1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
|
/* eph2tle.cpp: computes TLEs (Two-Line Elements) fitting numerically
integrated ephemerides of artificial satellites. Executive summary
of what it does follows this GPL licence text.
Copyright (C) 2015-2017, Project Pluto
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.
*****************************
'eph2tle' assumes you've computed an orbit for your artsat
of interest using Find_Orb. You've then computed an ephemeris
of geocentric J2000 equatorial state vectors with a small step
size (I almost always use 0.1 days).
You can then run, for example,
./eph2tle ephemeri.txt -o 13070b.tle
to compute TLEs fitted to the ephemerides in 'ephemeri.txt'.
By default, the program reads in ten state vectors, covering
a particular day, and fits the TLE to those. If the ephemeris
step size was, say, 0.3 days, and you used the '-f20' option
to tell eph2tle to read 20 state vectors at a time, you'd get
TLEs that would each cover a six-day span. Usually, though,
TLEs covering longer time spans will have higher "worst errors".
The program first fits a TLE to the middle state vector. It
has a quick and dirty way of doing this (iterated_vector_to_tle)
which almost always converges nicely for objects with orbital
periods of less than two days. Even if it doesn't converge, it
provides a starting point for a downhill simplex search fitting
to all ten state vectors. After that, we try a least-squares
fit to get a "better" TLE.
We then output the resulting TLE and move on to the next ten
state vectors.
Convergence usually happens, but it's not guaranteed. For
one thing, you can't fit a TLE to an hyperbolic orbit. Fitting
a TLE to an object passing the Moon usually doesn't work. There
are some other situations, all involving high-flying objects,
that have horrible residuals. These may reflect the inability
of the SDP4 model to fit every possible geocentric orbit (you
do get fits in such cases when forcing use of SGP4), but I'm
not totally convinced of that; it could be the program is not
doing a sufficiently exhaustive search in such cases. */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <math.h>
#include <time.h>
#include "watdefs.h"
#include "date.h"
#include "norad.h"
#include "lsquare.h"
#include "afuncs.h"
#define AU_IN_KM 1.495978707e+8
#define AU_IN_METERS (AU_IN_KM * 1000.)
#define PI 3.1415926535897932384626433832795028841971693993751058209749445923078
#define FIT_DEFAULTS 0
#define FIT_BSTAR 1
#define FIT_EPOCH 2
#define FIT_BOTH 3
int vector_to_tle( tle_t *tle, const double *state_vect, const double epoch);
int verbose = 0;
int use_eight = 0, params_to_set = N_SAT_PARAMS;
int fitted = FIT_DEFAULTS;
#define EPHEM_TYPE_DEFAULT '0'
#define EPHEM_TYPE_SGP '1'
#define EPHEM_TYPE_SGP4 '2'
#define EPHEM_TYPE_SDP4 '3'
#define EPHEM_TYPE_SGP8 '4'
#define EPHEM_TYPE_SDP8 '5'
#define EPHEM_TYPE_HIGH 'h'
static int get_sxpx( const int ephem, const tle_t *tle, double *state,
const double t_since_minutes)
{
int rval = 0;
if( tle->ephemeris_type != EPHEM_TYPE_HIGH &&
( tle->eo < 0. || tle->eo >= 1. || tle->xno < 0.))
rval = -1;
else
{
double params[N_SAT_PARAMS];
int i, sxpx_rval;
memset( params, 0, sizeof( params));
if( ephem)
{
if( use_eight)
{
SDP8_init( params, tle);
sxpx_rval = SDP8( t_since_minutes, tle, params, state, state + 3);
}
else
{
SDP4_init( params, tle);
sxpx_rval = SDP4( t_since_minutes, tle, params, state, state + 3);
}
}
else
{
SGP4_init( params, tle);
sxpx_rval = SGP4( t_since_minutes, tle, params, state, state + 3);
}
if( sxpx_rval && verbose)
{
char buff[300];
write_elements_in_tle_format( buff, tle);
printf( "SXPX error: ephem %d, rval %d; e %f; tsince %f\n%s\n",
ephem, sxpx_rval, tle->eo, t_since_minutes, buff);
}
for( i = 0; i < 3; i++)
state[i] /= AU_IN_KM;
for( i = 3; i < 6; i++)
state[i] *= minutes_per_day / AU_IN_KM;
}
return( rval);
}
#define MIN_DELTA_SQUARED 1e-22
/* A surprisingly decent way to get a TLE from a state vector is this:
Compute 'plain old Keplerian elements' from the state vector, the
sort you would normally compute to model two-body motion, as if you'd
never heard of TLEs or the SGP4/SDP4 orbital model. Then, use those
elements in a TLE and compute the corresponding state vector at epoch.
The mismatch between two-body motion and the SGP4/SDP4 model means
that the result won't quite match the input. However, it'll (usually)
be fairly close, and (usually) if you push the difference back into
the input state vector and iterate, it will (usually) converge.
Since it doesn't _always_ converge, we keep track of the "best"
result (the one with the lowest root-mean-square difference from the
desired state vector). That will usually be the last vector we compute,
but divergence happens.
And, of course, the result is our best fit to the input state vector,
so we have something that may be a lovely fit to the position/velocity
at that particular epoch, but which isn't at all good for any other
time. Which is why the result is used only as the starting point for
a least-squares fit to the positions in an ephemeris covering the
time span of interest. */
bool adjust_to_apogee = false;
static int iterated_vector_to_tle( tle_t *tle, const double *state_vect,
const double jd)
{
int i, ephem = -1, iter = 0;
double trial_state[6], delta = 1.;
tle_t best_tle_yet;
double best_delta_yet = 1e+20;
double adjustment = 1.;
const int max_iter = 70;
int iterations_without_improvement = 0;
memcpy( trial_state, state_vect, 6 * sizeof( double));
while( iter++ < max_iter && iterations_without_improvement < 5)
if( !vector_to_tle( tle, trial_state, jd))
{
double state_out[6];
const double max_accepted_delta = .2;
double scale = 1.;
if( adjust_to_apogee)
{
if( tle->xmo > PI)
tle->xmo -= PI + PI;
if( tle->xmo > 0.)
tle->epoch += (PI - tle->xmo) / (tle->xno * minutes_per_day);
else
tle->epoch -= (PI + tle->xmo) / (tle->xno * minutes_per_day);
tle->xmo = PI;
}
if( iter < 4)
ephem = 0;
else
ephem = select_ephemeris( tle);
get_sxpx( ephem, tle, state_out, (jd - tle->epoch) * minutes_per_day);
#ifdef DEBUGGING_CODE
printf( "%.5f %15.10f %15.10f %15.10f %15.10f %15.10f %15.10f\n",
jd, state_out[0], state_out[1], state_out[2],
state_out[3], state_out[4], state_out[5]);
printf( "%.4f %15.10f %15.10f %15.10f %15.10f %15.10f %15.10f\n",
jd, state_out[0] - state_vect[0],
state_out[1] - state_vect[1],
state_out[2] - state_vect[2],
state_out[3] - state_vect[3],
state_out[4] - state_vect[4],
state_out[5] - state_vect[5]);
#endif
delta = 0.;
for( i = 0; i < 6; i++)
{
state_out[i] -= state_vect[i];
delta += state_out[i] * state_out[i];
}
if( delta > max_accepted_delta)
scale = sqrt( max_accepted_delta / delta);
for( i = 0; i < 6; i++)
trial_state[i] -= state_out[i] * scale * adjustment;
if( iter >= 4 && best_delta_yet > delta)
{
best_delta_yet = delta;
best_tle_yet = *tle;
iterations_without_improvement = 0;
}
else
iterations_without_improvement++;
if( verbose)
printf( "Iteration %d worked : e = %f, t_per = %f, %g; ephem %d\n", iter,
tle->eo, 2. * PI / (tle->xno * minutes_per_day), delta * 1e+6, ephem);
}
else /* Try slowing the object down in hopes of */
{ /* getting a correct vector : */
if( verbose)
printf( "Iteration %d failed : e = %f, t_per = %f\n", iter,
tle->eo, 2. * PI / (tle->xno * minutes_per_day));
memcpy( trial_state, state_vect, 6 * sizeof( double));
adjustment *= .9;
assert( iter > 2);
}
*tle = best_tle_yet;
return( ephem);
}
static void error_exit( const int exit_value)
{
printf( "Run as eph2tle <input filename> (options)\n\n");
printf( "Options are:\n");
printf( " -i(international designator) ex: -i97034A\n");
printf( " -n(NORAD designator) ex: -n31415\n");
printf( " -v Verbose mode\n");
printf( " -o(output filename)\n");
printf( " -f(freq) Output freq (default = 10)\n");
printf( " -g Use SGP for all orbits, never SDP\n");
printf( "The input file is assumed to be an ephemeris of state vectors from Find_Orb.\n");
exit( exit_value);
}
static char *fgets_trimmed( char *buff, const size_t buffsize, FILE *ifile)
{
char *rval = fgets( buff, buffsize, ifile);
if( rval)
{
size_t i = 0;
while( rval[i] != 10 && rval[i] != 13 && rval[i])
i++;
rval[i] = '\0';
}
return( rval);
}
/* The six "parameters" to be set _can_ just be, say, inclination, Omega,
omega, eccentricity, semimajor axis, and mean anomaly. But there are
singularities in these for low inclinations and eccentricities. To avoid
these, we can make the six parameters the "equinoctial" elements
params[0] = h = e sin(lon_perihelion)
params[1] = k = e cos(lon_perihelion)
params[2]= p = tan(incl/2) * sin(lon_asc_node)
params[3]= p = tan(incl/2) * cos(lon_asc_node)
params[4] = mean longitude = omega + Omega + mean_anomaly
params[5] = semimajor axis
Same orbit, expressed in a manner that avoids singularities. Except
that because TLEs can't handle hyperbolic orbits, we do still have
singularities for negative a or e >= 1. There's a risk that an iteration
step will take us to, say, e=1.2, something SGP4/SDP4 won't understand.
So we really want any set of six real "params" to map to a valid TLE,
with e < 1.
To eliminate those singularities as well, we use the log of the mean
motion of a, and revise h and k in a somewhat odd manner as well, to
map eccentricities between 0 and 1 to the entire (h, k) plane :
params[0] = h = e sin(lon_perihelion) / (1-e)
params[1] = k = e cos(lon_perihelion) / (1-e)
params[5] = log( mean_motion)
With these changes, any valid TLE will map to a set of params, and
any set of six real values put into params[] will map to a TLE.
*/
static void set_params_from_tle( double *params, const tle_t *tle)
{
const double lon_perih = tle->omegao + tle->xnodeo;
const double mean_lon = lon_perih + tle->xmo;
const double r = tle->eo / (1. - tle->eo);
const double tan_half_incl = tan( tle->xincl * .5);
params[0] = r * sin( lon_perih); /* (modified) h */
params[1] = r * cos( lon_perih); /* (modified) k */
params[2] = tan_half_incl * sin( tle->xnodeo); /* p */
params[3] = tan_half_incl * cos( tle->xnodeo); /* q */
params[4] = mean_lon;
params[5] = log( tle->xno);
if( fitted & FIT_BSTAR)
params[6] = tle->bstar;
if( fitted & FIT_EPOCH)
params[6 + (fitted & 1)] = tle->epoch;
}
static double zero_to_two_pi( double ival)
{
ival = fmod( ival, 2. * PI);
if( ival < 0.)
ival += 2. * PI;
return( ival);
}
static void set_tle_from_params( tle_t *tle, const double *params)
{
const double r = sqrt( params[0] * params[0] + params[1] * params[1]);
const double lon_perih = atan2( params[0], params[1]);
const double tan_half_incl =
sqrt( params[2] * params[2] + params[3] * params[3]);
tle->xincl = 2 * atan( tan_half_incl);
tle->xnodeo = atan2( params[2], params[3]);
tle->eo = r / (1. + r);
tle->omegao = lon_perih - tle->xnodeo;
tle->xmo = params[4] - lon_perih;
tle->xno = exp( params[5]);
tle->xmo = zero_to_two_pi( tle->xmo);
tle->xnodeo = zero_to_two_pi( tle->xnodeo);
tle->omegao = zero_to_two_pi( tle->omegao);
if( fitted & FIT_BSTAR)
tle->bstar = params[6];
if( fitted & FIT_EPOCH)
tle->epoch = params[6 + (fitted & 1)];
}
void init_simplex( double **vects, double *fvals,
double (*f)( void *context, const double *vect),
void *context, const int n); /* simplex.c */
int simplex_step( double **vects, double *fvals,
double (*f)( void *context, const double *vect),
void *context, const int n); /* simplex.c */
typedef struct
{
unsigned n_steps;
int ephem;
double step_size, ephem_start;
const double *state_vect;
double *tle_vect;
tle_t *base_tle;
} simplex_context_t;
static void evaluate_tle( const tle_t *tle, double *ivect,
const double step_size, const double ephem_start,
const int ephem, const unsigned n_steps,
const double *ref)
{
unsigned j;
for( j = 0; j < n_steps; j++)
get_sxpx( ephem, tle, ivect + j * 6,
(ephem_start - tle->epoch) * minutes_per_day + (double)j * step_size);
if( ref)
for( j = 6 * n_steps; j; j--)
*ivect++ -= *ref++;
}
static double simplex_scoring( void *icontext, const double *ivect)
{
const simplex_context_t *context = (const simplex_context_t *)icontext;
double err = 0.;
unsigned i, j;
tle_t tle = *(context->base_tle);
set_tle_from_params( &tle, ivect);
evaluate_tle( &tle, context->tle_vect, context->step_size, context->ephem_start,
context->ephem, context->n_steps, context->state_vect);
for( j = 0; j < context->n_steps; j++)
{
double *tptr = context->tle_vect + j * 6;
for( i = 0; i < (context->n_steps > 1 ? 3 : 6); i++)
err += tptr[i] * tptr[i];
}
err /= (double)context->n_steps;
return( err);
}
#define MAX_PARAMS 10
int simplex_search( tle_t *tle, const double *starting_params,
const double *state_vect, const int ephem,
const unsigned n_steps, const double step_size,
const double ephem_start)
{
double simp[MAX_PARAMS * MAX_PARAMS];
double *vects[MAX_PARAMS], fvals[MAX_PARAMS];
size_t i, iter;
const size_t max_iter = 3000;
bool done = false;
simplex_context_t context;
size_t n_params = 6;
if( fitted == FIT_BOTH)
n_params = 8;
else if( fitted)
n_params = 7;
for( i = 0; i < MAX_PARAMS; i++)
vects[i] = simp + i * MAX_PARAMS;
for( i = 0; i <= n_params; i++)
{
const double delta = .4;
memcpy( vects[i], starting_params, n_params * sizeof( double));
if( i)
vects[i][i - 1] += delta;
}
context.n_steps = n_steps;
context.ephem = ephem;
context.step_size = step_size;
context.state_vect = state_vect;
context.tle_vect = (double *)calloc( 6 * n_steps, sizeof( double));
context.base_tle = tle;
context.ephem_start = ephem_start;
init_simplex( vects, fvals, simplex_scoring, &context, (int)n_params);
for( iter = 0; !done && iter < max_iter; iter++)
{
simplex_step( vects, fvals, simplex_scoring, &context, (int)n_params);
if( fvals[n_params] / fvals[0] < 1.01 || fvals[0] < MIN_DELTA_SQUARED)
done = true;
}
free( context.tle_vect);
set_tle_from_params( tle, vects[0]);
return( 0);
}
/* NOTE: this precesses input J2000 state vectors to mean equator/ecliptic
of date. I _think_ that's right, but it's possible that nutation should be
included as well, and even possible that SxPx assumes true orientation of
date: i.e., the full set of earth orientation parameters, including
proper motions and offsets from the IAU nutation theories, ought to be used.
The 'bulletin number' is in days since 2018 Jan 0, or zero for TLEs
computed before then. Hence, BULLETIN_EPOCH = days from 1970 Jan 1
to 2018 Jan 0. This will work until 2045 May 18. At that point... well,
I'm not using the 'revolution number at epoch' field at present. */
#define BULLETIN_EPOCH 17531
#define N_HIST_BINS 10
int main( const int argc, const char **argv)
{
FILE *ifile = fopen( "eph2tle.txt", "rb");
FILE *ofile = stdout;
int i, j, count = 0, output_freq = 10, line = 0;
int tles_written = 0;
int n_params = 6, n_iterations = 15;
const int max_n_params = 8;
char buff[200], obj_name[100];
const char *default_intl_desig = "00000", *norad_desig = "99999";
const char *intl_desig = default_intl_desig;
double *slopes = (double *)calloc( max_n_params * 6, sizeof( double));
double *vectors, worst_resid_in_run = 0., worst_mjd = 0.;
double tdt = 0., *computed_vects;
int ephem, progress_bar_freq = 2;
tle_t tle;
const time_t t0 = time( NULL);
double step;
unsigned n_steps, total_lines;
int histo_counts[N_HIST_BINS];
static int histo_divs[N_HIST_BINS] = { 1, 3, 10, 30, 100, 300, 1000, 3000, 10000, 30000 };
double levenberg_marquardt_lambda0 = 0.;
if( argc < 2)
error_exit( -1);
setvbuf( stdout, NULL, _IONBF, 0);
memset( &tle, 0, sizeof( tle_t));
tle.classification = 'U';
tle.ephemeris_type = EPHEM_TYPE_DEFAULT;
tle.bulletin_number = (int)( t0 / seconds_per_day - BULLETIN_EPOCH);
for( i = 1; i < argc; i++)
if( argv[i][0] == '-')
switch( argv[i][1])
{
case 'a': case 'A':
adjust_to_apogee = true;
break;
case 'v': case 'V':
verbose = 1 + atoi( argv[i] + 2);
break;
case 'b':
fitted |= FIT_BSTAR;
n_params++;
break;
case 'e':
fitted |= FIT_EPOCH;
n_params++;
break;
case '8':
use_eight = 1;
break;
case 'p': case 'P':
params_to_set = atoi( argv[i] + 2);
break;
case 'o': case 'O':
{
const char *output_filename = argv[i] + 2;
if( !*output_filename && i < argc - 1)
output_filename = argv[i + 1];
ofile = fopen( output_filename, "wb");
printf( "Output directed to %s\n", output_filename);
if( !ofile)
{
perror( "Output not opened");
return( -1);
}
}
break;
case 'f': case 'F':
output_freq = atoi( argv[i] + 2);
break;
case 'n': case 'N':
norad_desig = argv[i] + 2;
break;
case 'i': case 'I':
intl_desig = argv[i] + 2;
break;
case 'l': case 'L':
sscanf( argv[i] + 2, "%lf", &levenberg_marquardt_lambda0);
break;
case 'r':
srand( atoi( argv[i] + 2));
break;
case 'z':
n_iterations = atoi( argv[i] + 2);
break;
case 'g':
tle.ephemeris_type = EPHEM_TYPE_SGP4; /* force use of SGP4 */
break;
case 'h':
tle.ephemeris_type = EPHEM_TYPE_HIGH;
break;
default:
printf( "'%s' is not a valid command line option\n", argv[i]);
error_exit( -2);
}
vectors = (double *)calloc( 12 * output_freq, sizeof( double));
assert( vectors);
computed_vects = vectors + 6 * output_freq;
tle.norad_number = atoi( norad_desig);
strcpy( tle.intl_desig, intl_desig);
if( !ifile)
{
printf( "eph2tle.txt not found\n");
error_exit( -4);
}
fprintf( ofile, "# Made by eph2tle, compiled " __DATE__ " " __TIME__ "\n");
fprintf( ofile, "# Run at %s#\n", ctime( &t0));
while( fgets_trimmed( buff, sizeof( buff), ifile))
if( *buff != ';')
fprintf( ofile, "%s\n", buff);
fclose( ifile);
ifile = fopen( argv[1], "rb");
if( !ifile)
{
printf( "%s not found\n", argv[1]);
error_exit( -3);
}
if( fgets_trimmed( buff, sizeof( buff), ifile))
{
bool writing_data = false;
double mjdt;
sscanf( buff, "%lf %lf %u\n", &tdt, &step, &total_lines);
mjdt = tdt - 2400000.5;
fprintf( ofile, "# Ephem range: %f %f %f\n",
mjdt, mjdt + step * (double)total_lines, step * (double)output_freq);
while( fgets_trimmed( buff, sizeof( buff), ifile))
{
if( !memcmp( buff, "Created ", 8))
writing_data = true;
if( writing_data && *buff != '#')
fprintf( ofile, "# %s\n", buff);
if( !memcmp( buff, "Orbital elements: ", 18))
{
char *tptr;
strcpy( obj_name, buff + 19);
printf( "Object: %s\n", obj_name);
if( tle.norad_number == 99999)
{
tptr = strstr( obj_name, "NORAD ");
if( tptr)
tle.norad_number = atoi( tptr + 6);
}
if( intl_desig == default_intl_desig)
for( tptr = obj_name; *tptr; tptr++)
if( atoi( tptr) > 1900 && tptr[4] == '-' &&
atoi( tptr + 5) > 0)
{
memcpy( tle.intl_desig, tptr + 2, 2); /* get year */
memcpy( tle.intl_desig + 2, tptr + 5, 4); /* launch # */
tle.intl_desig[6] = '\0';
}
}
}
}
for( i = 0; i < N_HIST_BINS; i++)
histo_counts[i] = 0;
if( tle.ephemeris_type == EPHEM_TYPE_SGP4)
{
fprintf( ofile, "# SGP4 only: these TLEs are _not_ fitted to SDP4, even for\n");
fprintf( ofile, "# deep-space TLEs. These may not work with your software.\n");
}
fprintf( ofile, "#\n");
fprintf( ofile, "# 1 NoradU COSPAR Epoch.epoch dn/dt/2 d2n/dt2/6 BSTAR T El# C\n");
fprintf( ofile, "# 2 NoradU Inclina RAAscNode Eccent ArgPeri MeanAno MeanMotion Rev# C\n");
fseek( ifile, 0L, SEEK_SET);
if( !fgets( buff, sizeof( buff), ifile))
{
printf( "Couldn't re-read the header\n");
return( -1);
}
n_steps = total_lines / output_freq;
while( n_steps--)
{
double *sptr = vectors;
const double jan_1956 = 2435473.5, jan_2050 = 2469807.5;
const double jd_utc = tdt - td_minus_utc( tdt) / seconds_per_day;
for( i = 0; i < output_freq && fgets( buff, sizeof( buff), ifile);
i++, sptr += 6)
{
double jdt, jd_utc;
double precession_matrix[9], ivect[6];
if( sscanf( buff, "%lf%lf%lf%lf%lf%lf%lf", &jdt,
ivect, ivect + 1, ivect + 2,
ivect + 3, ivect + 4, ivect + 5) != 7
|| jdt < jan_1956 || jdt > jan_2050)
{
printf( "Error reading input ephem:\n%s\n", buff);
return( -2);
}
/* I don't think TLEs work outside this range: */
assert( jdt > jan_1956 && jdt < jan_2050);
jd_utc = jdt - td_minus_utc( jdt) / seconds_per_day;
setup_precession( precession_matrix, 2000.,
2000. + (jd_utc - 2451545.) / 365.25);
precess_vector( precession_matrix, ivect, sptr);
precess_vector( precession_matrix, ivect + 3, sptr + 3);
}
assert( i == output_freq);
tle.epoch = jd_utc;
if( tle.ephemeris_type == EPHEM_TYPE_HIGH)
{
double *svect = &tle.xincl;
ephem = 1;
for( i = 0; i < 3; i++)
{
svect[i] = vectors[i] * AU_IN_METERS;
svect[i + 3] = vectors[i + 3] * AU_IN_METERS / seconds_per_day;
}
}
else
{
double start_params[max_n_params];
i = output_freq / 2; /* use middle vector; it improves the */
tle.epoch += (double)i * step; /* convergence for simplex */
ephem = iterated_vector_to_tle( &tle, vectors + i * 6, tle.epoch);
if( ephem != -1)
ephem = select_ephemeris( &tle);
if( verbose)
printf( " ephem selected = %d\n", ephem);
if( ephem != -1 && tle.ephemeris_type == EPHEM_TYPE_SGP4)
ephem = 0;
set_params_from_tle( start_params, &tle);
simplex_search( &tle, start_params, vectors, ephem,
output_freq, step * minutes_per_day, jd_utc);
}
int lsquare_rval, use_damping = 1, iter;
char obuff[200];
double worst_resid = 1e+20;
tle_t tle_to_output = tle;
if( verbose)
printf( " least-square fitting\n");
// if( ephem == -1) /* failed from the get-go */
// failure = -1;
for( iter = 0; iter < n_iterations; iter++)
{
void *lsquare = lsquare_init( n_params);
double state0[6], params[max_n_params];
double differences[max_n_params], rms_change = 0.;
double this_worst_resid = 0.;
extern double levenberg_marquardt_lambda;
evaluate_tle( &tle, computed_vects, step * minutes_per_day, jd_utc,
ephem, output_freq, vectors);
for( i = 0; i < output_freq * 6; i += 6)
for( j = 0; j < 3; j++)
if( this_worst_resid < fabs( computed_vects[i + j]))
this_worst_resid = fabs( computed_vects[i + j]);
this_worst_resid *= AU_IN_KM;
if( this_worst_resid < worst_resid)
{ /* improvement, or at least minor worsening */
worst_resid = this_worst_resid;
tle_to_output = tle;
levenberg_marquardt_lambda = 0.;
}
else /* not doing well: let's try dampened iterations */
levenberg_marquardt_lambda += levenberg_marquardt_lambda0;
if( use_damping)
levenberg_marquardt_lambda += levenberg_marquardt_lambda0;
if( verbose)
{
write_elements_in_tle_format( obuff, &tle);
printf( "Iter %d: worst resid %f\n%s\n", iter, this_worst_resid, obuff);
}
set_params_from_tle( params, &tle);
for( j = 0; j < output_freq; j++)
{
double resid2 = 0.;
// const double time_diff_in_minutes = (double)j
// * step * minutes_per_day;
const double time_diff_in_minutes = (double)(j - output_freq / 2)
* step * minutes_per_day;
for( i = 0; i < n_params; i++)
{
double state1[6], state2[6];
double delta = (i == 6 ? 1.e-5 : 1.e-4);
int k;
if( tle.ephemeris_type == EPHEM_TYPE_HIGH)
delta = (i >= 3 ? 1e-4 : 1.); /* one meter or 10^-4 m/s */
params[i] -= delta;
set_tle_from_params( &tle, params);
get_sxpx( ephem, &tle, state1, time_diff_in_minutes);
params[i] += delta + delta;
set_tle_from_params( &tle, params);
get_sxpx( ephem, &tle, state2, time_diff_in_minutes);
params[i] -= delta;
set_tle_from_params( &tle, params);
for( k = 0; k < 6; k++)
slopes[k * n_params + i] = (state2[k] - state1[k]) / (2. * delta);
if( verbose > 2)
{
for( k = 0; k < 6; k++)
printf( "%10.3g ", slopes[k * n_params + i]);
printf( "\n");
}
}
get_sxpx( ephem, &tle, state0, time_diff_in_minutes);
if( verbose > 1)
printf( "JD %f: ", jd_utc);
for( i = 0; i < 3; i++)
{
const double residual = vectors[j * 6 + i] - state0[i];
if( verbose == 2)
printf( "%f ", residual * AU_IN_KM);
if( verbose == 3)
printf( " %f (%f %f)\n", residual * AU_IN_KM,
vectors[j * 6 + i] * AU_IN_KM,
state0[i] * AU_IN_KM);
resid2 += residual * residual;
lsquare_add_observation( lsquare, residual,
1., slopes + i * n_params);
}
rms_change += resid2;
if( resid2 > this_worst_resid)
this_worst_resid = resid2;
if( verbose > 1)
printf( "\n");
}
lsquare_rval = lsquare_solve( lsquare, differences);
lsquare_free( lsquare);
use_damping = 0;
if( lsquare_rval)
{
printf( "ERROR %d in lsquare soln: MJD %f\n",
lsquare_rval, tdt - 2400000.5);
use_damping = 1;
}
else if( tle.ephemeris_type == EPHEM_TYPE_HIGH)
{
for( i = 0; i < n_params; i++)
params[i] += differences[i];
set_tle_from_params( &tle, params);
}
else
{
rms_change = 0.;
for( i = 0; i < 6; i++)
rms_change += differences[i] * differences[i];
rms_change = sqrt( rms_change);
for( i = 0; i < n_params; i++)
params[i] += differences[i];
set_tle_from_params( &tle, params);
if( verbose)
printf( " change in TLE = %f\n", rms_change);
}
}
full_ctime( buff, tdt,
FULL_CTIME_YMD | FULL_CTIME_FORMAT_HH_MM);
// if( !failure)
{
// if( tle.ephemeris_type != EPHEM_TYPE_HIGH)
fprintf( ofile, "\n# Worst residual: %.2f km\n",
worst_resid);
// else
// fprintf( ofile, "\n");
write_elements_in_tle_format( obuff, &tle_to_output);
if( verbose)
{
double params[N_SAT_PARAMS], state[6];
SDP4_init( params, &tle_to_output);
SDP4( 0, &tle_to_output, params, state, state + 3);
printf( " Node: %f\n", params[25] * 180. / PI);
printf( " xinc: %f\n", params[27] * 180. / PI);
printf( " em: %f\n", params[26]);
printf( "%s", obuff);
}
fprintf( ofile, "# MJD %f (%s)\n", tdt - 2400000.5, buff);
if( *obj_name)
fprintf( ofile, "%s\n", obj_name);
fprintf( ofile, "%s", obuff);
if( worst_resid_in_run < worst_resid)
{
worst_resid_in_run = worst_resid;
worst_mjd = tdt - 2400000.5;
}
i = 0;
while( i < N_HIST_BINS - 1 && worst_resid > (double)histo_divs[i])
i++;
histo_counts[i]++;
}
// else
// fprintf( ofile, "FAILED (%d) for JD %.2f = %s\n", failure,
// jd_utc, buff);
count = -1;
tles_written++;
count++;
line++;
if( ofile != stdout && !(line % progress_bar_freq))
{
static clock_t t0;
const clock_t t1 = clock( );
printf( "Line %d of %u (%u%% done): %d written, JD %f \r",
line, total_lines, line * 100 * output_freq / total_lines,
tles_written, tdt);
fflush( stdout);
if( t1 - t0 < CLOCKS_PER_SEC / 2)
progress_bar_freq <<= 1;
else if( progress_bar_freq > 1)
progress_bar_freq >>= 1;
t0 = t1;
}
tdt += step * (double)output_freq;
}
if( ifile)
fclose( ifile);
while( 1)
{
fprintf( ofile, "Worst residual in entire run: %.2f km on MJD %.1f\n",
worst_resid_in_run, worst_mjd);
fprintf( ofile, " 1 3 10 30 100 300"
" 1K 3K 10K km\n");
for( i = 0; i < N_HIST_BINS; i++)
fprintf( ofile, "%6d", histo_counts[i]);
fprintf( ofile, "\n");
if( ofile != stdout)
{
fclose( ofile);
ofile = stdout;
}
else
break;
}
printf( "Freeing vectors\n");
free( vectors);
free( slopes);
printf( "All done\n");
return( 0);
}
|