1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
|
/* elem_out.cpp: formatting elements into human-friendly form
Copyright (C) 2010, Project Pluto
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <time.h>
#include <assert.h>
#include <stdbool.h>
#include "watdefs.h"
#include "comets.h"
#include "mpc_obs.h"
#include "date.h"
#include "afuncs.h"
#include "lunar.h"
#include "monte0.h" /* for put_double_in_buff() proto */
#include "showelem.h"
/* Pretty much every platform I've run into supports */
/* Unicode display, except OpenWATCOM and early */
/* versions of MSVC. */
#if !defined( __WATCOMC__)
#if !defined( _MSC_VER) || (_MSC_VER > 1100)
#define HAVE_UNICODE
#endif
#endif
#define J2000 2451545.
#define PI 3.1415926535897932384626433832795028841971693993751058209749445923
#define GAUSS_K .01720209895
#define SOLAR_GM (GAUSS_K * GAUSS_K)
#define JD_TO_YEAR(jd) (2000. + ((jd)-J2000) / 365.25)
#define YEAR_TO_JD( year) (J2000 + (year - 2000.) * 365.25)
// void elements_in_tle_format( char *buff, const ELEMENTS *elem);
int snprintf_append( char *string, const size_t max_len, /* ephem0.cpp */
const char *format, ...)
#ifdef __GNUC__
__attribute__ (( format( printf, 3, 4)))
#endif
;
int store_defaults( const int ephemeris_output_options,
const int element_format, const int element_precision,
const double max_residual_for_filtering,
const double noise_in_arcseconds); /* elem_out.cpp */
int get_defaults( int *ephemeris_output_options, int *element_format,
int *element_precision, double *max_residual_for_filtering,
double *noise_in_arcseconds); /* elem_out.cpp */
static int elements_in_mpcorb_format( char *buff, const char *packed_desig,
const char *full_desig, const ELEMENTS *elem,
const OBSERVE FAR *obs, const int n_obs); /* orb_func.c */
static int elements_in_guide_format( char *buff, const ELEMENTS *elem,
const char *obj_name, const OBSERVE *obs,
const unsigned n_obs); /* orb_func.c */
int find_worst_observation( const OBSERVE FAR *obs, const int n_obs);
double initial_orbit( OBSERVE FAR *obs, int n_obs, double *orbit);
int set_locs( const double *orbit, double t0, OBSERVE FAR *obs, int n_obs);
int text_search_and_replace( char FAR *str, const char *oldstr,
const char *newstr); /* ephem0.cpp */
double calc_obs_magnitude( const double obj_sun,
const double obj_earth, const double earth_sun, double *phase_ang);
int find_best_fit_planet( const double jd, const double *ivect,
double *rel_vect); /* runge.cpp */
const char *get_environment_ptr( const char *env_ptr); /* mpc_obs.cpp */
void remove_trailing_cr_lf( char *buff); /* ephem0.cpp */
int write_tle_from_vector( char *buff, const double *state_vect,
const double epoch, const char *norad_desig, const char *intl_desig);
double find_moid( const ELEMENTS *elem1, const ELEMENTS *elem2, /* moid4.c */
double *barbee_style_delta_v);
int setup_planet_elem( ELEMENTS *elem, const int planet_idx,
const double t_cen); /* moid4.c */
void set_environment_ptr( const char *env_ptr, const char *new_value);
double find_collision_time( ELEMENTS *elem, double *latlon, const int is_impact);
char *fgets_trimmed( char *buff, size_t max_bytes, FILE *ifile); /*elem_out.c*/
int get_idx1_and_idx2( const int n_obs, const OBSERVE FAR *obs,
int *idx1, int *idx2); /* elem_out.c */
char int_to_mutant_hex_char( const int ival); /* mpc_obs.c */
double mag_band_shift( const char mag_band); /* elem_out.c */
int get_jpl_ephemeris_info( int *de_version, double *jd_start, double *jd_end);
double *get_asteroid_mass( const int astnum); /* bc405.cpp */
double current_jd( void); /* elem_out.cpp */
double centralize_ang( double ang); /* elem_out.cpp */
char *get_file_name( char *filename, const char *template_file_name);
void get_relative_vector( const double jd, const double *ivect,
double *relative_vect, const int planet_orbiting); /* orb_func.c */
double get_planet_mass( const int planet_idx); /* orb_func.c */
double observation_rms( const OBSERVE FAR *obs); /* elem_out.cpp */
double dot_product( const double *v1, const double *v2); /* sr.c */
double find_epoch_shown( const OBSERVE *obs, const int n_obs); /* elem_out */
double evaluate_initial_orbit( const OBSERVE FAR *obs, /* orb_func.c */
const int n_obs, const double *orbit);
double diameter_from_abs_mag( const double abs_mag, /* ephem0.cpp */
const double optical_albedo);
char **load_file_into_memory( const char *filename, size_t *n_lines);
const char *get_find_orb_text( const int index); /* elem_out.cpp */
void get_find_orb_text_filename( char *filename); /* elem_out.cpp */
FILE *fopen_ext( const char *filename, const char *permits); /* miscell.cpp */
static int names_compare( const char *name1, const char *name2);
extern int debug_level;
double asteroid_magnitude_slope_param = .15;
double comet_magnitude_slope_param = 10.;
char default_comet_magnitude_type = 'N';
const char *mpc_fmt_filename = "mpc_fmt.txt";
const char *sof_filename = "sof.txt";
extern int forced_central_body;
void compute_variant_orbit( double *variant, const double *ref_orbit,
const double n_sigmas); /* orb_func.cpp */
void make_config_dir_name( char *oname, const char *iname); /* miscell.cpp */
int put_comet_data_into_sof( char *obuff, const char *templat,
const ELEMENTS *elem,
const int n_obs, const OBSERVE *obs); /* elem_ou2.cpp */
int debug_printf( const char *format, ...) /* runge.cpp */
#ifdef __GNUC__
__attribute__ (( format( printf, 1, 2)))
#endif
;
char *fgets_trimmed( char *buff, size_t max_bytes, FILE *ifile)
{
char *rval = fgets( buff, (int)max_bytes, ifile);
if( rval)
{
int i;
for( i = 0; buff[i] && buff[i] != 10 && buff[i] != 13; i++)
;
buff[i] = '\0';
}
return( rval);
}
void get_first_and_last_included_obs( const OBSERVE *obs,
const int n_obs, int *first, int *last) /* elem_out.c */
{
if( first)
for( *first = 0; *first < n_obs - 1 && !obs[*first].is_included;
(*first)++)
;
if( last)
for( *last = n_obs - 1; *last && !obs[*last].is_included; (*last)--)
;
}
void make_date_range_text( char *obuff, const double jd1, const double jd2)
{
long year, year2;
int month, month2;
const int day1 = (int)decimal_day_to_dmy( jd1, &year, &month,
CALENDAR_JULIAN_GREGORIAN);
const int day2 = (int)decimal_day_to_dmy( jd2, &year2, &month2,
CALENDAR_JULIAN_GREGORIAN);
static const char *month_names[] = { "Jan.", "Feb.", "Mar.", "Apr.", "May",
"June", "July", "Aug.", "Sept.", "Oct.", "Nov.", "Dec." };
if( year == year2)
{
sprintf( obuff, "%ld %s %d", year, month_names[month - 1], day1);
obuff += strlen( obuff);
if( month == month2 && day1 != day2)
sprintf( obuff, "-%d", day2);
else if( month != month2)
sprintf( obuff, "-%s %d", month_names[month2 - 1], day2);
}
else /* different years */
sprintf( obuff, "%ld %s %d-%ld %s %d", year, month_names[month - 1],
day1, year2, month_names[month2 - 1], day2);
obuff += strlen( obuff);
if( jd2 - jd1 < 10. / seconds_per_day) /* less than 10 seconds: show to .01 sec */
sprintf( obuff, " (%.2f sec)", (jd2 - jd1) * seconds_per_day);
else if( jd2 - jd1 < 100. / seconds_per_day) /* less than 100 seconds: show to .1 sec */
sprintf( obuff, " (%.1f sec)", (jd2 - jd1) * seconds_per_day);
else if( jd2 - jd1 < 100. / minutes_per_day) /* less than 100 minutes: show in min */
sprintf( obuff, " (%.1f min)", (jd2 - jd1) * minutes_per_day);
else if( jd2 - jd1 < 2.)
sprintf( obuff, " (%.1f hr)", (jd2 - jd1) * hours_per_day);
}
/* This is useful for abbreviating on-screen text; say, displaying */
/* all planet names chopped down to four characters. With UTF-8 text, */
/* this may not mean four bytes. */
const char *find_nth_utf8_char( const char *itext, size_t n)
{
while( *itext && n--)
{
switch( ((unsigned char)*itext) >> 4)
{
case 0xf: /* four-byte token; U+10000 to U+1FFFFF */
itext += 4;
break;
case 0xe: /* three-byte token; U+0800 to U+FFFF */
itext += 3;
break;
case 0xc: /* two-byte token: U+0080 to U+03FF */
case 0xd: /* two-byte token: U+0400 to U+07FF */
itext += 2;
break;
default: /* "ordinary" ASCII (U+0 to U+7F) */
itext++; /* single-byte token */
break;
}
}
return( itext);
}
/* String file name defaults to English, but can be replaced */
/* with ifindorb.txt (Italian), ffindorb.txt (French), etc. */
char findorb_language = 'e';
void get_find_orb_text_filename( char *filename)
{
strcpy( filename, "efindorb.txt");
*filename = findorb_language;
}
/* The following only works for Win1252, and even there, */
/* the part from 0x80 to 0x9f fails. But we don't have */
/* Euro signs and such in Find_Orb at this point. */
#ifndef HAVE_UNICODE
void utf8_to_win1252( char *text)
{
char *optr = text;
while( *text)
if( (unsigned char)*text < 0x80)
*optr++ = *text++;
else
{
const unsigned char t0 = (unsigned char)text[0];
const unsigned char t1 = (unsigned char)text[1];
*optr++ = (char)( (t0 << 6) | (t1 & 0x3f));
text += 2;
}
*optr = '\0';
}
#endif
const char *get_find_orb_text( const int index)
{
static char **text = NULL;
static size_t n_lines;
size_t i;
static char currently_loaded_language = '\0';
if( !index) /* clean up */
{
if( text)
free( text);
text = NULL;
return( NULL);
}
if( currently_loaded_language != findorb_language
&& text)
{
free( text);
text = NULL;
}
if( !text)
{
char filename[20];
get_find_orb_text_filename( filename);
text = load_file_into_memory( filename, &n_lines);
assert( text);
currently_loaded_language = findorb_language;
}
for( i = 0; i < n_lines; i++)
if( atoi( text[i]) == index)
#if 1
return( text[i] + 8);
#else
{
static char tbuff[100];
assert( 1);
strcpy( tbuff, text[i] + 8);
utf8_to_win1252( tbuff);
return( tbuff);
}
#endif
assert( 1); /* i.e., should never get here */
return( NULL);
}
/* observation_summary_data( ) produces the final line in an MPC report,
such as 'From 20 observations 1997 Oct. 20-22; mean residual 0".257. '
Note that the arcsecond mark comes before the decimal point; this
oddity is handled using the text_search_and_replace() function.
*/
static void observation_summary_data( char *obuff, const OBSERVE FAR *obs,
const int n_obs, const int options)
{
int i, n_included, first_idx, last_idx;
get_first_and_last_included_obs( obs, n_obs, &first_idx, &last_idx);
for( i = n_included = 0; i < n_obs; i++)
n_included += obs[i].is_included;
if( options == -1) /* 'guide.txt' bare-bones format */
sprintf( obuff, "%d of %d", n_included, n_obs);
else if( (options & ELEM_OUT_ALTERNATIVE_FORMAT) && n_included != n_obs)
sprintf( obuff, get_find_orb_text( 15), n_included, n_obs);
else
sprintf( obuff, get_find_orb_text( 16), n_included);
if( options != -1 && n_included)
{
const double rms = compute_rms( obs, n_obs);
char rms_buff[14];
const char *rms_format = "%.2f";
strcat( obuff, " ");
obuff += strlen( obuff);
make_date_range_text( obuff, obs[first_idx].jd, obs[last_idx].jd);
obuff += strlen( obuff);
if( options & ELEM_OUT_PRECISE_MEAN_RESIDS)
rms_format = (rms > 0.003 ? "%.3f" : "%.1e");
sprintf( rms_buff, rms_format, rms);
text_search_and_replace( rms_buff, ".", "\".");
sprintf( obuff, get_find_orb_text( 17), rms_buff);
} /* "; mean residual %s." */
}
double centralize_ang( double ang)
{
ang = fmod( ang, PI + PI);
if( ang < 0.)
ang += PI + PI;
return( ang);
}
void convert_elements( const double epoch_from, const double epoch_to,
double *incl, double *asc_node, double *arg_per); /* conv_ele.cpp */
/* Packed MPC designations have leading and/or trailing spaces. This */
/* function lets you get the designation minus those spaces. */
static void packed_desig_minus_spaces( char *obuff, const char *ibuff)
{
while( *ibuff && *ibuff == ' ')
ibuff++;
while( *ibuff && *ibuff != ' ')
*obuff++ = *ibuff++;
*obuff = '\0';
}
double current_jd( void)
{
static const double jan_1970 = 2440587.5;
const double jd = jan_1970 + (double)time( NULL) / seconds_per_day;
return( jd);
}
int n_clones_accepted = 0;
static int elements_in_mpcorb_format( char *buff, const char *packed_desig,
const char *full_desig, const ELEMENTS *elem,
const OBSERVE FAR *obs, const int n_obs) /* orb_func.c */
{
extern unsigned perturbers;
int month, day, i, first_idx, last_idx, n_included_obs = 0;
long year;
const double rms_err = compute_rms( obs, n_obs);
const unsigned hex_flags = 0;
/* 'mpcorb' has four hexadecimal flags starting in column 162, */
/* signifying if the object is in any of various classes such */
/* as Aten, scattered-disk object, PHA, Jupiter Trojan, */
/* etc. None of those flags are set yet. */
const int n_oppositions = 1;
/* The above needs some work. Problem is, what constitutes */
/* an "opposition" for an NEO? (It's more clearcut for MBOs.) */
/* For the nonce, we'll just say "one opposition". */
double arc_length;
char packed_desig2[40];
packed_desig_minus_spaces( packed_desig2, packed_desig);
sprintf( buff, "%-8s%5.2f %4.2f ", packed_desig2, elem->abs_mag,
asteroid_magnitude_slope_param);
day = (int)( decimal_day_to_dmy( elem->epoch, &year,
&month, CALENDAR_JULIAN_GREGORIAN) + .0001);
sprintf( buff + 20, "%c%02ld%X%c",
int_to_mutant_hex_char( year / 100),
year % 100L, month,
int_to_mutant_hex_char( day));
sprintf( buff + 25, "%10.5f%11.5f%11.5f%11.5f%11.7f",
centralize_ang( elem->mean_anomaly) * 180. / PI,
centralize_ang( elem->arg_per) * 180. / PI,
centralize_ang( elem->asc_node) * 180. / PI,
centralize_ang( elem->incl) * 180. / PI,
elem->ecc);
sprintf( buff + 79, "%12.8f%12.7f",
(180 / PI) / elem->t0, /* n */
elem->major_axis);
for( i = 0; i < n_obs; i++)
if( obs[i].is_included)
n_included_obs++;
day = (int)( decimal_day_to_dmy( current_jd( ),
&year, &month, CALENDAR_JULIAN_GREGORIAN) + .0001);
sprintf( buff + 103,
" FO %02d%02d%02d %4d %2d ****-**** **** Find_Orb %04x",
(int)( year % 100), month, (int)day,
n_included_obs, n_oppositions, hex_flags);
get_first_and_last_included_obs( obs, n_obs, &first_idx, &last_idx);
arc_length = obs[last_idx].jd - obs[first_idx].jd;
if( arc_length < 99. / seconds_per_day)
sprintf( buff + 127, "%4.1f sec ", arc_length * seconds_per_day);
else if( arc_length < 99. / minutes_per_day)
sprintf( buff + 127, "%4.1f min ", arc_length * minutes_per_day);
else if( arc_length < 2.)
sprintf( buff + 127, "%4.1f hrs ", arc_length * hours_per_day);
else if( arc_length < 600.)
sprintf( buff + 127, "%4d days", (int)arc_length + 1);
else
sprintf( buff + 127, "%4d-%4d",
(int)JD_TO_YEAR( obs[first_idx].jd),
(int)JD_TO_YEAR( obs[last_idx].jd));
buff[136] = ' ';
sprintf( buff + 165, " %-30s", full_desig);
day = (int)( decimal_day_to_dmy( obs[last_idx].jd, &year,
&month, CALENDAR_JULIAN_GREGORIAN) + .0001);
sprintf( buff + 194, "%04ld%02d%02d", year, month, day);
if( rms_err < 9.9)
sprintf( buff + 137, "%4.2f", rms_err);
else if( rms_err < 99.9)
sprintf( buff + 137, "%4.1f", rms_err);
else if( rms_err < 9999.)
sprintf( buff + 137, "%4.0f", rms_err);
buff[141] = ' ';
if( (perturbers & 0x1fe) == 0x1fe)
{ /* we have Mercury through Neptune, at least */
const char *coarse_perturb, *precise_perturb;
if( perturbers & 0x700000) /* asteroids included */
{
precise_perturb = (perturbers & 0x400 ? "3E" : "38");
coarse_perturb = "M-v";
}
else /* non-asteroid case */
{
precise_perturb = (perturbers & 0x400 ? "06" : "00");
coarse_perturb = (perturbers & 0x200 ? "M-P" : "M-N");
}
memcpy( buff + 142, coarse_perturb, 3);
memcpy( buff + 146, precise_perturb, 2);
}
return( 0);
}
static int elements_in_guide_format( char *buff, const ELEMENTS *elem,
const char *obj_name, const OBSERVE *obs,
const unsigned n_obs)
{
int month;
double day;
long year;
day = decimal_day_to_dmy( elem->perih_time, &year, &month,
CALENDAR_JULIAN_GREGORIAN);
/* name day mon yr MA q e */
sprintf( buff, "%-43s%8.5f%3d%5ld Find_Orb %14.7f%12.7f%11.6f%12.6f%12.6f",
obj_name, day, month, year,
elem->q, elem->ecc,
centralize_ang( elem->incl) * 180. / PI,
centralize_ang( elem->arg_per) * 180. / PI,
centralize_ang( elem->asc_node) * 180. / PI);
if( elem->q < .01)
{
sprintf( buff + 71, "%12.10f", elem->q);
buff[71] = buff[83] = ' ';
}
sprintf( buff + strlen( buff), " %9.1f%5.1f%5.1f %c",
elem->epoch, elem->abs_mag,
elem->slope_param * (elem->is_asteroid ? 1. : 0.4),
(elem->is_asteroid ? 'A' : ' '));
if( elem->central_obj)
sprintf( buff + strlen( buff), " Center: %d", elem->central_obj);
strcat( buff, " ");
observation_summary_data( buff + strlen( buff), obs, n_obs, -1);
return( 0);
}
static int is_cometary( const char *constraints)
{
const char *ecc = strstr( constraints, "e=1");
return( ecc && atof( ecc + 2) == 1.);
}
int monte_carlo_object_count = 0;
int n_monte_carlo_impactors = 0;
int append_elements_to_element_file = 0;
int using_sr = 0;
char orbit_summary_text[80];
double max_monte_rms;
void set_statistical_ranging( const int new_using_sr)
{
using_sr = new_using_sr;
n_monte_carlo_impactors = monte_carlo_object_count = 0;
}
static size_t space_pad_buffer( char *buff, const size_t length)
{
const size_t rval = strlen( buff);
if( rval < length)
{
memset( buff + rval, ' ', length - rval);
buff[length] = '\0';
}
return( rval);
}
static int show_reference( char *buff)
{
const size_t reference_loc = 62;
int rval = (space_pad_buffer( buff, reference_loc) <= reference_loc);
if( rval)
{
const char *reference = get_environment_ptr( "REFERENCE");
if( !*reference)
reference = "Find_Orb";
strcpy( buff + reference_loc, reference);
}
return( rval);
}
extern int available_sigmas;
int compute_available_sigmas_hash( const OBSERVE FAR *obs, const int n_obs,
const double epoch, const unsigned perturbers, const int central_obj);
static int get_uncertainty( const char *key, char *obuff, const bool in_km)
{
int rval = -1;
FILE *ifile;
const char *filenames[4] = { NULL, "covar.txt", "monte.txt", "monte.txt" };
char buff[100];
*obuff = '\0';
if( available_sigmas && (ifile = fopen_ext(
get_file_name( buff, filenames[available_sigmas]), "crb")) != NULL)
{
const size_t keylen = strlen( key);
while( rval && fgets( buff, sizeof( buff), ifile))
if( !memcmp( buff, key, keylen) && buff[keylen] == ' ')
{
size_t loc = keylen;
rval = 0;
if( in_km)
{
char *tptr = strchr( buff, '(');
if( tptr)
loc = tptr - buff + 1;
}
sscanf( buff + loc, "%20s", obuff);
}
fclose( ifile);
}
return( rval);
}
static void consider_replacing( char *buff, const char *search_text,
const char *sigma_key)
{
char *tptr = strstr( buff, search_text);
if( tptr && available_sigmas)
{
int at_end_of_line;
bool is_km = false;
tptr += strlen( search_text);
while( *tptr == ' ') /* scan over spaces... */
tptr++;
while( *tptr && *tptr != ' ') /* ...then over the actual value */
tptr++;
remove_trailing_cr_lf( tptr);
at_end_of_line = (*tptr == '\0');
if( tptr[-2] == 'k' && tptr[-1] == 'm')
{
is_km = true;
tptr -= 2;
}
strcpy( tptr, " +/- ");
tptr += 5;
get_uncertainty( sigma_key, tptr, is_km);
if( !at_end_of_line)
tptr[strlen( tptr)] = ' ';
}
}
/* For display purposes, it can be useful to switch from the default
J2000 ecliptic frame to a planet-centered frame. In such a frame,
the z-axis points in the direction of the planet's north pole; the
x-axis is the cross-product of z with the J2000 pole of the earth;
and the y-axis is the cross-product of x and z. */
static void ecliptic_to_planetary_plane( const int planet_no,
const double epoch_jd, double *state_vect)
{
double planet_matrix[9], xform[3][3];
int i;
double tval;
calc_planet_orientation( planet_no, 0, epoch_jd, planet_matrix);
/* At this point, planet_matrix[6, 7, 8] is a J2000 equatorial */
/* vector pointing in the direction of the planet's north pole. */
/* Copy that as our z-axis, xform[2]: */
memcpy( xform[2], planet_matrix + 6, 3 * sizeof( double));
/* Our "X-axis" is perpendicular to "Z", but in the plane */
/* of the J2000 equator, corresponding to the ascending node */
/* of the planet's equator relative to the J2000 equator: */
tval = sqrt( xform[2][0] * xform[2][0] + xform[2][1] * xform[2][1]);
xform[0][0] = -xform[2][1] / tval;
xform[0][1] = xform[2][0] / tval;
xform[0][2] = 0.;
/* So we've got two of the three base vectors, still in J2000 */
/* equatorial. Transform them to ecliptic... */
equatorial_to_ecliptic( xform[0]);
equatorial_to_ecliptic( xform[2]);
/* ...and 'Y' is simply the cross-product of 'X' and 'Z': */
vector_cross_product( xform[1], xform[2], xform[0]);
/* OK. Now we're ready to transform the state vector : */
for( i = 0; i < 2; i++, state_vect += 3)
{
const double x = dot_product( state_vect, xform[0]);
const double y = dot_product( state_vect, xform[1]);
const double z = dot_product( state_vect, xform[2]);
state_vect[0] = x;
state_vect[1] = y;
state_vect[2] = z;
}
}
/* The following will revise text such as
"value=3.141e-009 +/- 2.34e-011" to read
"value=3.141e-9 +/- 2.34e-11". */
static void clobber_leading_zeroes_in_exponent( char *buff)
{
while( *buff)
{
if( *buff == 'e' || *buff == 'E')
if( buff[1] == '+' || buff[1] == '-')
if( buff[2] == '0')
{
memmove( buff + 2, buff + 3, strlen( buff + 2));
buff--;
}
buff++;
}
}
#define MAX_SOF_LEN 400
char *get_file_name( char *filename, const char *template_file_name);
/* Write out the elements in SOF (Standard Orbit Format) at the end of an
existing file, one in which the first line is the header. */
static int add_sof_to_file( const char *filename,
const ELEMENTS *elem,
const int n_obs, const OBSERVE *obs)
{
char templat[MAX_SOF_LEN], obuff[MAX_SOF_LEN];
char output_filename[100];
FILE *fp;
int rval = -1, forking;
fp = fopen_ext( filename, "ca+b");
get_file_name( output_filename, filename);
forking = strcmp( output_filename, filename);
if( fp)
{
fseek( fp, 0L, SEEK_SET);
if( !fgets( templat, sizeof( templat), fp))
assert( 1);
if( forking)
{
fclose( fp);
fp = fopen_ext( output_filename, "ca+b");
assert( fp);
}
fseek( fp, 0L, SEEK_END);
rval = put_comet_data_into_sof( obuff, templat, elem, n_obs, obs);
fwrite( obuff, strlen( obuff), 1, fp);
fclose( fp);
}
return( rval);
}
/* Code to figure out the delta-V required to rendezvous with an object
using Shoemaker and Helin's method, 1978, Earth-approaching
asteroids as targets for exploration, NASA CP-2053, pp. 245-256.
This is basically a translation into C of some IDL code written by
Nick Moskovitz. */
#ifdef NOT_READY_YET
static double shoemaker_helin_encounter_velocity( const ELEMENTS *elem)
{
const double norm = 29.784; /* Normalization factor = Earth's orbital speed [km/s] */
// const double U_0 = 7.94 / norm; /* Normalized orbital speed in LEO */
const double U_0 = 7.727 / norm; /* Normalized orbital speed in LEO at 300km */
const double sqrt_2 = 1.41421358;
const double S = sqrt_2 * U_0 /* Normalized escape speed from Earth (OLD: 11.2 / norm) */
const double Q = elem->major * (1. + elem->ecc);
const double cos_half_incl = cos( elem->incl / 2.);
double u_t2, u_c2, u_r2;
if( elem->major > 1. && elem->q > .983) /* Aten */
{
u_t2 = 2. - 2. * sqrt( 2. * Q - Q * Q) * cos_half_incl;
u_c2 = 3. / Q - 1. - 2. * sqrt( 2. - Q) / Q;
u_r2 = 3. / q - 1. / elem->major - 2. * sqrt( elem->major * (1.
))
}
}
#endif
static void get_periapsis_loc( double *ecliptic_lon, double *ecliptic_lat,
const ELEMENTS *elem)
{
*ecliptic_lon = elem->asc_node +
atan2( cos( elem->incl) * sin( elem->arg_per), cos( elem->arg_per));
*ecliptic_lon = centralize_ang( *ecliptic_lon);
*ecliptic_lat = asin( sin( elem->incl) * sin( elem->arg_per));
}
/* From an e-mail from Alan Harris:
"...the formula for encounter velocity (in FORTRAN), for a circular planet
orbit is:
DV=30.*SQRT(3.-A0/A-2.*SQRT(A*(1.-E**2)/A0)*COS(XI/57.2958))
Where A0 is the planet orbit SMA (1.0 for Earth), and A, E, XI are (a,e,i)
of the crossing body. If DV is less than about 2.5 [km/s], the crossing body
can't make it to/from Mars or Venus no matter what direction it is going,
at greater than 2.5, it can. That sort of provides the cutoff for natural
bodies crossing the Earth orbit. There are a few exceptions, but they are
probably moon ejecta or old rocket cans." (Note: 57.2958 = 180/pi = degrees
per radian conversion, not needed in C.)
I've seen some inaccuracies in this formula, though, which I _think_
reflect the fact that it assumes the earth's orbit is circular. Alan
points out that this really should only apply to crossing orbits (which,
with earth's orbit considered circular, means q < 1 < Q.) If the MOID
is non-zero, it's hard to say exactly what the "encounter velocity" means.
Note furthermore that the above can be reduced to
dv = v0 * sqrt(3. - tisserand)
where v0 = orbital speed for the earth (roughly 30 km/s) and 'tisserand'
is the usual Tisserand criterion. */
static double encounter_velocity( const ELEMENTS *elem, const double a0)
{
const double a = elem->major_axis;
double tval = sqrt( a * (1. - elem->ecc * elem->ecc) / a0);
double tisserand = a0 / a + 2. * tval * cos( elem->incl);
double rval;
if( tisserand > 3.) /* can happen if the orbits can't really */
rval = 0.; /* intersect (i.e., q > 1 or Q < 1) */
else
rval = 30. * sqrt( 3. - tisserand);
return( rval);
}
/* Used to provide a link to Tony Dunn's Orbit Simulator when making
pseudo-MPECs. Epoch is stored in the sixth element of the array. */
double helio_ecliptic_j2000_vect[7];
/* The results from write_out_elements_to_file() can be somewhat
varied. The output for elliptical and parabolic/hyperbolic orbits are
very different. Asteroids and comets differ in whether H and G are
given, or M(N)/M(T) and K. Or those fields can be blank if no
magnitude data is given.
Constraints or Monte Carlo data can modify the perihelion line, such as
Perihelion 1998 Mar 16.601688 TT; Constraint: a=2.5
Perihelion 1998 Mar 16.601688 TT; 20.3% impact (203/1000)
AMR data appears on the epoch line:
Epoch 1997 Oct 13.0 TT; AMR 0.034 m^2/kg
MOIDs can carry on to next line, wiping out P Q header and even
the (2000.0) text if there are enough extra MOIDs.
Examples:
Orbital elements:
1996 XX1
Perihelion 1998 Mar 8.969329 TT = 23:15:50 (JD 2450881.469329)
Epoch 1997 Oct 13.0 TT = JDT 2450734.5 Earth MOID: 0.0615 Ma: 0.0049
M 322.34260 (2000.0) P Q
n 0.25622619 Peri. 72.47318 -0.50277681 -0.86441429
a 2.45501241 Node 47.71084 0.79213697 -0.46159019
e 0.5741560 Incl. 0.14296 0.34602670 -0.19930484
P 3.85 H 15.8 U 8.4 q 1.04545221 Q 3.86457261
From 13 observations 1997 Oct. 12-22; mean residual 0".485.
Orbital elements:
2009 BD
Perigee 2009 Jan 25.247396 TT; A1=5.76e-11, A2=-1.29e-12
Epoch 2009 Jan 22.0 TT = JDT 2454853.5 Find_Orb
q685927.806km (2000.0) P Q
H 28.6 G 0.15 Peri. 86.73833 0.01481057 -0.49410657
Node 119.50263 -0.32898297 0.81855881
e 2.9230182 Incl. 92.82529 0.94421970 0.29295079
From 173 observations 2009 Jan. 16-2011 June 20; mean residual 0".294.
Orbital elements:
1997 ZZ99
Perilune 1997 Apr 22.543629 TT = 13:02:49 (JD 2450561.043629)
Epoch 1997 Apr 22.5 TT = JDT 2450561.0 Find_Orb
q 24606.5028km (2000.0) P Q
H 22.9 G 0.15 Peri. 111.16531 0.57204494 -0.81965341
Node 193.85513 -0.79189676 -0.54220560
e 659.1509995 Incl. 7.32769 -0.21369156 -0.18488202
From 35 observations 1997 Apr. 21-22; mean residual 1".128.
Possible new format, allowing inclusion of uncertainties:
Orbital elements: 1996 XX1
Perihelion 1998 Mar 8.977252 +/- 0.109 TT (JD 2450881.477252)
Epoch 1997 Oct 12.0 TT = JDT 2450733.5 Earth MOID: 0.0613 Ma: 0.0049
M 322.109164 +/- 0.0574 (More MOIDs or area/mass goes here)
n 0.256058518 +/- 0.000205 Peri. 72.530699 +/- 0.0861
a 2.456084084 +/- 0.00131 Node 47.657952 +/- 0.0576
e 0.57438774 +/- 0.000178 Incl. 0.143216 +/- 0.000294
H 16.6 G 0.15 U 7.1 P 3.85012 +/- .00021
q 1.045339477 +/- 0.000139 Q 3.866828691 +/- 0.0025
From 13 of 17 observations 1997 Oct. 12-22; mean residual 0".485.
...and the hyperbolic version:
Orbital elements: 1997 ZZ99
Perilune 1997 Apr 22.543629 +/- 0.021 TT (JD 2450561.043629)
Epoch 1997 Apr 22.5 TT = JDT 2450561.0 Find_Orb
q 24606.5028 +/- 3.345 km (More MOIDs or area/mass here)
H 22.9 G 0.15 Peri. 111.16531 +/- 0.0321
z 934.123 +/- 3.14159 Node 193.85513 +/- 0.145
e 659.1509995 +/- 3.456 Incl. 7.32769 +/- 0.0056
From 33 of 35 observations 1997 Apr. 21-22; mean residual 1".128.
....wherein Q, a, P, n, U, and M are omitted as no longer meaningful,
but we show z=1/a, which is sometimes helpful with near-parabolic cases.
Actually, we should always show z if the uncertainty in a is comparable
to a itself, for all types of orbits.
We basically retain the first three lines of the existing format,
except that the second line needs a little revision to contain the
periapsis uncertainty. And we retain the "from x to y" line.
We should also "prune" quantities so the number of digits in the sigma
matches the number of digits in the quantity itself.
The program is theoretically capable of computing MOIDs relative to
N_MOIDS objects (currently 14: eight planets, six asteroids). However,
N_MOIDS_TO_SHOW = 8 at present (we only show planetary MOIDs.) */
#define N_MOIDS 14
#define N_MOIDS_TO_SHOW 8
double comet_total_magnitude = 0.; /* a.k.a. "M1" */
double comet_nuclear_magnitude = 0.; /* a.k.a. "M2" */
#define ELEMENT_FRAME_DEFAULT 0
#define ELEMENT_FRAME_J2000_ECLIPTIC 1
#define ELEMENT_FRAME_J2000_EQUATORIAL 2
#define ELEMENT_FRAME_BODY_FRAME 3
int write_out_elements_to_file( const double *orbit,
const double curr_epoch,
const double epoch_shown,
OBSERVE FAR *obs, const int n_obs, const char *constraints,
const int precision, const int monte_carlo,
const int options)
{
char object_name[80], buff[260], more_moids[80];
const char *file_permits = (append_elements_to_element_file ? "fca" : "fcw+");
extern const char *elements_filename;
FILE *ofile = fopen_ext( get_file_name( buff, elements_filename), file_permits);
double rel_orbit[6], orbit2[6];
int planet_orbiting, n_lines, i, bad_elements;
ELEMENTS elem, helio_elem;
char *tptr, *tbuff;
char impact_buff[80];
int n_more_moids = 0;
int output_format = (precision | SHOWELEM_PERIH_TIME_MASK);
extern int n_extra_params;
extern unsigned perturbers;
int reference_shown = 0;
double moids[N_MOIDS + 1];
double j2000_ecliptic_rel_orbit[6];
double barbee_style_delta_v = 0.; /* see 'moid4.cpp' */
const char *monte_carlo_permits;
const bool rms_ok = (compute_rms( obs, n_obs) < max_monte_rms);
extern int available_sigmas;
const char *body_frame_note = NULL;
int showing_sigmas = available_sigmas;
int elements_frame = atoi( get_environment_ptr( "ELEMENTS_FRAME"));
setvbuf( ofile, NULL, _IONBF, 0);
setvbuf( stdout, NULL, _IONBF, 0);
if( default_comet_magnitude_type == 'N')
output_format |= SHOWELEM_COMET_MAGS_NUCLEAR;
if (options & ELEM_OUT_ALTERNATIVE_FORMAT)
output_format |= SHOWELEM_OMIT_PQ_MASK;
fprintf( ofile, "%s %s",
get_find_orb_text( 99174), /* "Orbital elements:" */
options & ELEM_OUT_ALTERNATIVE_FORMAT ? " " : "\n");
get_object_name( object_name, obs->packed_id);
if( !curr_epoch || !epoch_shown)
{
fprintf( ofile, "%s\nNo elements available\n", object_name);
observation_summary_data( buff, obs, n_obs, options);
fprintf( ofile, "%s\n", buff);
fclose( ofile);
return( -1);
}
memcpy( orbit2, orbit, 6 * sizeof( double));
integrate_orbit( orbit2, curr_epoch, epoch_shown);
memcpy( helio_ecliptic_j2000_vect, orbit2, 6 * sizeof( double));
helio_ecliptic_j2000_vect[6] = epoch_shown;
if( options & ELEM_OUT_HELIOCENTRIC_ONLY)
{
planet_orbiting = forced_central_body;
get_relative_vector( epoch_shown, orbit2, rel_orbit, planet_orbiting);
}
else
planet_orbiting = find_best_fit_planet( epoch_shown, orbit2, rel_orbit);
memcpy( j2000_ecliptic_rel_orbit, rel_orbit, 6 * sizeof( double));
/* By default, we use J2000 equatorial elements for geocentric
elements, J2000 ecliptic for everybody else. */
if( elements_frame == ELEMENT_FRAME_DEFAULT)
elements_frame = ((planet_orbiting == 3) ?
ELEMENT_FRAME_J2000_EQUATORIAL :
ELEMENT_FRAME_J2000_ECLIPTIC);
if( elements_frame == ELEMENT_FRAME_J2000_ECLIPTIC)
body_frame_note = "(J2000 ecliptic)";
if( elements_frame == ELEMENT_FRAME_J2000_EQUATORIAL)
{
ecliptic_to_equatorial( rel_orbit);
ecliptic_to_equatorial( rel_orbit + 3);
body_frame_note = "(J2000 equator)";
}
if( elements_frame == ELEMENT_FRAME_BODY_FRAME)
{
ecliptic_to_planetary_plane(
(planet_orbiting == 100 ? -1 : planet_orbiting),
epoch_shown, rel_orbit);
body_frame_note = "(body frame)";
}
if( !(options & ELEM_OUT_ALTERNATIVE_FORMAT))
showing_sigmas = 0;
if( showing_sigmas == COVARIANCE_AVAILABLE)
{
extern int available_sigmas_hash;
if( available_sigmas_hash != compute_available_sigmas_hash( obs, n_obs,
epoch_shown, perturbers, planet_orbiting))
showing_sigmas = 0;
}
elem.central_obj = planet_orbiting;
elem.gm = get_planet_mass( planet_orbiting);
elem.epoch = epoch_shown;
calc_classical_elements( &elem, rel_orbit, epoch_shown, 1);
if( elem.ecc < .9)
sprintf( orbit_summary_text, "a=%.3f, ", elem.major_axis);
else
sprintf( orbit_summary_text, "q=%.3f, ", elem.q);
sprintf( orbit_summary_text + strlen( orbit_summary_text),
"e=%.3f, i=%d", elem.ecc, (int)( elem.incl * 180. / PI + .5));
elem.is_asteroid = (object_type == OBJECT_TYPE_ASTEROID);
if( elem.is_asteroid)
{
elem.slope_param = asteroid_magnitude_slope_param;
elem.abs_mag = calc_absolute_magnitude( obs, n_obs);
}
else /* for comets, compute nuclear & total absolute mags */
{
elem.slope_param = comet_magnitude_slope_param;
for( i = 0; i < 2; i++)
{
default_comet_magnitude_type = 'T' + 'N' - default_comet_magnitude_type;
elem.abs_mag = calc_absolute_magnitude( obs, n_obs);
if( default_comet_magnitude_type == 'N')
comet_nuclear_magnitude = elem.abs_mag;
else
comet_total_magnitude = elem.abs_mag;
}
}
add_sof_to_file( (n_extra_params >= 2 ? "cmt_sof.txt" : sof_filename),
&elem, n_obs, obs); /* elem_ou2.cpp */
if( showing_sigmas == COVARIANCE_AVAILABLE)
{
ELEMENTS elem2 = elem;
double rel_orbit2[6];
compute_variant_orbit( rel_orbit2, rel_orbit, 1.); /* orb_func.cpp */
calc_classical_elements( &elem2, rel_orbit2, epoch_shown, 1);
add_sof_to_file( "sofv.txt", &elem2, n_obs, obs); /* elem_ou2.cpp */
}
helio_elem = elem; /* Heliocentric J2000 ecliptic elems */
helio_elem.central_obj = 0;
helio_elem.gm = SOLAR_GM;
calc_classical_elements( &helio_elem, orbit2, epoch_shown, 1);
tbuff = (char *)malloc( 80 * 9);
n_lines = elements_in_mpc_format( tbuff, &elem, object_name,
is_cometary( constraints) && fabs( elem.ecc - 1.) < 1.e-6,
output_format);
fprintf( ofile, "%s\n", tbuff);
tptr = tbuff + strlen( tbuff) + 1;
*more_moids = '\0';
for( i = 0; i < 9; i++)
moids[i] = 0.;
for( i = 1; *tptr && i < n_lines; i++)
{
char *tt_ptr;
char sigma_buff[80];
extern double solar_pressure[], uncertainty_parameter;
/* "Solar radiation pressure at 1 AU", in */
/* kg*AU^3 / (m^2*d^2), from a private communication */
/* from Steve Chesley; see orb_func.cpp for details */
strcpy( sigma_buff, "+/- ");
strcpy( buff, tptr);
tt_ptr = strstr( buff, "TT") + 2;
if( !memcmp( buff, " Peri", 7))
{
assert( tt_ptr);
if( *constraints)
{
if( constraints[0] == 'm' && constraints[1] == '(')
{
double *mass = get_asteroid_mass( atoi( constraints + 2));
if( mass)
{
sprintf( tt_ptr, "; %s=%.4g", constraints, *mass);
consider_replacing( buff, constraints, "Sigma_mass:");
clobber_leading_zeroes_in_exponent( buff);
}
else
sprintf( tt_ptr, "; bad '%s'", constraints);
}
else
sprintf( tt_ptr, "; Constraint: %s", constraints);
}
else if( n_monte_carlo_impactors && monte_carlo)
sprintf( tt_ptr, "; %.2f%% impact (%d/%d)",
100. * (double)n_monte_carlo_impactors /
(double)monte_carlo_object_count,
n_monte_carlo_impactors, monte_carlo_object_count);
if( showing_sigmas)
if( !get_uncertainty( "sigma_Tp", sigma_buff + 4, false))
{
strcat( sigma_buff, " TT");
text_search_and_replace( buff, "TT", sigma_buff);
}
if( n_extra_params == 2 || n_extra_params == 3)
{
char tbuff0[40], sig_name[20];
int j;
strcat( tt_ptr, "\n");
tt_ptr += strlen( tt_ptr);
for( j = 0; j < n_extra_params; j++)
{
put_double_in_buff( tbuff0, solar_pressure[j]);
text_search_and_replace( tbuff0, " ", "");
strcat( tbuff0, " ");
sprintf( sig_name, "Sigma_A%d:", j + 1);
if( showing_sigmas)
if( !get_uncertainty( sig_name, sigma_buff + 4, false))
strcat( tbuff0, sigma_buff);
snprintf_append( tt_ptr, 180, "A%d: %s", j + 1, tbuff0);
if( j == n_extra_params - 1)
strcat( tt_ptr, " AU/day^2");
else
strcat( tt_ptr, (strlen( tt_ptr) > 50) ? "\n" : " ");
}
}
assert( strlen( buff) < sizeof( buff) - 1);
}
else if( !memcmp( buff, "Epoch", 5))
{
int j;
const double SRP1AU = 2.3e-7;
if( n_extra_params == 1)
{
sprintf( tt_ptr, "; AMR %.5g",
solar_pressure[0] * SOLAR_GM / SRP1AU);
if( showing_sigmas)
consider_replacing( tt_ptr, "AMR", "Sigma_AMR:");
strcat( tt_ptr, " m^2/kg");
}
if( !planet_orbiting)
for( j = 0; j < N_MOIDS_TO_SHOW; j++)
{
static const char moid_idx[N_MOIDS] = { 3, 5, 2, 1, 4, 6, 7, 8,
10, 11, 12, 13, 14, 15 };
double moid, moid_limit = .1;
ELEMENTS planet_elem;
const int forced_moid =
(atoi( get_environment_ptr( "MOIDS")) >> j) & 1;
setup_planet_elem( &planet_elem, moid_idx[j],
(epoch_shown - J2000) / 36525.);
moid = find_moid( &planet_elem, &helio_elem,
(j ? NULL : &barbee_style_delta_v));
if( j < 2) /* Earth or Jupiter */
moid_limit = 1.;
else if( j > 7) /* asteroid */
moid_limit = .1;
else if( j > 4) /* Saturn, Uranus, Neptune */
moid_limit = 1.;
moids[(int)moid_idx[j]] = moid;
if( forced_moid || moid < moid_limit)
{
char addendum[30];
static const char *moid_text[N_MOIDS] = { "Earth MOID", "Ju",
"Ve", "Me", "Ma", "Sa", "Ur", "Ne",
"Ce", "Pa", "Vt", "(29)", "(16)", "(15)" };
sprintf( addendum, " %s: %.4f", moid_text[j], moid);
if( strlen( addendum) + strlen( buff) < 79)
strcat( buff, addendum);
else
{
if( n_more_moids < 3)
strcat( more_moids, addendum);
n_more_moids++;
}
if( !j && moid < .5)
sprintf( orbit_summary_text + strlen( orbit_summary_text),
" MOID %.3f", moid);
}
}
reference_shown = show_reference( buff);
}
else if( *more_moids)
{
space_pad_buffer( buff, 33);
strcpy( buff + 33, more_moids);
*more_moids = '\0';
if( !reference_shown)
reference_shown = show_reference( buff);
}
else if( !reference_shown && *buff == 'M' && buff[1] != '(' &&
!available_sigmas &&
(options & ELEM_OUT_ALTERNATIVE_FORMAT))
{ /* no ref shown yet: try fitting on next */
buff[39] = '\0'; /* line, if using alternative format */
}
if( !(options & ELEM_OUT_ALTERNATIVE_FORMAT))
if( !memcmp( buff + 31, " G ", 3) && uncertainty_parameter < 90.)
{ /* replace slope w/uncertainty */
// sprintf( buff + 32, "U%7.3f ", uncertainty_parameter);
sprintf( buff + 32, "U%5.1f ", uncertainty_parameter);
buff[40] = ' ';
}
if( showing_sigmas)
{
if( i >= 4 && i <= 6) /* lines w/Peri., Node, & Incl. */
{
memmove( buff + 36, buff + 19, strlen( buff + 18));
memset( buff + 19, ' ', 36 - 19);
consider_replacing( buff, "Peri.", "sigma_omega");
consider_replacing( buff, "Node", "sigma_Omega");
consider_replacing( buff, "Incl.", "sigma_i");
remove_trailing_cr_lf( buff); /* also removes trailing spaces */
if( *buff == 'e')
consider_replacing( buff, "e", "sigma_e");
else if( *buff == 'a')
consider_replacing( buff, "a", "sigma_a:");
else if( *buff == 'n')
consider_replacing( buff, "n", "sigma_n:");
}
switch( buff[0])
{
case 'M':
if( buff[1] != '(') /* don't do this if the 'M' */
{ /* refers to a comet mag */
consider_replacing( buff, "M", "sigma_M");
if( !reference_shown)
reference_shown = show_reference( buff);
}
break;
case 'q':
consider_replacing( buff, "q", "sigma_q");
break;
case 'P':
{
char *zptr = strchr( buff, 'Q');
char tbuff[80];
if( zptr)
{
strcpy( tbuff, zptr);
consider_replacing( tbuff, "Q", "sigma_Q");
zptr[-1] = '\0';
}
else /* no aphelion given */
*tbuff = '\0';
zptr = strchr( buff, 'q');
if( zptr)
{
char phg_line[80]; /* contains P, H, G, sometimes U text */
zptr[-1] = '\0';
if( buff[32] == 'G' && buff[19] == 'H')
{
assert( zptr - buff == 43);
memcpy( phg_line, buff, 19);
memcpy( phg_line + 19, " H ", 10);
memcpy( phg_line + 29, buff + 23, 4); /* move H */
memcpy( phg_line + 33, " G ", 5);
memcpy( phg_line + 38, buff + 35, 5); /* move G */
phg_line[43] = '\0';
}
else
strcpy( phg_line, buff);
fprintf( ofile, "%s", phg_line);
if( uncertainty_parameter < 90.)
fprintf( ofile, " U%5.1f ", uncertainty_parameter);
if( available_sigmas == 2)
fprintf( ofile, "MC");
if( available_sigmas == 3)
fprintf( ofile, "SR");
fprintf( ofile, "\n");
memmove( buff, zptr, strlen( zptr) + 1);
consider_replacing( buff, "q", "sigma_q");
strcat( buff, " ");
strcat( buff, tbuff);
if( !reference_shown)
reference_shown = show_reference( buff);
}
}
break;
default:
break;
}
}
if( body_frame_note)
{
size_t j = strlen( buff);
if( j < 30)
{
while( j < 36)
buff[j++] = ' ';
strcpy( buff + j, body_frame_note);
body_frame_note = NULL;
}
else
{
j = 30;
while( buff[j] == ' ')
j++;
if( j >= 60) /* spaces to put the note in */
{
memcpy( buff + 36, body_frame_note, strlen( body_frame_note));
body_frame_note = NULL;
}
}
}
fprintf( ofile, "%s\n", buff);
tptr += strlen( tptr) + 1;
}
observation_summary_data( tbuff, obs, n_obs, options);
fprintf( ofile, "%s\n", tbuff);
if( elem.central_obj == 3 && elem.ecc < .99)
{
write_tle_from_vector( tbuff, rel_orbit, elem.epoch, NULL, NULL);
tbuff[69] = tbuff[140] = '\0';
fprintf( ofile, "# %s\n# %s\n", tbuff, tbuff + 71);
}
if( !(options & ELEM_OUT_NO_COMMENT_DATA))
{
double orb[6];
const bool is_ecliptic =
(atoi( get_environment_ptr( "VECTOR_OPTS")) != 0);
memcpy( orb, orbit2, 6 * sizeof( double));
if( !is_ecliptic)
{
ecliptic_to_equatorial( orb);
ecliptic_to_equatorial( orb + 3);
ecliptic_to_equatorial( rel_orbit);
ecliptic_to_equatorial( rel_orbit + 3);
}
fprintf( ofile, "# State vector (heliocentric %s J2000):\n",
is_ecliptic ? "ecliptic" : "equatorial");
fprintf( ofile, "# %+17.12f%+17.12f%+17.12f AU\n",
orb[0], orb[1], orb[2]);
fprintf( ofile, "# %+17.12f%+17.12f%+17.12f mAU/day\n",
orb[3] * 1000., orb[4] * 1000., orb[5] * 1000.);
if( planet_orbiting)
{
fprintf( ofile, "# State vector relative to central body:\n");
fprintf( ofile, "# %17.12f%17.12f%17.12f AU\n",
rel_orbit[0], rel_orbit[1], rel_orbit[2]);
fprintf( ofile, "# %17.12f%17.12f%17.12f mAU/day\n",
rel_orbit[3] * 1000., rel_orbit[4] * 1000., rel_orbit[5] * 1000.);
}
else /* for heliocentric orbits, show MOIDs: */
{
fprintf( ofile, "# MOIDs: Me%8.4f Ve%8.4f Ea%8.4f Ma%8.4f\n",
moids[1], moids[2], moids[3], moids[4]);
fprintf( ofile, "# MOIDs: Ju%8.4f Sa%8.4f Ur%8.4f Ne%8.4f\n",
moids[5], moids[6], moids[7], moids[8]);
}
}
if( monte_carlo)
{
if( !monte_carlo_object_count)
n_clones_accepted = 0;
if( rms_ok)
n_clones_accepted++;
}
monte_carlo_permits = (n_clones_accepted == 1 ? "fcwb" : "fcab");
if( monte_carlo && rms_ok)
{
FILE *ofile2 = fopen_ext( get_file_name( buff, "state.txt"), monte_carlo_permits);
if( ofile2)
{
fseek( ofile, 0L, SEEK_SET);
while( fgets( buff, sizeof( buff), ofile))
fwrite( buff, strlen( buff), 1, ofile2);
fclose( ofile2);
fseek( ofile, 0L, SEEK_END);
}
}
if( !(options & ELEM_OUT_NO_COMMENT_DATA))
{
const double jd = current_jd( );
int jpl_de_version;
full_ctime( buff, jd, CALENDAR_JULIAN_GREGORIAN);
fprintf( ofile, "# Elements written: %s (JD %f)\n", buff, jd);
make_date_range_text( buff, obs[0].jd, obs[n_obs - 1].jd);
fprintf( ofile, "# Full range of obs: %s (%d observations)\n",
buff, n_obs);
fprintf( ofile, "# Find_Orb ver: %s %s\n", __DATE__, __TIME__);
fprintf( ofile, "# Perturbers: %08lx ", (unsigned long)perturbers);
if( !perturbers)
fprintf( ofile, "(unperturbed orbit)");
else if( (perturbers & 0x3fe) == 0x3fe)
fprintf( ofile, (perturbers & 0x400) ? "(Merc-Pluto plus Luna)" :
"(Merc-Pluto, Earth & moon combined)");
else if( perturbers == 0x408)
fprintf( ofile, "(Sun/Earth/Moon)");
get_jpl_ephemeris_info( &jpl_de_version, NULL, NULL);
if( jpl_de_version)
fprintf( ofile, "; JPL DE-%d\n", jpl_de_version);
else
fprintf( ofile, "; not using JPL DE\n");
if( !elem.central_obj)
{
if( elem.ecc < 1.)
{
for( i = 0; i < 3; i++) /* show Tisserand data for Ear, Jup & Nep */
{ /* if orbits come close to overlapping */
const double semimajor_axes[3] = { 1., 5.2033, 30.069 };
const char *names[3] = { "Earth", "Jupiter", "Neptune" };
const double ratio = semimajor_axes[i] / helio_elem.major_axis;
const double tisserand = ratio
+ 2. * sqrt( (1. - helio_elem.ecc * helio_elem.ecc) / ratio)
* cos( helio_elem.incl);
const double aphelion = helio_elem.major_axis * 2. - helio_elem.q;
if( helio_elem.q < semimajor_axes[i] / .7 && aphelion > semimajor_axes[i] * .7)
fprintf( ofile, "# Tisserand relative to %s: %.5f\n",
names[i], tisserand);
}
}
if( helio_elem.q < 1.04)
fprintf( ofile, "# Earth encounter velocity %.4f km/s\n",
encounter_velocity( &helio_elem, 1.));
}
if( !elem.central_obj || elem.central_obj == -1)
if( elem.q < .15) /* for both helio & barycentric orbits */
{
double ecliptic_lat, ecliptic_lon;
get_periapsis_loc( &ecliptic_lon, &ecliptic_lat, &helio_elem);
fprintf( ofile, "# Perihelion (%.3f, %.3f)\n",
ecliptic_lon * 180. / PI, ecliptic_lat * 180. / PI);
}
if( barbee_style_delta_v && helio_elem.q < 1.3)
fprintf( ofile, "# Barbee-style encounter velocity: %.4f km/s\n",
barbee_style_delta_v);
if( elem.abs_mag && elem.is_asteroid)
{
const double diam = diameter_from_abs_mag( elem.abs_mag, .1);
fprintf( ofile, "# Diameter %.1f %s (assuming 10%% albedo)\n",
(diam > 10000. ? diam / 1000. : diam),
(diam > 10000. ? "km" : "meters"));
}
fprintf( ofile, "# Score: %f\n", evaluate_initial_orbit( obs, n_obs, orbit));
}
*impact_buff = '\0';
if( elem.central_obj < 15)
{
double latlon[2], t0;
const int is_an_impact = (obs->jd < elem.perih_time);
/* basically means, "if we */
/* observed the object after */
/* periapsis, must be a launch; */
/* otherwise, must be impact." */
ELEMENTS j2000_ecliptic_rel_elem = elem;
calc_classical_elements( &j2000_ecliptic_rel_elem,
j2000_ecliptic_rel_orbit, epoch_shown, 1);
t0 = find_collision_time( &j2000_ecliptic_rel_elem, latlon, is_an_impact);
if( t0 < 1.) /* t0 = 1 -> it was a miss after all */
{
char *end_ptr;
const double lon = latlon[0] * 180. / PI;
const double impact_time_td = elem.perih_time + t0;
const double impact_time_utc = impact_time_td -
td_minus_utc( impact_time_td) / seconds_per_day;
full_ctime( buff, impact_time_utc,
FULL_CTIME_HUNDREDTH_SEC | CALENDAR_JULIAN_GREGORIAN);
sprintf( impact_buff, " %s lat %+9.5f lon ", buff,
latlon[1] * 180. / PI);
end_ptr = impact_buff + strlen( impact_buff);
/* 0 < longitude < 360; for Earth, show this in */
/* "conventional" East/West 0-180 degree format: */
if( elem.central_obj == 3)
{
sprintf( end_ptr, "%c%.5f",
(lon < 180. ? 'E' : 'W'),
(lon < 180. ? lon : 360. - lon));
fprintf( ofile, "%s at %s\n", (is_an_impact ? "IMPACT" : "LAUNCH"),
impact_buff);
}
/* Then show in 0-360 format, for all other */
/* planets, and for output to file: */
sprintf( end_ptr, "%9.5f", lon);
if( elem.central_obj != 3)
fprintf( ofile, "%s at %s\n", (is_an_impact ? "IMPACT" : "LAUNCH"),
impact_buff);
}
}
if( *get_environment_ptr( "PLANET_STATES"))
{
fprintf( ofile, "# Planet states as of JD %.2f:\n", elem.epoch);
for( i = 1; i < 11; i++)
{
double loc[3], vel[3];
compute_observer_loc( elem.epoch, i, 0., 0., 0., loc);
compute_observer_vel( elem.epoch, i, 0., 0., 0., vel);
fprintf( ofile, "#%02d: %17.12f%17.12f%17.12f AU\n",
i, loc[0], loc[1], loc[2]);
fprintf( ofile, "# %17.12f%17.12f%17.12f mAU/day\n",
vel[0] * 1000., vel[1] * 1000., vel[2] * 1000.);
}
}
if( !(options & ELEM_OUT_NO_COMMENT_DATA))
{
char time_buff[40];
bool nongrav_sigmas_found = false;
sprintf( tbuff, "# $Name=%s", object_name);
text_search_and_replace( tbuff + 4, " ", "%20");
/* Epoch has to be given in YYYYMMDD.DDDDD format: */
full_ctime( time_buff, helio_elem.perih_time,
FULL_CTIME_YMD | FULL_CTIME_MONTHS_AS_DIGITS
| FULL_CTIME_MICRODAYS | FULL_CTIME_LEADING_ZEROES);
time_buff[4] = time_buff[7] = '\0';
sprintf( tbuff + strlen( tbuff), " $Ty=%s $Tm=%s $Td=%s",
time_buff, time_buff + 5, time_buff + 8);
sprintf( tbuff + strlen( tbuff), " $MA=%.5f",
centralize_ang( helio_elem.mean_anomaly) * 180. / PI);
fprintf( ofile, "%s\n", tbuff);
sprintf( tbuff, "# $ecc=%.7f $Eqnx=2000.", helio_elem.ecc);
fprintf( ofile, "%s\n", tbuff);
sprintf( tbuff, "# $a=%.7f $Peri=%.5f $Node=%.5f",
helio_elem.major_axis,
centralize_ang( helio_elem.arg_per) * 180. / PI,
centralize_ang( helio_elem.asc_node) * 180. / PI);
sprintf( tbuff + strlen( tbuff), " $Incl=%.5f",
helio_elem.incl * 180. / PI);
fprintf( ofile, "%s\n", tbuff);
sprintf( tbuff, "# $EpJD=%.3f $q=%.6f", helio_elem.epoch, helio_elem.q);
sprintf( tbuff + strlen( tbuff), " $T=%.6f $H=%.1f",
helio_elem.perih_time, helio_elem.abs_mag);
fprintf( ofile, "%s\n", tbuff);
fprintf( ofile, "# Sigmas avail: %d\n", available_sigmas);
for( i = 1; i <= 3; i++)
{
char key[20], obuff[50];
sprintf( key, "Sigma_A%d:", i);
if( !get_uncertainty( key, obuff, false))
{
fprintf( ofile, (nongrav_sigmas_found ? " %s %s" : "# %s %s"),
key, obuff);
nongrav_sigmas_found = true;
}
}
if( nongrav_sigmas_found)
fprintf( ofile, "\n");
}
fclose( ofile);
/* Return value indicates probable trouble if the eccentricity */
/* is greater than 1.2 for an heliocentric orbit. If that happens, */
/* the orbital elements ought to be shown in, say, flashing red. */
bad_elements = ( helio_elem.ecc < 1.2 || helio_elem.central_obj ? 0 : -1);
if( helio_elem.q > 90.)
bad_elements |= 2;
/* Also, write out elements in MPCORB-like format: */
if( helio_elem.ecc < .999999)
{
const char *output_filename = (*elements_filename == 's' ?
"mpc_sr.txt" : mpc_fmt_filename);
ofile = fopen_ext( get_file_name( tbuff, output_filename), file_permits);
elements_in_mpcorb_format( tbuff, obs->packed_id, object_name,
&helio_elem, obs, n_obs);
fprintf( ofile, "%s\n", tbuff);
fclose( ofile);
}
if( monte_carlo)
monte_carlo_object_count++;
if( monte_carlo && rms_ok)
{
const char *element_filename = get_environment_ptr( "MONTE_CARLO");
char name_buff[48], virtual_full_desig[40];
if( !*element_filename)
element_filename = "mpcorb.dat";
if( *impact_buff)
n_monte_carlo_impactors++;
sprintf( name_buff, "%05d", n_clones_accepted);
packed_desig_minus_spaces( virtual_full_desig, obs->packed_id);
sprintf( virtual_full_desig + strlen( virtual_full_desig), " [%d]",
monte_carlo_object_count);
if( elem.central_obj || elem.ecc > .999999)
{
ofile = fopen_ext( get_file_name( tbuff, "virtual.txt"), monte_carlo_permits);
elements_in_guide_format( tbuff, &elem, virtual_full_desig, obs, n_obs);
fprintf( ofile, "%s%s\n", tbuff, impact_buff);
fclose( ofile);
}
if( helio_elem.ecc < .999999)
{
ofile = fopen_ext( get_file_name( tbuff, element_filename), monte_carlo_permits);
if( !strcmp( monte_carlo_permits, "wb"))
{ /* new file = write out a header for it */
FILE *ifile = fopen_ext( "mpcorb.hdr", "fcrb");
time_t t0 = time( NULL);
fprintf( ofile, "Monte Carlo orbits from Find_Orb\nComputed %s", ctime( &t0));
fprintf( ofile, "Find_Orb version %s %s\n", __DATE__, __TIME__);
fprintf( ofile, (using_sr ? "Statistical Ranging\n" : "Full Monte Carlo\n"));
if( ifile)
{
while( fgets( tbuff, 80 * 9, ifile))
fputs( tbuff, ofile);
fclose( ifile);
}
}
elements_in_mpcorb_format( tbuff, name_buff, virtual_full_desig,
&helio_elem, obs, n_obs);
fprintf( ofile, "%s%s\n", tbuff, impact_buff);
fclose( ofile);
}
// if( helio_elem.ecc > 2. || helio_elem.q > 90.)
// set_statistical_ranging( 1);
}
if( (ofile = fopen_ext( get_file_name( tbuff, "guide.txt"), "fcwb")) != NULL)
{
elements_in_guide_format( tbuff, &elem, object_name, obs, n_obs);
fprintf( ofile, "%s%s\n", tbuff, impact_buff);
fclose( ofile);
}
free( tbuff);
return( bad_elements);
}
void shellsort_r( void *base, const size_t n_elements, const size_t esize,
int (*compare)(const void *, const void *, void *), void *context);
int string_compare_for_sort( const void *a, const void *b, void *context)
{
const char **a1 = (const char **)a;
const char **b1 = (const char **)b;
int *sort_column = (int *)context;
if( *sort_column == -11)
return( names_compare( a1[0] + 11, b1[0] + 11));
return( strcmp( a1[0] + *sort_column, b1[0] + *sort_column));
}
static const char *vector_data_file = "vectors.dat";
/* For each object, we'd like to know if a solution has already been
computed for it and stored as a state vector in 'vectors.dat'. The state
vectors are stored as sets of three lines, in no particular order. We
_could_ (and used to) just read in three lines at a time, then hunt
through all the OBJECT_INFO structures looking for a matching name. The
problem is that if you have millions of objects (as happens with the
entire set of one-night stands, for example) and thousands of stored
vectors, you're doing billions of compares. So instead, we load up
the state vector file and sort it by object name. Now that it's sorted
instead of in its default semi-random order, we can do a binary search.
*/
void set_solutions_found( OBJECT_INFO *ids, const int n_ids)
{
size_t n_lines;
char **ilines = load_file_into_memory( vector_data_file, &n_lines);
int i;
for( i = 0; i < n_ids; i++)
ids[i].solution_exists = 0;
if( ilines)
{
int sort_column = -11;
assert( n_lines % 3 == 0);
n_lines /= 3; /* three lines in 'vectors.dat' for each set of elems */
shellsort_r( ilines, n_lines, 3 * sizeof( char *),
string_compare_for_sort, &sort_column);
for( i = 0; i < n_ids; i++)
{
size_t loc = 0, loc1, step;
for( step = 0x80000000; step; step >>= 1)
if( (loc1 = loc + step) < n_lines)
{
const int compare = names_compare( ilines[loc1 * 3] + 11, ids[i].obj_name);
if( compare < 0)
loc = loc1;
if( !compare)
ids[i].solution_exists = 1;
}
}
free( ilines);
}
}
/* Can get some comet elements from
http://ssd.jpl.nasa.gov/dat/ELEMENTS.COMET
This is especially helpful for pre-2008 SOHO objects. Without
ELEMENTS.COMET, Find_Orb can sometimes flounder about a bit in its
efforts to determine an orbit. */
static int get_orbit_from_dastcom( const char *object_name, double *orbit, double *epoch)
{
FILE *ifile = fopen_ext( "ELEMENTS.COMET", "crb");
int got_vectors = 0;
if( ifile)
{
char buff[200];
while( !got_vectors && fgets_trimmed( buff, sizeof( buff), ifile))
{
char *loc;
buff[45] = buff[119] = '\0';
if( (loc = strstr( buff, object_name)) != NULL &&
loc[strlen( object_name)] == ' ')
{
ELEMENTS elem;
memset( &elem, 0, sizeof( ELEMENTS));
elem.q = atof( buff + 51);
elem.epoch = *epoch = atof( buff + 46) + 2400000.5;
elem.ecc = atof( buff + 64);
elem.incl = atof( buff + 75) * PI / 180.;
elem.arg_per = atof( buff + 85) * PI / 180.;
elem.asc_node = atof( buff + 95) * PI / 180.;
elem.perih_time = get_time_from_string( 0., buff + 105, 0, NULL);
derive_quantities( &elem, SOLAR_GM);
comet_posn_and_vel( &elem, elem.epoch, orbit, orbit + 3);
got_vectors = 1;
if( elem.ecc == 1.) /* indicate parabolic-constraint orbit */
got_vectors = 2;
}
}
fclose( ifile);
}
return( got_vectors);
}
/* The following ensures that names starting with the same international
artsat designations compare as equal, even if they diverge in irrelevant
ways after that. For example, 2013-024B = NORAD 39169 = WGS 5 Rk would
compare as equal to 2013-024B or with 2013-024B = NORAD 39169. */
static int names_compare( const char *name1, const char *name2)
{
if( name1[4] == '-' && name1[9] == ' ')
{
unsigned mask = 0, i;
for( i = 0; i < 9 && name1[i]; i++)
if( name1[i] >= '0' && name1[i] <= '9')
mask |= (1u << i);
if( mask == 0xef)
if( !memcmp( name1, name2, 9))
return( 0);
}
return( strcmp( name1, name2));
}
int ignore_prev_solns;
bool take_first_soln = false;
static int fetch_previous_solution( OBSERVE *obs, const int n_obs, double *orbit,
double *orbit_epoch, unsigned *perturbers)
{
FILE *ifile = (ignore_prev_solns ? NULL : fopen_ext( vector_data_file, "crb"));
int got_vectors = 0, i;
extern int n_extra_params;
extern double solar_pressure[];
char object_name[80];
get_object_name( object_name, obs->packed_id);
for( i = 0; i < MAX_N_NONGRAV_PARAMS; i++)
solar_pressure[i] = 0.;
n_extra_params = 0;
if( ifile)
{
char buff[120];
double jd1 = 0., jd2 = 0.;
double residual_filter_threshhold = 0.;
while( fgets_trimmed( buff, sizeof( buff), ifile))
// if( !FMEMCMP( object_name, buff + 11, FSTRLEN( object_name)))
// if( buff[ FSTRLEN( object_name) + 11] < ' ' && *buff == ' ')
if( !names_compare( object_name, buff + 11) || (take_first_soln && !got_vectors))
{
int n_read;
got_vectors = 1;
*orbit_epoch = atof( buff);
*perturbers = 0;
fgets_trimmed( buff, sizeof( buff), ifile);
for( i = 0; i < MAX_N_NONGRAV_PARAMS; i++)
solar_pressure[i] = 0.;
n_read = sscanf( buff, "%lf%lf%lf%x%lf %lf %lf",
&orbit[0], &orbit[1], &orbit[2], perturbers,
solar_pressure,
solar_pressure + 1,
solar_pressure + 2);
assert( n_read >= 3 && n_read < 8);
n_extra_params = n_read - 4;
if( n_extra_params < 0)
n_extra_params = 0;
fgets_trimmed( buff, sizeof( buff), ifile);
sscanf( buff, "%lf%lf%lf%lf%lf%lf",
orbit + 3, orbit + 4, orbit + 5,
&residual_filter_threshhold, &jd1, &jd2);
for( i = 3; i < 6; i++)
orbit[i] /= 1000.;
for( i = 0; i < n_obs; i++)
{
obs[i].computed_ra = obs[i].ra;
obs[i].computed_dec = obs[i].dec;
}
}
if( got_vectors)
{
set_locs( orbit, *orbit_epoch, obs, n_obs);
if( jd2)
{
for( i = 0; i < n_obs; i++)
if( obs[i].jd < jd1 - .00001 || obs[i].jd > jd2 + .00001)
obs[i].is_included = 0;
else
if( residual_filter_threshhold &&
observation_rms( obs + i) > residual_filter_threshhold)
obs[i].is_included = 0;
}
}
fclose( ifile);
}
if( !got_vectors && !ignore_prev_solns)
{
got_vectors = get_orbit_from_dastcom( object_name, orbit, orbit_epoch);
if( got_vectors)
set_locs( orbit, *orbit_epoch, obs, n_obs);
}
if( !got_vectors)
{
perturbers = 0;
*orbit_epoch = initial_orbit( obs, n_obs, orbit);
}
return( got_vectors);
}
double find_epoch_shown( const OBSERVE *obs, const int n_obs)
{
int first, last;
double rval;
get_first_and_last_included_obs( obs, n_obs, &first, &last);
if( !last) /* no observations included; shouldn't actually happen */
rval = floor( (obs[first].jd + obs[last].jd) / 2.) + .5;
else
{
rval = floor( obs[last].jd) + .5;
if( rval > obs[last].jd)
if( rval - obs[last].jd > obs[first].jd - (rval - 1.))
rval--;
}
return( rval);
}
/* When solving orbits for objects orbiting very near to Jupiter and
Saturn, Find_Orb will default to including perturbations from the
satellites of those planets. That can be a problem if the object
in question _is_ a satellite of that planet; when computing an
orbit for, say, Callisto, you don't really want to include
perturbations from Callisto. Only the other three Galileans ought
to be considered in that case. (If you _do_ attempt to include
"perturbations by Callisto on Callisto", you ought to get a
divide-by-zero error. In practice, you just get wacky results.)
The following function looks at a packed designation and tells
you which perturber it is. It returns -1 in the (usual) case
that you're not solving for the orbit of an inner satellite that
also happens to be a perturbing body in Find_Orb. */
static int obj_desig_to_perturber( const char *packed_desig)
{
int rval = -1, i;
extern unsigned excluded_perturbers;
extern double object_mass;
const char *outer_planets[11] = { " ",
" Mercury",
" Venus ",
" Earth ",
" Mars ",
" Jupiter",
" Saturn ",
" Uranus ",
" Neptune",
" Pluto ", NULL };
/* The EXCLUDED environment variable provides a way */
/* to specifically exclude some perturbers, either */
/* to speed things up or for debugging purposes. */
sscanf( get_environment_ptr( "EXCLUDED"), "%x", &excluded_perturbers);
if( excluded_perturbers == (unsigned)-1)
excluded_perturbers = 0;
// excluded_perturbers |= 512; /* Pluto is _always_ excluded */
if( !memcmp( packed_desig + 4, "S ", 5) && packed_desig[1] == '0'
&& packed_desig[2] == '0')
{
if( *packed_desig == 'J')
{
if( packed_desig[3] >= '1' && packed_desig[3] <= '4')
rval = 11 + packed_desig[3] - '1'; /* Io..Callisto = 11..14 */
}
else if( *packed_desig == 'S')
{
if( packed_desig[3] >= '3' && packed_desig[3] <= '6')
rval = 15 + packed_desig[3] - '3'; /* Tethys...Titan = 15..18 */
else if( packed_desig[3] == '8')
rval = 19; /* Iapetus */
}
else if( *packed_desig == 'E' && packed_desig[3] == '1')
rval = 10; /* Earth's moon */
}
if( rval > 0)
excluded_perturbers |= (1 << rval);
object_mass = 0.;
for( i = 1; outer_planets[i]; i++)
if( !strcmp( packed_desig, outer_planets[i]))
{
rval = i;
excluded_perturbers |= (1 << rval);
if( rval == 6) /* also exclude five Saturn sats */
excluded_perturbers |= (0x1f << 15);
if( rval == 5) /* also exclude four (Galilean) Jupiter sats */
excluded_perturbers |= (0xf << 11);
object_mass = get_planet_mass( rval) / SOLAR_GM;
debug_printf( "Excluded: %d (%x)\n", rval, excluded_perturbers);
}
// debug_printf( "Packed desig: '%s'\n", packed_desig);
return( rval);
}
OBSERVE FAR *load_object( FILE *ifile, OBJECT_INFO *id,
double *curr_epoch, double *epoch_shown, double *orbit)
{
extern int n_obs_actually_loaded;
extern int debug_level;
extern unsigned perturbers;
extern int excluded_asteroid_number;
OBSERVE FAR *obs = load_observations( ifile, id->packed_desig,
id->n_obs);
if( debug_level || n_obs_actually_loaded != id->n_obs)
{
char buff[80];
debug_printf( " %d observations loaded\n", n_obs_actually_loaded);
make_date_range_text( buff, obs[0].jd,
obs[n_obs_actually_loaded - 1].jd);
id->n_obs = n_obs_actually_loaded;
debug_printf( "%s\n", buff);
}
obj_desig_to_perturber( id->packed_desig);
if( id->obj_name[0] == '(') /* numbered asteroid: shouldn't perturb */
excluded_asteroid_number = atoi( id->obj_name + 1); /* itself */
else
excluded_asteroid_number = 0;
if( n_obs_actually_loaded > 0)
{
const int got_vector = fetch_previous_solution( obs, id->n_obs, orbit,
curr_epoch, &perturbers);
*epoch_shown = *curr_epoch;
if( got_vector <= 0)
*epoch_shown = find_epoch_shown( obs, id->n_obs);
}
else /* indicate failure */
*epoch_shown = *curr_epoch = 0.;
return( obs);
}
double observation_rms( const OBSERVE FAR *obs); /* elem_out.cpp */
int store_solution( const OBSERVE *obs, const int n_obs, const double *orbit,
const double orbit_epoch, const int perturbers)
{
FILE *ofile = fopen_ext( vector_data_file, "fcab");
if( ofile)
{
char buff[80];
int i, j, k;
double max_resid_included_obs = 0.;
get_object_name( buff, obs->packed_id);
fprintf( ofile, "%10.1f %s\n", orbit_epoch, buff);
for( i = 0; i < 3; i++)
fprintf( ofile, "%21.16f", orbit[i]);
if( perturbers)
{
extern int n_extra_params;
fprintf( ofile, " %04x", perturbers);
if( n_extra_params)
{
extern double solar_pressure[];
for( i = 0; i < n_extra_params; i++)
fprintf( ofile, " %.9g", solar_pressure[i]);
}
}
get_first_and_last_included_obs( obs, n_obs, &i, &j);
for( k = i; k <= j; k++)
{
const double resid = observation_rms( obs + k);
if( obs[k].is_included && max_resid_included_obs < resid)
max_resid_included_obs = resid;
}
fprintf( ofile, "\n%21.16f%21.16f%21.16f %.3f %.5f %.5f\n",
orbit[3] * 1000., orbit[4] * 1000., orbit[5] * 1000.,
max_resid_included_obs + .001, obs[i].jd, obs[j].jd);
fclose( ofile);
}
return( ofile ? 0 : -1);
}
#define LOG_10 2.3025850929940456840179914546843642076011014886287729760333279009675726
double calc_obs_magnitude( const double obj_sun,
const double obj_earth, const double earth_sun, double *phase_ang)
{
double rval;
double ph_ang = obj_sun * obj_sun +
obj_earth * obj_earth - earth_sun * earth_sun;
ph_ang /= 2. * obj_earth * obj_sun;
ph_ang = acose( ph_ang);
if( phase_ang)
*phase_ang = ph_ang;
if( object_type == OBJECT_TYPE_COMET)
rval = comet_magnitude_slope_param * log( obj_sun);
else
{
double phi1, phi2, log_tan_half_phase;
log_tan_half_phase = log( sin( ph_ang / 2.) / cos( ph_ang / 2.));
phi1 = exp( -3.33 * exp( log_tan_half_phase * 0.63));
phi2 = exp( -1.87 * exp( log_tan_half_phase * 1.22));
rval = 5. * log( obj_sun) - 2.5 *
log( (1. - asteroid_magnitude_slope_param) * phi1
+ asteroid_magnitude_slope_param * phi2);
}
rval += 5. * log( obj_earth);
rval /= LOG_10; /* allow for common logs, not naturals */
return( rval);
}
/* The following function, as the comment indicates, assumes that
a "no band" case (obs->mag_band == ' ') must be an R mag. That's
probably the best guess for most modern CCD observations. MPC
assumes a B (photographic) magnitude, which is probably the best
guess for older observations. I suppose one would ideally look at
the second 'note' which is C for CCD observations and P for
photographic observations. The code could then assume a default of
R for CCD obs, B for photographic, and V for the admittedly rare
micrometer or encoder-based observations.
It may be more accurate to infer a mag_band code based on the catalog
being used: 'r' for any of the UCACs, 'G' for Gaia, 'V' for GSC-1.x
for declinations north of +3 and 'R' south of that, etc. The idea
is that if you used UCAC magnitudes for calibration, you're reporting
an 'r' magnitude, no matter what filter you had. Problems are cases
where the photometry was done with a different catalog than the astrometry;
or the catalog had multiple magnitude bands (Ax.0, B1.0); or tricky
things were done to "adjust" the magnitudes to a different band, using
either 2MASS colors to estimate a color correction or just ass uming
an average color correction.
'C' ('clear', 'unfiltered') magnitudes are something of a problem.
They never really should have existed. As described above, the key
thing isn't what filter you use (though that's a nice thing to
know); it's what sort of reference photometry you used. At
present, I'm treating 'C' magnitudes as close enough to 'R' or
'blank'. (I perhaps should treat them as 'probably wrong' and give
them minimal or no weight in the computation of H values.)
Estimates for the mag band shifts in R, B, I, and U are from a post by
Petr Pravec, http://tech.groups.yahoo.com/group/mpml/message/24833,
in turn derived from data in Shevchenko and Lupishko, Solar System
Research 32, 220-232, 1998 :
http://www.asu.cas.cz/~ppravec/ShevchenkoandLupishko1998.pdf
grizyw (Sloan magnitudes) come from table 1, p. 360, 2013 April,
Publications of the Astro Soc of Pacific, 2013 PASP, 125:357-395,
Denneau et. al., 'The Pan-STARRS Moving Object Process System'
2017 Jul 11: David Tholen found V-G=0.28 (private communication at
present, will give a "proper" reference once it's published...
also provides V-G as quadratic functions of V-I or V-R, which
should be handy in other contexts) */
double mag_band_shift( const char mag_band)
{
double rval = 0.;
const char *bands = "R BIUCgrizywG";
const double offsets[] = { .43, .43,
/* R and 'no band' are treated alike */
-.77, .82, -1.16, .4, /* B, I, U, C */
-0.28, 0.23, 0.39, 0.37, 0.36, 0.16, /* grizyw */
0.28 }; /* G */
const char *tptr = strchr( bands, mag_band);
if( tptr)
rval = offsets[tptr - bands];
return( rval);
}
double calc_absolute_magnitude( OBSERVE FAR *obs, int n_obs)
{
int obs_no;
double n_mags = 0.;
double rval = 0.;
for( obs_no = 0; obs_no < n_obs; obs_no++)
{
obs->computed_mag = 0.;
if( obs->r && obs->solar_r)
{
const double earth_sun = vector3_length( obs->obs_posn);
if( earth_sun)
{
bool use_obs = true;
if( object_type == OBJECT_TYPE_COMET
&& obs->mag_band != default_comet_magnitude_type)
use_obs = false;
if( obs->obs_mag == BLANK_MAG || !obs->is_included)
use_obs = false;
obs->computed_mag = calc_obs_magnitude(
obs->solar_r, obs->r, earth_sun, NULL) - mag_band_shift( obs->mag_band);
if( use_obs)
{
rval += (obs->obs_mag - obs->computed_mag) / obs->mag_sigma;
n_mags += 1. / obs->mag_sigma;
}
}
}
obs++;
}
if( n_mags)
rval /= n_mags;
obs -= n_obs;
for( obs_no = 0; obs_no < n_obs; obs_no++, obs++)
if( n_mags)
obs->computed_mag += rval;
else
obs->computed_mag = 0.;
return( rval);
}
int find_worst_observation( const OBSERVE FAR *obs, const int n_obs)
{
int i, rval = -1;
double worst_rms = 0., rms;
for( i = 0; i < n_obs; i++, obs++)
if( obs->is_included)
{
rms = compute_rms( obs, 1);
if( rms > worst_rms)
{
worst_rms = rms;
rval = i;
}
}
return( rval);
}
/* If you've got n_obs observations stored in the obs array, the
get_idx1_and_idx2( ) function will puzzle through them to find the first
and last valid observation (those that haven't had their 'is_included'
flags set to FALSE), and will store the indices to them in *idx1 and
*idx2. These are shown near the top of the display, and are used in
the method of Herget. Return value is the number of included obs. */
int get_idx1_and_idx2( const int n_obs, const OBSERVE FAR *obs,
int *idx1, int *idx2)
{
int i, rval = 0;
for( i = 0; i < n_obs && (!obs[i].is_included || !obs[i].r); i++)
;
if( i == n_obs)
*idx1 = *idx2 = 0;
else
{
*idx1 = i;
for( ; i < n_obs; i++)
if( obs[i].is_included && obs[i].r)
rval++;
for( i = n_obs - 1; i && (!obs[i].is_included || !obs[i].r); i--)
;
*idx2 = i;
}
return( rval);
}
int get_r1_and_r2( const int n_obs, const OBSERVE FAR *obs,
double *r1, double *r2)
{
int idx1, idx2, rval = get_idx1_and_idx2( n_obs, obs, &idx1, &idx2);
if( !rval)
*r1 = *r2 = 0.;
else
{
*r1 = obs[idx1].r;
*r2 = obs[idx2].r;
}
return( rval);
}
extern char default_comet_magnitude_type;
extern double probability_of_blunder;
extern double overobserving_time_span;
extern unsigned overobserving_ceiling;
extern int use_blunder_method;
extern bool use_sigmas;
extern double ephemeris_mag_limit;
extern int apply_debiasing;
extern int sigmas_in_columns_57_to_65;
int store_defaults( const int ephemeris_output_options,
const int element_format, const int element_precision,
const double max_residual_for_filtering,
const double noise_in_arcseconds)
{
char buff[150];
sprintf( buff, "%c,%d,%d,%d,%f,%f",
default_comet_magnitude_type,
element_format, element_precision,
ephemeris_output_options,
max_residual_for_filtering, noise_in_arcseconds);
set_environment_ptr( "SETTINGS", buff);
sprintf( buff, "%.3f %f %u %d", probability_of_blunder * 100.,
overobserving_time_span,
overobserving_ceiling,
use_blunder_method);
set_environment_ptr( "FILTERING", buff);
sprintf( buff, "%d %.2f %d %d %d", use_sigmas ? 1 : 0,
ephemeris_mag_limit,
sigmas_in_columns_57_to_65,
forced_central_body,
apply_debiasing);
set_environment_ptr( "SETTINGS2", buff);
return( 0);
}
int get_defaults( int *ephemeris_output_options, int *element_format,
int *element_precision, double *max_residual_for_filtering,
double *noise_in_arcseconds)
{
int unused_ephemeris_output_options;
int unused_element_format;
int unused_element_precision;
double unused_max_residual_for_filtering;
double unused_noise_in_arcseconds;
const char *language = get_environment_ptr( "LANGUAGE");
static char month_names[12][17];
extern double minimum_jd, maximum_jd;
extern double maximum_observation_span;
extern int use_config_directory;
extern double *sr_orbits;
extern unsigned max_n_sr_orbits;
int i, use_sigmas_int;
const char *override_fcct14_filename = get_environment_ptr( "FCCT14_FILE");
if( *language)
findorb_language = *language;
if( *override_fcct14_filename)
{
extern const char *fcct14_bias_file_name;
fcct14_bias_file_name = override_fcct14_filename;
}
reset_td_minus_dt_string( get_environment_ptr( "DELTA_T"));
for( i = 0; i < 12; i++)
{ /* create abbreviated month names */
char tbuff[100], *tptr;
strcpy( tbuff, get_find_orb_text( i + 1000));
tptr = (char *)find_nth_utf8_char( tbuff, 3);
*tptr = '\0'; /* truncate month name at third char */
assert( strlen( tbuff) < 16);
strcpy( month_names[i], tbuff);
set_month_name( i + 1, month_names[i]);
}
sscanf( get_environment_ptr( "MAX_OBSERVATION_SPAN"), "%lf",
&maximum_observation_span);
if( !ephemeris_output_options)
ephemeris_output_options = &unused_ephemeris_output_options;
if( !element_format)
element_format = &unused_element_format;
if( !element_precision)
element_precision = &unused_element_precision;
if( !max_residual_for_filtering)
max_residual_for_filtering = &unused_max_residual_for_filtering;
if( !noise_in_arcseconds)
noise_in_arcseconds = &unused_noise_in_arcseconds;
if( sscanf( get_environment_ptr( "TIME_RANGE"), "%lf,%lf",
&minimum_jd, &maximum_jd) == 2)
{
minimum_jd = YEAR_TO_JD( minimum_jd);
maximum_jd = YEAR_TO_JD( maximum_jd);
}
*ephemeris_output_options = 0;
sscanf( get_environment_ptr( "SETTINGS"), "%c,%d,%d,%d,%lf,%lf",
&default_comet_magnitude_type,
element_format, element_precision,
ephemeris_output_options,
max_residual_for_filtering, noise_in_arcseconds);
sscanf( get_environment_ptr( "FILTERING"), "%lf %lf %u %d",
&probability_of_blunder,
&overobserving_time_span,
&overobserving_ceiling,
&use_blunder_method);
probability_of_blunder /= 100.; /* cvt from percent to raw prob */
sscanf( get_environment_ptr( "SETTINGS2"), "%d %lf %d %d %d",
&use_sigmas_int, &ephemeris_mag_limit,
&sigmas_in_columns_57_to_65, &forced_central_body,
&apply_debiasing);
use_sigmas = (use_sigmas_int ? true : false);
if( *get_environment_ptr( "COMBINE_ALL"))
{
extern int combine_all_observations;
combine_all_observations = 1;
}
if( use_config_directory)
{
char cospar_name[255];
make_config_dir_name( cospar_name, "cospar.txt");
load_cospar_file( cospar_name);
}
max_n_sr_orbits = atoi( get_environment_ptr( "MAX_SR_ORBITS"));
if( !max_n_sr_orbits)
max_n_sr_orbits = 500;
sr_orbits = (double *)calloc( (size_t)max_n_sr_orbits, 7 * sizeof( double));
assert( sr_orbits);
return( 0);
}
/* The following functions are used to "color" observations in the
console versions of Find_Orb. The idea resembles that of the
four-color map problem, except in this case, we'd like to show
observations in max_n_colors, such that adjacent observations from
different MPC codes show up in different colors. You can't always do
this. For example, with observations from eight observatories,
mixed up so that each "pair" occurs, you'd obviously need eight
different colors. This code just tries a lot of possible colorings
and returns the one resulting in the fewest mismatches.
To do this, it uses an "annealing" sort of algorithm: it first
sets the color for each MPC observatory at random (a value from zero
to max_n_colors - 1). It then uses the improve_mpc_colors() to get
a better solution; that function can make "obvious" improvements,
such as "if we change this MPC code to red, there will be fewer
mismatches". If the result has no mismatches, we're home free and
stop looking for a "better" solution. Otherwise, we set a new set
of random colors and try to improve that... and repeat the procedure
for up to two seconds; it's probably not worth spending much more time
on it than that.
There are other ways to do this, of course, including a formal
pruned tree search among all possible color combinations. But this
appears to work quite well, and I thought it would result in simpler
code. (I'm no longer so sure of that. But I don't think I'll spend
the time to write a tree search version.)
*/
#define NO_MPC_COLOR_SET -1
int find_mpc_color( const MPC_STATION *sdata, const char *mpc_code)
{
int rval = NO_MPC_COLOR_SET;
if( !mpc_code) /* indicates 'just count colors */
{
rval = 0;
while( sdata[rval].code[0])
rval++;
}
else while( rval == NO_MPC_COLOR_SET && sdata->code[0])
{
if( mpc_code[0] == sdata->code[0] &&
mpc_code[1] == sdata->code[1] &&
mpc_code[2] == sdata->code[2])
rval = sdata->color;
sdata++;
}
return( rval);
}
static void set_mpc_colors_semirandomly( MPC_STATION *sdata,
const int max_n_colors, unsigned long seed)
{
srand( seed);
while( sdata->code[0])
{
sdata->color = (char)( rand( ) % (unsigned long)max_n_colors);
sdata++;
}
}
/* After setting the colors at random, we look for "simple" improvements:
for each MPC code, we check the adjacent observations with different
MPC codes, and see what colors they have. We might see that (say)
there are four red neighbors, three green, and one blue. In that case,
changing the color of the current MPC code to blue would result in only
one problem case, instead of three or four. (Ideally, we'll find that
there are _no_ blue neighbors, of course.)
We keep trying this until no color changes are made.
*/
static void improve_mpc_colors( const int n_obs, const OBSERVE FAR *obs,
const int max_n_colors, MPC_STATION *sdata)
{
int i, changes_made = 1, n_iterations = 0;
while( changes_made)
{
changes_made = 0;
for( i = 0; sdata[i].code[0]; i++)
{
int counts[20], j, color = sdata[i].color;
assert( color >=0 && color < max_n_colors);
for( j = 0; j < max_n_colors; j++)
counts[j] = 0;
for( j = 0; j < n_obs; j++)
if( !strcmp( obs[j].mpc_code, sdata[i].code))
{
if( j > 0 && strcmp( obs[j - 1].mpc_code, sdata[i].code))
{
const int adjacent_color =
find_mpc_color( sdata, obs[j - 1].mpc_code);
assert( adjacent_color >=0 && adjacent_color < max_n_colors);
counts[adjacent_color]++;
}
if( j < n_obs - 1 && strcmp( obs[j + 1].mpc_code, sdata[i].code))
{
const int adjacent_color =
find_mpc_color( sdata, obs[j + 1].mpc_code);
assert( adjacent_color >=0 && adjacent_color < max_n_colors);
counts[adjacent_color]++;
}
}
for( j = 0; j < max_n_colors; j++)
if( counts[j] < counts[color])
{
color = j;
sdata[i].color = (char)color;
changes_made = 1;
}
assert( color >=0 && color < max_n_colors);
}
n_iterations++;
assert( n_iterations < 10);
}
}
extern int debug_level;
MPC_STATION *find_mpc_color_codes( const int n_obs, const OBSERVE FAR *obs,
const int max_n_colors)
{
int n_codes = 0, i, j, n_alloced = 10;
int best_score = 99999, best_seed = 0;
clock_t t0;
MPC_STATION *rval =
(MPC_STATION *)calloc( n_alloced + 1, sizeof( MPC_STATION));
for( i = 0; i < n_obs; i++)
if( find_mpc_color( rval, obs[i].mpc_code) == NO_MPC_COLOR_SET)
{
int loc = 0;
if( n_codes == n_alloced)
{
const int new_size = n_alloced * 2;
MPC_STATION *new_array =
(MPC_STATION *)calloc( new_size + 1, sizeof( MPC_STATION));
memcpy( new_array, rval, n_alloced * sizeof( MPC_STATION));
n_alloced = new_size;
free( rval);
rval = new_array;
}
for( loc = 0; loc < n_codes
&& strcmp( rval[loc].code, obs[i].mpc_code) < 0; loc++)
;
/* move the rest of the array forward... */
memmove( rval + loc + 1, rval + loc,
(n_codes - loc) * sizeof( MPC_STATION));
/* ...so we can copy in the new code: */
strcpy( rval[loc].code, obs[i].mpc_code);
n_codes++;
}
if( debug_level)
{
debug_printf( "%d obs, %d codes\n", n_obs, n_codes);
for( i = 0; i < n_codes; i++)
debug_printf( "%d: '%s'\n", i, rval[i].code);
}
t0 = clock( );
for( i = 1; best_score && clock( ) < t0 + 2 * CLOCKS_PER_SEC; i++)
{
int score = 0;
set_mpc_colors_semirandomly( rval, max_n_colors, (unsigned long)i);
improve_mpc_colors( n_obs, obs, max_n_colors, rval);
for( j = 0; j < n_obs - 1; j++)
if( strcmp( obs[j].mpc_code, obs[j + 1].mpc_code))
if( find_mpc_color( rval, obs[j].mpc_code) ==
find_mpc_color( rval, obs[j + 1].mpc_code))
score++;
if( score < best_score) /* "lower" is "better" */
{
best_score = score;
best_seed = i;
}
if( debug_level > 1 && (i < 10 || !(i % 100)))
debug_printf( "Seed: %d, score %d, best %d\n", i, score, best_score);
}
if( debug_level)
debug_printf( "Color setting: best score %d, i = %d\n", best_score, i);
set_mpc_colors_semirandomly( rval, max_n_colors, (unsigned long)best_seed);
improve_mpc_colors( n_obs, obs, max_n_colors, rval);
return( rval);
}
|