3-i1<br>
<br>
(record? ex3-i1) ⇒ <tt>#f</tt><p></tt></p>
<p>
</p>
<a name="node_sec_6.3"></a>
<h2 class=section><a href="r6rs-lib-Z-H-1.html#node_toc_node_sec_6.3">6.3 Procedural layer</a></h2>
<p></p>
<p>
The procedural layer is provided by the <tt>(rnrs records
procedural (6))</tt><a name="node_idx_312"></a>library.</p>
<p>
</p>
<p></p>
<div align=left><tt>(make-record-type-descriptor <i>name</i></tt> procedure </div>
<a name="node_idx_314"></a><tt><br>
<i>parent</i> <i>uid</i> <i>sealed?</i> <i>opaque?</i> <i>fields</i>)</tt><p>
Returns a <a name="node_idx_316"></a><em>record-type descriptor</em>, or <a name="node_idx_318"></a><em>rtd</em>,
representing a record type distinct from all built-in types and
other record types.</p>
<p>
The <i>name</i> argument must be a symbol. It names the record type,
and is intended purely for informational purposes and may be used for printing by
the underlying Scheme system.</p>
<p>
The <i>parent</i> argument must be either <tt>#f</tt> or an rtd. If it is an
rtd, the returned record type, <i>t</i>, extends the record type
<i>p</i> represented by <i>parent</i>. An exception with
condition type <tt>&assertion</tt> is raised if <i>parent</i> is sealed (see below).</p>
<p>
The <i>uid</i> argument must be either <tt>#f</tt> or a symbol.
If <i>uid</i> is a symbol, the record-creation operation is
<em>nongenerative</em> i.e., a new record type is created only
if no previous call to <tt>make-record-type-descriptor</tt>
was made with the <i>uid</i>.
If <i>uid</i> is <tt>#f</tt>, the record-creation operation is
<em>generative</em>, i.e., a new record type is created even if
a previous call to <tt>make-record-type-descriptor</tt> was
made with the same arguments.</p>
<p>
If <tt>make-record-type-descriptor</tt> is
called twice with the same <i>uid</i> symbol, the parent
arguments in the two calls must be <tt>eqv?</tt>, the <i>fields</i>
arguments <tt>equal?</tt>, the <i>sealed?</i> arguments boolean-equivalent
(both <tt>#f</tt> or both true), and the <i>opaque?</i> arguments
boolean-equivalent.
If these conditions are not met, an exception with condition type
<tt>&assertion</tt> is raised when the second call occurs.
If they are met, the second call returns, without creating a new
record type, the same record-type descriptor
(in the sense of <tt>eqv?</tt>) as the first call.</p>
<p>
</p>
<blockquote><em>Note: </em>
Users are encouraged to use symbol names
constructed using the UUID namespace [<a href="r6rs-lib-Z-H-21.html#node_bib_10">10</a>] (for example, using the
record-type name as a prefix) for the uid argument.
</blockquote><p>
The <i>sealed?</i> flag must be a boolean. If true, the returned record type
is sealed, i.e., it cannot be extended.</p>
<p>
The <i>opaque?</i> flag must be a boolean. If true, the record type
is opaque.
If passed an instance of the record type,
<tt>record?</tt> returns
<tt>#f</tt>. Moreover, if <tt>record-rtd</tt> (see “Inspection” below)
is called with an instance of the record type,
an exception with condition type <tt>&assertion</tt> is raised.
The record type is also opaque if an opaque parent is
supplied. If <i>opaque?</i> is <tt>#f</tt> and an opaque parent is not
supplied, the record is not opaque.</p>
<p>
The <i>fields</i> argument must be a vector of field specifiers. Each
field specifier must be a list of the form <tt>(mutable <i>name</i>)</tt>
or a list of the form <tt>(immutable <i>name</i>)</tt>.
Each name must be a symbol and names the corresponding field of the record
type; the names need not be distinct. A field identified as mutable may
be modified, whereas, when a program attempts to obtain a mutator for a field identified
as immutable, an exception with condition type <tt>&assertion</tt> is raised.
Where field order is relevant, e.g., for record construction and field
access, the fields are considered to be ordered as specified, although
no particular order is required for the actual representation of a
record instance.</p>
<p>
The specified fields are added to the parent fields, if any, to determine
the complete set of fields of the returned record type.
If <i>fields</i> is modified after <tt>make-record-type-descriptor</tt>
has been called, the effect on the returned
rtd is unspecified.</p>
<p>
A generative record-type descriptor created by a call to <tt>make-record-type-descriptor</tt> is not <tt>eqv?</tt> to any record-type
descriptor (generative or nongenerative) created by another call to
<tt>make-record-type-descriptor</tt>. A generative record-type descriptor
is <tt>eqv?</tt> only to itself, i.e., <tt>(eqv? <i>rtd<sub>1</sub></i> <i>rtd<sub>2</sub></i>)</tt> iff
<tt>(eq? <i>rtd<sub>1</sub></i> <i>rtd<sub>2</sub></i>)</tt>.
Also, two nongenerative record-type descriptors are <tt>eqv?</tt> iff they were
created by calls to <tt>make-record-type-descriptor</tt> with the same
uid arguments.
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_320"></a>record-type-descriptor?<i> obj</i>)</tt> procedure </div>
<p>
Returns <tt>#t</tt> if the argument is a record-type descriptor,
<tt>#f</tt> otherwise.
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(make-record-constructor-descriptor <i>rtd</i></tt> procedure </div>
<a name="node_idx_322"></a><tt><br>
<i>parent-constructor-descriptor</i> <i>protocol</i>)</tt><p>
Returns a <a name="node_idx_324"></a><em>record-constructor descriptor</em> (or
<a name="node_idx_326"></a><em>constructor descriptor</em> for short) that specifies a <a name="node_idx_328"></a><em>record
constructor</em> (or <i>constructor</i> for short),
that can be used to construct record values of the type
specified by <i>rtd</i>, and which can be obtained
via <tt>record-constructor</tt>. A constructor descriptor can
also be used to create other constructor descriptors for subtypes of
its own record type. <i>Rtd</i> must be a record-type
descriptor. <i>Protocol</i><a name="node_idx_330"></a>must be a procedure or <tt>#f</tt>.
If it is <tt>#f</tt>, a default <i>protocol</i> procedure is supplied.</p>
<p>
If <i>protocol</i> is a procedure, it is handled analogously to the
protocol expression in a <tt>define-record-type</tt> form.</p>
<p>
If <i>rtd</i> is a base record type and <i>protocol</i> is a procedure,
<i>parent-constructor-descriptor</i> must be <tt>#f</tt>. In this case,
<i>protocol</i> is called by <tt>record-constructor</tt> with a single
argument <i>p</i>. <i>P</i> is a procedure that expects one argument
for every field of <i>rtd</i> and returns a record with the fields of
<i>rtd</i> initialized to these arguments. The procedure returned by
<i>protocol</i> should call <i>p</i> once with the number of arguments
<i>p</i> expects and return the resulting record as shown in the simple
example below:
</p>
<tt>(lambda (p)<br>
(lambda (v1 v2 v3)<br>
(p v1 v2 v3)))<p></tt>
Here, the call to <tt>p</tt> returns a record whose fields are
initialized with the values of <tt>v1</tt>, <tt>v2</tt>, and <tt>v3</tt>. The
expression above is equivalent to <tt>(lambda (p) p)</tt>. Note that the
procedure returned by <i>protocol</i> is otherwise unconstrained;
specifically, it can take any number of arguments.</p>
<p>
</p>
<div class=medskip></div>
<p style="margin-top: 0pt; margin-bottom: 0pt">
</p>
<p>
If <i>rtd</i> is an extension of another record type <i>parent-rtd</i>
and <i>protocol</i> is a procedure, <i>parent-constructor-descriptor</i>
must be a constructor descriptor of <i>parent-rtd</i> or <tt>#f</tt>. If
<i>parent-constructor-descriptor</i> is a constructor descriptor,
<i>protocol</i> it is called by <tt>record-constructor</tt> with a single
argument <i>n</i>, which is a procedure that accepts the same number of
arguments as the constructor of <i>parent-constructor-descriptor</i>
and returns a procedure <i>p</i> that, when called, constructs the
record itself. The <i>p</i> procedure expects one argument for every
field of <i>rtd</i> (not including parent fields) and returns a record
with the fields of <i>rtd</i> initialized to these arguments, and the
fields of <i>parent-rtd</i> and its parents initialized as specified by
<i>parent-constructor-descriptor</i>.</p>
<p>
The procedure returned by <i>protocol</i> should call <i>n</i> once with
the number of arguments <i>n</i> expects, call the procedure <i>p</i> it
returns once with the number of arguments <i>p</i> expects and return the
resulting record. A simple <i>protocol</i> in this case might be
written as follows:
</p>
<tt>(lambda (n)<br>
(lambda (v1 v2 v3 x1 x2 x3 x4)<br>
(let ((p (n v1 v2 v3)))<br>
(p x1 x2 x3 x4))))<p></tt>
This passes arguments <tt>v1</tt>, <tt>v2</tt>, <tt>v3</tt> to <i>n</i> for
<i>parent-constructor-descriptor</i> and calls <tt>p</tt>
with <tt>x1</tt>, <tt>...</tt>, <tt>x4</tt> to initialize the fields of <i>rtd</i> itself.</p>
<p>
Thus, the constructor descriptors for a record type form a sequence of
protocols parallel to the sequence of record-type parents. Each
constructor descriptor in the chain determines the field values for the
associated record type.
Child record constructors need not know the number or contents of parent
fields, only the number of arguments accepted by the parent constructor.</p>
<p>
<i>Protocol</i> may be <tt>#f</tt>, specifying a default constructor that
accepts one argument for each field of <i>rtd</i> (including the
fields of its parent type, if any). Specifically, if <i>rtd</i> is a
base type, the default <i>protocol</i> procedure behaves as if it were
<tt>(lambda (p) p)</tt>. If <i>rtd</i> is an extension of another type,
then <i>parent-constructor-descriptor</i> must be either <tt>#f</tt> or
itself specify a default constructor, and the default
<i>protocol</i> procedure behaves as if it were:
</p>
<tt>(lambda (n)<br>
(lambda (<i>v<sub>1</sub></i> <tt>...</tt> <i>v<sub><em>j</em></sub></i> <i>x<sub>1</sub></i> <tt>...</tt> <i>x<sub><em>k</em></sub></i>)<br>
(let ((p (n <i>v<sub>1</sub></i> <tt>...</tt> <i>v<sub><em>j</em></sub></i>)))<br>
(p <i>x<sub>1</sub></i> <tt>...</tt> <i>x<sub><em>k</em></sub></i>))))<p></tt>
The resulting constructor accepts one argument for each of the record
type’s complete set of fields (including those of the parent record
type, the parent’s parent record type, etc.) and returns a record with
the fields initialized to those arguments, with the field values for
the parent coming before those of the extension in the argument list.
(In the example, <em>j</em> is the complete number of fields of the parent
type, and <em>k</em> is the number of fields of <i>rtd</i> itself.)</p>
<p>
If <i>rtd</i> is an extension of another record type, and
<i>parent-constructor-descriptor</i> or the <i>protocol</i> of
<i>parent-constructor-descriptor</i> is <tt>#f</tt>, <i>protocol</i> must
also be <tt>#f</tt>, and a default constructor descriptor as
described above is also assumed.</p>
<p>
<em>Implementation responsibilities: </em>If <i>protocol</i> is a procedure, the implementation must
check the restrictions on it to the extent performed by applying it as
described when the constructor is called.
An
implementation may check whether <i>protocol</i> is an appropriate argument
before applying it.</p>
<p>
</p>
<tt>(define rtd1<br>
(make-record-type-descriptor<br>
’rtd1 <tt>#f</tt> <tt>#f</tt> <tt>#f</tt> <tt>#f</tt><br>
’<tt>#</tt>((immutable x1) (immutable x2))))<br>
<br>
(define rtd2<br>
(make-record-type-descriptor<br>
’rtd2 rtd1 <tt>#f</tt> <tt>#f</tt> <tt>#f</tt><br>
’<tt>#</tt>((immutable x3) (immutable x4))))<br>
<br>
(define rtd3<br>
(make-record-type-descriptor<br>
’rtd3 rtd2 <tt>#f</tt> <tt>#f</tt> <tt>#f</tt><br>
’<tt>#</tt>((immutable x5) (immutable x6))))<br>
<br>
(define protocol1<br>
(lambda (p)<br>
(lambda (a b c)<br>
(p (+ a b) (+ b c)))))<br>
<br>
(define protocol2<br>
(lambda (n)<br>
(lambda (a b c d e f)<br>
(let ((p (n a b c)))<br>
(p (+ d e) (+ e f))))))<br>
<br>
(define protocol3<br>
(lambda (n)<br>
(lambda (a b c d e f g h i)<br>
(let ((p (n a b c d e f)))<br>
(p (+ g h) (+ h i))))))<br>
<br>
(define cd1<br>
(make-record-constructor-descriptor<br>
rtd1 <tt>#f</tt> protocol1))<br>
<br>
(define cd2<br>
(make-record-constructor-descriptor<br>
rtd2 cd1 protocol2))<br>
<br>
(define cd3<br>
(make-record-constructor-descriptor<br>
rtd3 cd2 protocol3))<br>
<br>
(define make-rtd1 (record-constructor cd1))<br>
<br>
(define make-rtd2 (record-constructor cd2))<br>
<br>
(define make-rtd3 (record-constructor cd3))<br>
<br>
(make-rtd3 1 2 3 4 5 6 7 8 9)<br> ⇒<br>
⟨record with fields initialized to 3, 5, 9, 11, 15, 17⟩<br>
<p></tt>
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_332"></a>record-constructor<i> constructor-descriptor</i>)</tt> procedure </div>
<p>
Calls the <i>protocol</i> of <i>constructor-descriptor</i> (as described for
<tt>make-record-constructor-descriptor</tt>) and returns the resulting
constructor <i>constructor</i> for records of the record type
associated with <i>constructor-descriptor</i>.
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_334"></a>record-predicate<i> rtd</i>)</tt> procedure </div>
<p>
Returns a procedure that, given an object <i>obj</i>, returns
<tt>#t</tt>
if <i>obj</i> is a record of the type represented by
<i>rtd</i>, and <tt>#f</tt> otherwise.
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_336"></a>record-accessor<i> rtd k</i>)</tt> procedure </div>
<p>
<i>K</i> must be a valid field index of <i>rtd</i>. The <tt>record-accessor</tt> procedure returns a one-argument procedure whose
argument must be a record of the type represented by <i>rtd</i>. This
procedure returns the value of the selected field of that record.</p>
<p>
The field selected corresponds to the <i>k</i>th element
(0-based) of the <i>fields</i> argument to the invocation of <tt>make-record-type-descriptor</tt> that created <i>rtd</i>. Note that
<i>k</i> cannot be used to specify a field of any type <i>rtd</i> extends.
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_338"></a>record-mutator<i> rtd k</i>)</tt> procedure </div>
<p>
<i>K</i> must be a valid field index of <i>rtd</i>. The <tt>record-mutator</tt> procedure returns a two-argument procedure whose
arguments must be a record record <i>r</i> of the type represented by
<i>rtd</i> and an object <i>obj</i>. This procedure stores <i>obj</i>
within the field of <i>r</i> specified by <i>k</i>. The <i>k</i> argument
is as in <tt>record-accessor</tt>. If <i>k</i> specifies an immutable
field, an exception with condition type <tt>&assertion</tt> is raised.
The mutator returns unspecified values.
</p>
<p></p>
<p>
</p>
<tt>(define :point<br>
(make-record-type-descriptor<br>
’point <tt>#f</tt><br>
<tt>#f</tt> <tt>#f</tt> <tt>#f</tt> <br>
’<tt>#</tt>((mutable x) (mutable y))))<br>
<br>
(define :point-cd<br>
(make-record-constructor-descriptor :point <tt>#f</tt> <tt>#f</tt>))<br>
<br>
(define make-point (record-constructor :point-cd))<br>
<br>
(define point? (record-predicate :point))<br>
(define point-x (record-accessor :point 0))<br>
(define point-y (record-accessor :point 1))<br>
(define point-x-set! (record-mutator :point 0))<br>
(define point-y-set! (record-mutator :point 1))<br>
<br>
(define p1 (make-point 1 2))<br>
(point? p1) ⇒ <tt>#t</tt><br>
(point-x p1) ⇒ 1<br>
(point-y p1) ⇒ 2<br>
(point-x-set! p1 5) ⇒ <em>unspecified</em><br>
(point-x p1) ⇒ 5<br>
<br>
(define :point2<br>
(make-record-type-descriptor<br>
’point2 :point <br>
<tt>#f</tt> <tt>#f</tt> <tt>#f</tt> ’<tt>#</tt>((mutable x) (mutable y))))<br>
<br>
(define make-point2<br>
(record-constructor<br>
(make-record-constructor-descriptor :point2<br>
<tt>#f</tt> <tt>#f</tt>)))<br>
(define point2? (record-predicate :point2))<br>
(define point2-xx (record-accessor :point2 0))<br>
(define point2-yy (record-accessor :point2 1))<br>
<br>
(define p2 (make-point2 1 2 3 4))<br>
(point? p2) ⇒ <tt>#t</tt><br>
(point-x p2) ⇒ 1<br>
(point-y p2) ⇒ 2<br>
(point2-xx p2) ⇒ 3<br>
(point2-yy p2) ⇒ 4<br>
<br>
(define :point-cd/abs<br>
(make-record-constructor-descriptor<br>
:point <tt>#f</tt><br>
(lambda (new)<br>
(lambda (x y)<br>
(new (abs x) (abs y))))))<br>
<br>
(define make-point/abs<br>
(record-constructor :point-cd/abs))<br>
<br>
(point-x (make-point/abs -1 -2) <br> ⇒ 1<br>
(point-y (make-point/abs -1 -2) <br> ⇒ 2<br>
<br>
(define :cpoint<br>
(make-record-type-descriptor<br>
’cpoint :point<br>
<tt>#f</tt> <tt>#f</tt> <tt>#f</tt><br>
’<tt>#</tt>((mutable rgb))))<br>
<br>
(define make-cpoint<br>
(record-constructor<br>
(make-record-constructor-descriptor<br>
:cpoint :point-cd<br>
(lambda (p)<br>
(lambda (x y c)<br>
((p x y) (color->rgb c)))))))<br>
<br>
(define make-cpoint/abs<br>
(record-constructor<br>
(make-record-constructor-descriptor<br>
:cpoint :point-cd/abs<br>
(lambda (p)<br>
(lambda (x y c)<br>
((p x y) (color->rgb c)))))))<br>
<br>
(define cpoint-rgb<br>
(record-accessor :cpoint 0))<br>
<br>
(define (color->rgb c)<br>
(cons ’rgb c))<br>
<br>
(cpoint-rgb (make-cpoint -1 -3 ’red) <br> ⇒ (rgb . red)<br>
(point-x (make-cpoint -1 -3 ’red)) <br> ⇒ -1<br>
(point-x (make-cpoint/abs -1 -3 ’red)) <br> ⇒ 1<p></tt></p>
<p>
</p>
<a name="node_sec_6.4"></a>
<h2 class=section><a href="r6rs-lib-Z-H-1.html#node_toc_node_sec_6.4">6.4 Inspection</a></h2>
<p></p>
<p>
The <tt>(rnrs records inspection (6))</tt><a name="node_idx_340"></a>library
provides procedures for inspecting records and their
record-type descriptors. These procedures are designed to allow the
writing of portable printers and inspectors.</p>
<p>
On the one hand, <tt>record?</tt> and <tt>record-rtd</tt> treat records of opaque
record types as if they were not records. On the other hand, the
inspection procedures that operate on record-type descriptors
themselves are not affected by opacity. In other words, opacity
controls whether a program can obtain an rtd from a record. If the
program has access to the original rtd via <tt>make-record-type-descriptor</tt> or <tt>record-type-descriptor</tt>, it can
still make use of the inspection procedures.</p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_342"></a>record?<i> obj</i>)</tt> procedure </div>
<p>
Returns <tt>#t</tt> if <i>obj</i> is a record, and its record type is
not opaque, and returns <tt>#f</tt> otherwise.
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_344"></a>record-rtd<i> record</i>)</tt> procedure </div>
<p>
Returns the rtd representing the type of <i>record</i> if the type is not
opaque. The rtd of the most precise type is returned; that is, the
type <i>t</i> such that <i>record</i> is of type <i>t</i> but not of any
type that extends <i>t</i>. If the type is opaque, an exception is
raised with condition type <tt>&assertion</tt>.
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_346"></a>record-type-name<i> rtd</i>)</tt> procedure </div>
<p>
Returns the name of the record-type descriptor <i>rtd</i>.
</p>
<p> </p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_348"></a>record-type-parent<i> rtd</i>)</tt> procedure </div>
<p>
Returns the parent of the record-type descriptor <i>rtd</i>, or
<tt>#f</tt> if it has none.
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_350"></a>record-type-uid<i> rtd</i>)</tt> procedure </div>
<p>
Returns the uid of the record-type descriptor rtd, or <tt>#f</tt> if it has none.
(An implementation may assign a generated uid to a record type even if the
type is generative, so the return of a uid does not necessarily imply that
the type is nongenerative.)
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_352"></a>record-type-generative?<i> rtd</i>)</tt> procedure </div>
<p>
Returns <tt>#t</tt> if <i>rtd</i> is generative, and <tt>#f</tt> if not.
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_354"></a>record-type-sealed?<i> rtd</i>)</tt> procedure </div>
<p>
Returns <tt>#t</tt> if the record-type descriptor is
sealed, and <tt>#f</tt> if not.
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_356"></a>record-type-opaque?<i> rtd</i>)</tt> procedure </div>
<p>
Returns <tt>#t</tt> if the the record-type descriptor is
opaque, and <tt>#f</tt> if not.
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_358"></a>record-type-field-names<i> rtd</i>)</tt> procedure </div>
<p>
Returns a vector of symbols naming the fields of the type represented by <i>rtd</i>
(not including the fields of parent types) where the fields are ordered as
described under <tt>make-record-type-descriptor</tt>. The returned
vector may be immutable.
If the returned vector is modified, the effect on
<i>rtd</i> is unspecified.
</p>
<p></p>
<p>
</p>
<p></p>
<div align=left><tt>(<a name="node_idx_360"></a>record-field-mutable?<i> rtd k</i>)</tt> procedure </div>
<p>
Returns <tt>#t</tt> if the field specified by
<i>k</i> of the type represented by <i>rtd</i> is mutable, and
<tt>#f</tt> if not. <i>K</i> is as in <tt>record-accessor</tt>.
</p>
<p></p>
<p>
</p>
<p></p>
<div class=smallskip></div>
<p style="margin-top: 0pt; margin-bottom: 0pt">
<div align=right class=navigation>[Go to <span><a href="r6rs-lib.html">first</a>, <a href="r6rs-lib-Z-H-6.html">previous</a></span><span>, <a href="r6rs-lib-Z-H-8.html">next</a></span> page<span>; </span><span><a href="r6rs-lib-Z-H-1.html#node_toc_start">contents</a></span><span><span>; </span><a href="r6rs-lib-Z-H-21.html#node_index_start">index</a></span>]</div>
</p>
<p></p>
</div>
</body>
</html>
|