1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
|
/* runge.cpp: numerical integration code, mostly force model stuff
Copyright (C) 2010, Project Pluto
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <math.h>
#include <assert.h>
#ifndef __GNUC__
// #include <conio.h>
// #include <io.h>
#else
#include <unistd.h>
#endif
#include "watdefs.h"
#include "lunar.h"
#include "afuncs.h"
#include "comets.h"
#include "afuncs.h"
#include "mpc_obs.h"
#define PI 3.1415926535897932384626433832795028841971693993751058209749445923
#define J2000 2451545.
#define GAUSS_K .01720209895
#define SOLAR_GM (GAUSS_K * GAUSS_K)
#define ldouble long double
#ifdef __WATCOMC__
#define sqrtl sqrt
#endif
/* perturbers
excluded_perturbers = -1;
general_relativity_factor
integration_method
integration_tolerance
n_extra_params
planet_mass[], sort of
solar_pressure
best_fit_planet;
best_fit_planet_dist;
j2_multiplier
debug_level
approx_planet_orientation
object_mass
(implicitly) planet_posn cache
*/
double object_mass = 0.;
double j2_multiplier = 1.;
extern unsigned perturbers;
extern int debug_level;
int debug_printf( const char *format, ...) /* runge.cpp */
#ifdef __GNUC__
__attribute__ (( format( printf, 1, 2)))
#endif
;
int planet_posn( const int planet_no, const double jd, double *vect_2000);
/* mpc_obs.cpp */
int earth_lunar_posn( const double jd, double FAR *earth_loc, double FAR *lunar_loc);
const char *get_environment_ptr( const char *env_ptr); /* mpc_obs.cpp */
double take_rk_step( const double jd, ELEMENTS *ref_orbit,
const double *ival, double *ovals,
const int n_vals, const double step); /* runge.cpp */
double take_pd89_step( const double jd, ELEMENTS *ref_orbit,
const double *ival, double *ovals,
const int n_vals, const double step); /* runge.cpp */
int symplectic_6( double jd, ELEMENTS *ref_orbit, double *vect,
const double dt);
static int get_planet_posn_vel( const double jd, const int planet_no,
double *posn, double *vel); /* runge.cpp */
int find_best_fit_planet( const double jd, const double *ivect,
double *rel_vect); /* runge.cpp */
int detect_perturbers( const double jd, const double * __restrict xyz,
double *accel); /* bc405.cpp */
int find_relative_orbit( const double jd, const double *ivect,
ELEMENTS *elements, const int ref_planet); /* runge.cpp */
int parallax_to_lat_alt( const double rho_cos_phi, const double rho_sin_phi,
double *lat, double *ht_in_meters, const int planet_idx); /* ephem0.c */
void calc_approx_planet_orientation( const int planet, /* runge.cpp */
const int system_number, const double jde, double *matrix);
double geo_potential_in_au( const double x, const double y, const double z,
double *derivs, const int n_terms); /* geo_pot.c */
#define N_PERTURB 19
#define IDX_MERCURY 1
#define IDX_VENUS 2
#define IDX_EARTH 3
#define IDX_MARS 4
#define IDX_JUPITER 5
#define IDX_SATURN 6
#define IDX_URANUS 7
#define IDX_NEPTUNE 8
#define IDX_PLUTO 9
#define IDX_MOON 10
#define IDX_IO 11
#define IDX_EUROPA 12
#define IDX_GANYMEDE 13
#define IDX_CALLISTO 14
#define IDX_TETHYS 15
#define IDX_DIONE 16
#define IDX_RHEA 17
#define IDX_TITAN 18
#define IDX_IAPETUS 19
#define IDX_ASTEROIDS 20
/* The following value for various J2s come from the _Explanatory */
/* Supplement_, p 697. They're in units of planetary radii, and */
/* must be converted to AU squared. */
#define J2_IN_EARTH_UNITS (1.08263e-3)
#define J3_IN_EARTH_UNITS (-2.54e-6)
#define J4_IN_EARTH_UNITS (-1.61e-6)
#define EARTH_R (6378.140 / AU_IN_KM)
#define EARTH_R2 (EARTH_R * EARTH_R)
#define EARTH_J2 (J2_IN_EARTH_UNITS * EARTH_R2)
#define EARTH_J3 (J3_IN_EARTH_UNITS * EARTH_R2 * EARTH_R)
#define EARTH_J4 (J4_IN_EARTH_UNITS * EARTH_R2 * EARTH_R2)
#define J2_IN_MARS_UNITS (1.964e-3)
#define MARS_R (3397.2 / AU_IN_KM)
#define MARS_J2 (J2_IN_MARS_UNITS*MARS_R * MARS_R)
#define MARS_J3 0.
#define MARS_J4 0.
#define SUN_R (696000. / AU_IN_KM)
#define MERCURY_R (2439. / AU_IN_KM)
#define VENUS_R (6051. / AU_IN_KM)
#define PLUTO_R (1500. / AU_IN_KM)
#define MOON_R (1738. / AU_IN_KM)
/* Start considering atmospheric drag if within 500 km of earth: */
#define ATMOSPHERIC_LIMIT (EARTH_R + 500. / AU_IN_KM)
// #define ATMOSPHERIC_LIMIT 0
/* 2016 Jul 25: updated all the following gas giant J2/3/4 data using */
/* data from http://ssd.jpl.nasa.gov/?gravity_fields_op */
#define J2_IN_JUPITER_UNITS (.01469562)
#define J3_IN_JUPITER_UNITS 0.
#define J4_IN_JUPITER_UNITS (-5.9131e-4)
#ifdef NOT_USING_ANYTHING_PAST_J4_YET
#define J6_IN_JUPITER_UNITS 20.78e-6
#define J6_IN_SATURN_UNITS 86.14e-6
#define J8_IN_SATURN_UNITS -10.e-6
#endif
#define JUPITER_R (71492. / AU_IN_KM)
#define JUPITER_R2 (JUPITER_R * JUPITER_R)
#define JUPITER_J2 (J2_IN_JUPITER_UNITS * JUPITER_R2)
#define JUPITER_J3 (J3_IN_JUPITER_UNITS * JUPITER_R2 * JUPITER_R)
#define JUPITER_J4 (J4_IN_JUPITER_UNITS * JUPITER_R2 * JUPITER_R2)
#define J2_IN_SATURN_UNITS (.01629071)
#define J4_IN_SATURN_UNITS (-.00093583)
#define SATURN_R (60330. / AU_IN_KM)
#define SATURN_R2 (SATURN_R * SATURN_R)
#define SATURN_J2 (J2_IN_SATURN_UNITS * SATURN_R2)
#define SATURN_J3 0.
#define SATURN_J4 (J4_IN_SATURN_UNITS * SATURN_R2 * SATURN_R2)
#define J2_IN_URANUS_UNITS 3510.68e-6
#define J4_IN_URANUS_UNITS -34.17e-6
#define URANUS_R (25559. / AU_IN_KM)
#define URANUS_R2 (URANUS_R * URANUS_R)
#define URANUS_J2 (J2_IN_URANUS_UNITS * URANUS_R * URANUS_R)
#define URANUS_J3 0.
#define URANUS_J4 (J4_IN_URANUS_UNITS * URANUS_R2 * URANUS_R2)
#define J2_IN_NEPTUNE_UNITS 3408.43e-6
#define J4_IN_NEPTUNE_UNITS -33.40e-6
#define NEPTUNE_R (25225. / AU_IN_KM)
#define NEPTUNE_R2 (NEPTUNE_R * NEPTUNE_R)
#define NEPTUNE_J2 (J2_IN_NEPTUNE_UNITS * NEPTUNE_R * NEPTUNE_R)
#define NEPTUNE_J3 0.
#define NEPTUNE_J4 (J4_IN_NEPTUNE_UNITS * NEPTUNE_R2 * NEPTUNE_R2)
/* One can compute the acceleration due to the first (J2) oblateness
term analytically, and the following function does that. However,
the expressions for computing the accelerations due to J3 and J4
get ugly, and it becomes simpler to write a function for the _potential_
and get the accelerations via numerical differentiation. I'm keeping
the numerical J2 acceleration version around just for reference. */
static double jn_potential( const double *loc, const double j3,
const double j4)
{
const double r2 = loc[0] * loc[0] + loc[1] * loc[1] + loc[2] * loc[2];
const double r = sqrt( r2);
const double mu = loc[2] / r;
const double mu2 = mu * mu;
const double p3 = mu * (2.5 * mu2 - 1.5);
const double p4 = (35. * mu2 * mu2 - 30. * mu2 + 3.) / 8.;
// const double p2 = 1.5 * mu2 - .5; /* Danby, p. 115 */
// return( (j2 * p2 + j3 * p3 / r + j4 * p4 / r2) / (r * r2));
return( ( j3 * p3 / r + j4 * p4 / r2) / (r * r2));
}
/* For an input planetocentric location in AU, and a GM in AU^3/day^2,
computes the planetocentric acceleration due to J2, J3, and J4, in
AU/day^2. For the Earth, the GGM03 model can be used; see 'geo_pot.cpp'. */
static void numerical_gradient( double *grad, const double *loc,
const double planet_gm,
const double j2, const double j3, const double j4)
{
const double r2 = loc[0] * loc[0] + loc[1] * loc[1] + loc[2] * loc[2];
const double r = sqrt( r2), delta = r * 0.01;
const double r7 = r2 * r2 * r2 * sqrt( r2);
const double tval = (1.5 * r2 - 7.5 * loc[2] * loc[2]) / r7;
int i;
if( j3 == EARTH_J3)
{
static int n_terms = -9999;
/* height in units of earth radii */
if( n_terms == -9999)
{
n_terms = atoi( get_environment_ptr( "GEO_TERMS"));
if( !n_terms)
n_terms = 3;
}
if( n_terms > 0) /* n_term <= 0 -> use "usual" J2 & J3 & J4 */
{
double ht_above_ground = (r / EARTH_R) - 1.;
if( ht_above_ground < 0.04) /* less than about 250 km */
ht_above_ground = 0.04;
geo_potential_in_au( loc[0], loc[1], loc[2], grad,
(int)( (double)n_terms / ht_above_ground) + 3);
return;
}
}
grad[0] = j2 * loc[0] * tval; /* compute J2 accel analytically */
grad[1] = j2 * loc[1] * tval;
grad[2] = j2 * loc[2] * (3. * r2 / r7 + tval);
for( i = 0; i < 3; i++) /* then do J3 & J4 numerically */
{
double tval, tloc[3];
int j;
for( j = 0; j < 3; j++)
tloc[j] = loc[j];
tloc[i] += delta;
tval = jn_potential( tloc, j3, j4);
tloc[i] -= delta + delta;
tval -= jn_potential( tloc, j3, j4);
grad[i] += tval / (delta * 2.);
grad[i] *= planet_gm;
}
#ifdef OLD_DEBUGGING_CODE
if( j3 == EARTH_J3)
{
double grad2[3];
debug_printf( "Loc (in earth radii): %e %e %e; radius %e\n",
loc[0] / EARTH_R,
loc[1] / EARTH_R,
loc[2] / EARTH_R, r / EARTH_R);
debug_printf( "Gradient (numerical): %e %e %e\n",
grad[0], grad[1], grad[2]);
geo_potential_in_au( loc[0], loc[1], loc[2], grad2,
atoi( get_environment_ptr( "GEO_TERMS")));
debug_printf( "Gradient (analytica): %e %e %e\n",
grad2[0], grad2[1], grad2[2]);
debug_printf( "Ratios %e %e %e\n",
grad[0] / grad2[0],
grad[1] / grad2[1],
grad[2] / grad2[2]);
}
#endif
}
/* For testing purposes, one can multiply the relativistic effect by */
/* a constant 'general_relativity_factor'. Set to zero, this disables */
/* GR; set to one, it mirrors the actual universe. I've used this */
/* just to see how much GR matters for a given object. */
double general_relativity_factor = 1.;
/* Somewhat artificially, we set the relativistic effect to be zero */
/* when an object goes inside the sun (r < radius of the sun). This */
/* just avoids a situation wherein the relativistic acceleration */
/* explodes to infinity, and the program drags to a crawl. Similar */
/* trickery takes place for J2, J3, and J4 when an object runs inside */
/* a planet. */
static void set_relativistic_accel( double *accel, const double *posnvel)
{
int i;
const double c = AU_PER_DAY; /* speed of light in AU per day */
const double r_squared = posnvel[0] * posnvel[0] + posnvel[1] * posnvel[1]
+ posnvel[2] * posnvel[2];
const double v_squared = posnvel[3] * posnvel[3] + posnvel[4] * posnvel[4]
+ posnvel[5] * posnvel[5];
const double v_dot_r = posnvel[0] * posnvel[3] + posnvel[1] * posnvel[4]
+ posnvel[2] * posnvel[5];
const double r = sqrt( r_squared), r_cubed_c_squared = r_squared * r * c * c;
#ifndef PREVIOUS_EQUATION
const double r_component =
(4. * SOLAR_GM / r - v_squared) / r_cubed_c_squared;
const double v_component = 4. * v_dot_r / r_cubed_c_squared;
#else
const double v_component = 3. * v_dot_r / r_cubed_c_squared;
const double r_component = 0.;
#endif
if( r > SUN_R)
for( i = 0; i < 3; i++)
{
accel[i] = r_component * posnvel[i] + v_component * posnvel[i + 3];
accel[i] *= general_relativity_factor;
}
else /* shut off relativity inside the sun */
for( i = 0; i < 3; i++)
accel[i] = 0.;
}
/* This is explained on page 3 of
http://www.lpi.usra.edu/books/CometsII/7009.pdf
'Cometary Orbit Determination and Nongravitational Forces', D. K. Yeomans,
P. W. Chodas, G. Sitarski, S. Szutowicz, M. Krolikowska, "Comets II".
Essentially, the idea is that the following expression gives a decent
approximation to the magnitude of comet non-gravitational accelerations.
This 'g' function is then multiplied by a comet-specific, fitted parameter
A1 to give the radial acceleration; by A2 to give the transverse acceleration;
and by A3 to give the "out-of-orbit" component of the acceleration, with A1
through A3 to be fitted parameters. The resulting accelerations should
be in AU/day^2, which fortunately matches the units used in this program.
(Note that MPC uses 10^-8 AU/day^2. Patrick Rocher and JPL use AU/day^2 in
their comet elements. Find_Orb should have a toggle for the units...)
Frequently, only A1 and A2 are used; A3 often doesn't appear unless
one has three apparitions. A3 has been added to the console version of
Find_Orb, but it appears to be just about unnecessary.
A small bit of trickery: for the Marsden-Sekanina formula, g(1) = 1,
requiring a normalization constant alpha. We get that on the first call
by setting alpha = 1, determining what value we get for g(1), and setting
alpha to the inverse of that.
*/
static inline double comet_g_func( const double r)
{
if( object_type == OBJECT_TYPE_COMET)
{ /* default, Marsden/Sekanina formula */
static double r0 = 2.808; /* AU */
static double m = 2.15;
static double n = 5.093;
static double k = 4.6142;
static double alpha = 0.;
double r_over_r0;
if( !alpha)
{
const char *comet_params = get_environment_ptr( "COMET_CONSTANTS");
sscanf( comet_params, "%lf,%lf,%lf,%lf", &r0, &m, &n, &k);
alpha = 1.;
alpha = 1. / comet_g_func( 1.);
}
r_over_r0 = r / r0;
return( alpha * pow( r_over_r0, -m) * pow( 1. + pow( r_over_r0, n), -k));
}
else /* just an inverse-square force, used for 2009 BD */
return( 1. / (r * r));
}
/* I wrote a little code to dump the following constants from DE-432.
They were given in AU^3/day^2; from that, I got the following, using
the first column to fill most of the 'planet_mass' array. Note that for
EMB through Uranus, these are "system" masses including moons.
mass(obj)/mass(sun) mass(sun)/mass(obj) GM (km^3/s^2)
Merc 1.660114153054348e-07 6.023682155592479e+06 2.203177969072598e+04
Venu 2.447838287784771e-06 4.085237186582997e+05 3.248585874397545e+05
EMB 3.040432648022641e-06 3.289005598102476e+05 4.035032298380295e+05
Mars 3.227156037554996e-07 3.098703590290707e+06 4.282837461279101e+04
Jupi 9.547919101886966e-04 1.047348630972762e+03 1.267127623546989e+08
Satu 2.858856727222416e-04 3.497901767786634e+03 3.794058466740400e+07
Uran 4.366249662744965e-05 2.290295052370693e+04 5.794556384409937e+06
Nept 5.151383772628673e-05 1.941225977597307e+04 6.836527004611366e+06
Plut 7.350487833457740e-09 1.360453921776768e+08 9.755011621830380e+02
Sun 1.000000000000000e+00 1.000000000000000e+00 1.327124381789709e+11
Eart 3.003489614792921e-06 3.329460488475656e+05 3.986004298243866e+05
Moon 3.694303322972000e-08 2.706870315119437e+07 4.902800013642883e+03
Cere 4.725582914451237e-10 2.116141052021147e+09 6.271436303937109e+01
Pall 1.018229468217943e-10 9.820968958501590e+09 1.351317153528802e+01
Juno 1.371898570800420e-11 7.289168611179182e+10 1.820680042651692e+00
Vest 1.302666122601934e-10 7.676564106868835e+09 1.728799972636488e+01
*/
#define MASS_EARTH_PLUS_MOON 3.040432648022641e-06
#define EARTH_MOON_MASS_RATIO 81.300568800524701
#define MASS_MOON (MASS_EARTH_PLUS_MOON / (1. + EARTH_MOON_MASS_RATIO))
#define MASS_EARTH (MASS_EARTH_PLUS_MOON - MASS_MOON)
#define MASS_OF_SUN_IN_KILOGRAMS 1.9891E+30
#define MASS_IO (893.3E+20 / MASS_OF_SUN_IN_KILOGRAMS)
#define MASS_EUROPA (479.7E+20 / MASS_OF_SUN_IN_KILOGRAMS)
#define MASS_GANYMEDE (1482E+20 / MASS_OF_SUN_IN_KILOGRAMS)
#define MASS_CALLISTO (1076E+20 / MASS_OF_SUN_IN_KILOGRAMS)
#define MASS_GALILEANS (MASS_IO + MASS_EUROPA + MASS_GANYMEDE + MASS_CALLISTO)
#define MASS_JUPITER_SYSTEM 9.547919101886966e-04
#define MASS_JUPITER (MASS_JUPITER_SYSTEM - MASS_GALILEANS)
/* 2015 Jun 4: revised masses for Saturn's moons to Cassini values, */
/* and added masses for Mimas, Enceladus, Hyperion, and Phoebe. */
/* We aren't using those yet, but if we do, we now have them. */
#define MASS_SATURN_SYSTEM 2.858856727222416e-04
#define MASS_MIMAS (0.37493E+20 / MASS_OF_SUN_IN_KILOGRAMS)
#define MASS_ENCELADUS (1.08022E+20 / MASS_OF_SUN_IN_KILOGRAMS)
#define MASS_TETHYS (6.17449E+20 / MASS_OF_SUN_IN_KILOGRAMS)
#define MASS_DIONE (10.95452E+20 / MASS_OF_SUN_IN_KILOGRAMS)
#define MASS_RHEA (23.06518E+20 / MASS_OF_SUN_IN_KILOGRAMS)
#define MASS_TITAN (1345.2E+20 / MASS_OF_SUN_IN_KILOGRAMS)
#define MASS_HYPERION (0.056199E+20 / MASS_OF_SUN_IN_KILOGRAMS)
#define MASS_IAPETUS (18.05635E+20 / MASS_OF_SUN_IN_KILOGRAMS)
#define MASS_PHOEBE (0.08292E+20 / MASS_OF_SUN_IN_KILOGRAMS)
/* "MASS_SATURN_SATS" = mass of those we're treating as perturbers: */
#define MASS_SATURN_SATS (MASS_TETHYS + MASS_DIONE + MASS_RHEA + MASS_TITAN + MASS_IAPETUS)
#define MASS_SATURN (MASS_SATURN_SYSTEM - MASS_SATURN_SATS)
/* 22 Oct 2001: replaced Uranus, Neptune masses w/DE-405 values */
#define EARTH_MOON_RATIO 81.30056
extern const double planet_mass[N_PERTURB + 1] = { 1., /* 0 */
1.660114153054348e-07, /* mercury */ /* 1 */
2.447838287784771e-06, /* venus */ /* 2 */
MASS_EARTH, /* Earth */ /* 3 */
3.227156037554996e-07, /* Mars */ /* 4 */
MASS_JUPITER, /* Jupiter */ /* 5 */
MASS_SATURN, /* saturn */ /* 6 */
4.366249662744965e-05, /* Uranus */ /* 7 */
5.151383772628673e-05, /* Neptune */ /* 8 */
7.350487833457740e-09, /* Pluto */ /* 9 */
MASS_MOON, /* Moon */ /* 10 */
MASS_IO, /* 11 */
MASS_EUROPA, /* 12 */
MASS_GANYMEDE, /* 13 */
MASS_CALLISTO, /* 14 */
MASS_TETHYS, /* 15 */
MASS_DIONE, /* 16 */
MASS_RHEA, /* 17 */
MASS_TITAN, /* 18 */
MASS_IAPETUS }; /* 19 */
static double planetary_system_mass( const int planet_no)
{
double rval;
// const int bc405_start = 100;
if( planet_no == 5)
rval = MASS_JUPITER_SYSTEM;
else if( planet_no == 6)
rval = MASS_SATURN_SYSTEM;
// else if( planet_no == bc405_start) /* Ceres: special fixed mass */
// rval = 4.76e-10; /* used for Dawn computations */
else
rval = planet_mass[planet_no];
return( rval);
}
/* "approx_planet_orientation" returns the planet orientation matrix, as
described in 'cospar.cpp', for a time no more than range/2 days away.
(Which, at present, means half a day.) The idea is that the orientation
of the planet's pole doesn't change much over that time scale,
and we don't want to do a lot of expensive recomputes of planet orientation
that won't have any noticeable effect. (It's particularly expensive for
the earth, where we do a full-meal-deal precession and nutation matrix.)
For the earth, we then rotate the planet to the time jd. This will be
needed for handling non-zonal (tesseral) harmonics. For the other planets,
we are (at least thus far) just dealing with the zonal terms J2, J3, J4,
which are spherically symmetrical around the planet's poles; we just need
the polar orientation and can ignore rotation. Though this may not be
true forever... at some point, I may want to add tesseral harmonics for,
say, the Moon or Mars. If that happens, this code will need revising,
perhaps with a table of omega values. */
void calc_approx_planet_orientation( const int planet,
const int system_number, const double jde, double *matrix)
{
static double cached_matrix[9];
static double cached_jde = 0.;
static int cached_planet = -1;
const double range = 1.;
const double new_jde = floor( jde / range + .5) * range;
if( cached_planet != planet || new_jde != cached_jde)
{
const double ut = new_jde - td_minus_ut( new_jde) / seconds_per_day;
calc_planet_orientation( planet, system_number, ut, cached_matrix);
cached_planet = planet;
cached_jde = new_jde;
}
memcpy( matrix, cached_matrix, 9 * sizeof( double));
if( planet == 3) /* rotate matrix */
{
const double omega = 360.9856235 * PI / 180.;
const double theta = omega * (jde - cached_jde);
spin_matrix( matrix, matrix + 3, theta);
}
}
/* The idea of the following is as follows. If our distance from the sun
is more than 120% of the planet's semimajor axis (given in the 'radii'
table), we throw its entire mass into the sun. (Assuming it's not
turned on as a perturber.) If our distance is less than 100%
of the semimajor axis, we don't add in anything. In between, we ramp
up the mass thrown into the sun linearly. The reason for this is to avoid
a discontinuity, and to instead have a gradual, linear increase in the
mass we use for the sun. */
static double include_thrown_in_planets( const double r)
{
const int n_radii = 9;
const double radii[9] = { 0., .38709927, .72333566, 1.00000261,
1.52371034, 5.20288799, 9.53667594, 19.18916464, 30.06992276};
const double fraction = .2;
double rval = 1.;
int i;
for( i = 1; i < n_radii && r > radii[i]; i++)
if( ((perturbers >> i) & 1) == 0)
{
if( r > radii[i] * (1. + fraction))
rval += planet_mass[i];
else
rval += planet_mass[i] * ((1. + fraction) - r / radii[i]) / fraction;
}
return( rval);
}
/* Returns a passable estimate of the atmospheric density, in kg/m^3,
as a function of height above sea level. This just does an interpolation
within a table giving the atmospheric density, at ten-kilometer intervals,
from 0 to 1000 km (extrapolating off the ends). The table is from the
"Unofficial Australian Standard Atmosphere 2000",
http://www.sworld.com.au/steven/space/atmosphere/
which is an update to the US Standard Atmosphere of 1976. So far, only
the earth's atmophere is handled; but note that similar tables are
available for Mars, Venus, Saturn, and Titan :
https://solarsystem.nasa.gov/docs/03b_Justus_EDLatmospheres.pdf
The interpolation is actually done within a table of the (natural)
logs of the original table. That eliminates taking a logarithm at
runtime and makes the code slightly simpler.
The line marked '(1)' ensures that, for negative ht_in_km, the
returned value extrapolates correctly, contining to increase for a few
kilometers at roughly the correct rate (to handle objects hitting the Dead
Sea), but then levels off and drops to a near-vacuum inside the earth.
That was the easiest way of avoiding problems with the density climbing to
absurd heights as one approached the center of the earth... doing this
avoids discontinuities that it would be awkward to code around. */
static double atmospheric_density( const double ht_in_km)
{
#ifdef ORIGINAL_TABLE_FOR_REFERENCE_ONLY
const double rho[] = { 1.22500e+0, 4.13510e-1, 8.89099e-2,
1.84102e-2, 3.99568e-3, 1.02688e-3, 3.09678e-4, 8.28286e-5,
1.84580e-5, 3.40454e-6, 5.60400e-7, 9.39781e-8, 2.22485e-8,
8.15200e-9, 3.81812e-9, 2.07600e-9, 1.23365e-9, 7.81486e-10,
5.19431e-10, 3.58062e-10, 2.54100e-10, 1.84452e-10, 1.36522e-10,
1.02784e-10, 7.85246e-11, 6.07300e-11, 4.74445e-11, 3.73990e-11,
2.97195e-11, 2.37875e-11, 1.91600e-11, 1.55181e-11, 1.26324e-11,
1.03320e-11, 8.48753e-12, 7.00038e-12, 5.79500e-12, 4.81307e-12,
4.00937e-12, 3.34858e-12, 2.80300e-12, 2.35089e-12, 1.97535e-12,
1.66279e-12, 1.40213e-12, 1.18435e-12, 1.00205e-12, 8.49163e-13,
7.20722e-13, 6.12626e-13, 5.21500e-13, 4.44559e-13, 3.79525e-13,
3.24498e-13, 2.77890e-13, 2.38368e-13, 2.04815e-13, 1.76297e-13,
1.52027e-13, 1.31346e-13, 1.13700e-13, 9.86238e-14, 8.57305e-14,
7.46934e-14, 6.52351e-14, 5.71206e-14, 5.01507e-14, 4.41564e-14,
3.89945e-14, 3.45434e-14, 3.07000e-14, 2.73763e-14, 2.44951e-14,
2.19914e-14, 1.98103e-14, 1.79058e-14, 1.62389e-14, 1.47768e-14,
1.34915e-14, 1.23593e-14, 1.13600e-14, 1.04763e-14, 9.69241e-15,
8.99505e-15, 8.37279e-15, 7.81590e-15, 7.31609e-15, 6.86621e-15,
6.46015e-15, 6.09261e-15, 5.75900e-15, 5.45526e-15, 5.17752e-15,
4.92236e-15, 4.68680e-15, 4.46826e-15, 4.26448e-15, 4.07349e-15,
3.89356e-15, 3.72317e-15, 3.56100e-15 };
#endif
const double log_rho[] = { 0.2029, -0.8831, -2.4201, -3.9949,
-5.5225, -6.8812, -8.0800, -9.3987, -10.9000, -12.5904,
-14.3946, -16.1802, -17.6210, -18.6250, -19.3835, -19.9928,
-20.5133, -20.9698, -21.3783, -21.7503, -22.0933, -22.4136,
-22.7145, -22.9984, -23.2676, -23.5246, -23.7715, -24.0094,
-24.2392, -24.4619, -24.6782, -24.8890, -25.0948, -25.2958,
-25.4924, -25.6851, -25.8740, -26.0597, -26.2424, -26.4225,
-26.6003, -26.7762, -26.9503, -27.1225, -27.2930, -27.4618,
-27.6290, -27.7945, -27.9585, -28.1210, -28.2821, -28.4417,
-28.5999, -28.7565, -28.9116, -29.0650, -29.2167, -29.3666,
-29.5147, -29.6609, -29.8052, -29.9475, -30.0876, -30.2254,
-30.3608, -30.4936, -30.6237, -30.7510, -30.8754, -30.9966,
-31.1145, -31.2291, -31.3403, -31.4481, -31.5526, -31.6537,
-31.7514, -31.8457, -31.9367, -32.0244, -32.1087, -32.1897,
-32.2674, -32.3421, -32.4138, -32.4826, -32.5487, -32.6122,
-32.6731, -32.7317, -32.7880, -32.8422, -32.8945, -32.9450,
-32.9940, -33.0418, -33.0885, -33.1343, -33.1795, -33.2242,
-33.2687 };
double fraction, log_rval;
int range = (int)( ht_in_km / 10.);
const int table_size = sizeof( log_rho) / sizeof( log_rho[0]); /* = 101 */
if( range < 0)
range = 0;
if( range > table_size - 2)
range = table_size - 2;
fraction = ht_in_km / 10. - (double)range;
log_rval = log_rho[range] + fraction * (log_rho[range + 1] - log_rho[range])
- (fraction < 0. ? fraction * fraction : 0.); /* (1) */
if( !range && log_rval < -4.)
log_rval = -4.;
return( exp( log_rval));
}
/* If we're closer than .1 AU, include Galileans separately: */
#define GALILEAN_LIMIT .03
#define TITAN_LIMIT .03
unsigned excluded_perturbers = (unsigned)-1;
int best_fit_planet;
double best_fit_planet_dist;
/* The Earth and Moon pose a special problem in the following function.
The way we want things to work is this: if the earth's perturbations are
included, but not the moon's, then we pretend that there is one object,
with the combined mass of the two, at the earth-moon barycenter. We've
got functions (JPL DE ephemerides and VSOP) to compute the EMB location,
so this is actually pretty straightforward.
If Earth and Moon are handled as separate objects (always the case for
objects really close to us), things are a little stickier. When it comes
time for the Earth's position to be computed, we call earth_lunar_posn(),
which actually computes both the earth _and_ lunar position simultaneously.
We store the latter, and use it when it's time to compute lunar perturbations.
Another peculiarity that should be explained: in the real universe,
there are limits as to how close you can get to an object (except for a
black hole), so accelerations cannot climb toward infinity. But objects
do hit planets, and in the preliminary steps of orbit determination, you
may have orbits passing through planets. To get around this, I added
a fictional "compute_accel_multiplier". If you're outside the planet,
this multiplier is 1, i.e., no effect. If you're within a fraction r0
radius of the center, deep inside the planet (or sun or moon), this
multiplier is zero, i.e., there is no force (instead of acceleration
growing to infinity).
In between, a cubic spline linking the boundary conditions is used.
This ensures that both the accelerations and their derivatives will
be continuous.
*/
static double compute_accel_multiplier( double fraction)
{
const double r0 = .8; /* acceleration drops to zero at 80% of planet radius */
double rval;
assert( fraction >= 0. && fraction <= 1.);
if( fraction < r0)
rval = 0.;
else
{
fraction = (fraction - r0) / (1. - r0);
assert( fraction >= 0. && fraction <= 1.);
rval = fraction * fraction * (3. - 2. * fraction);
}
return( rval);
}
#define FUDGE_FACTOR .9
int planet_hit = -1;
int calc_derivatives( const double jd, const double *ival, double *oval,
const int reference_planet)
{
double r, r2 = 0., solar_accel = 1. + object_mass;
int i, j;
unsigned local_perturbers = perturbers;
double lunar_loc[3], jupiter_loc[3], saturn_loc[3];
double relativistic_accel[3];
extern int n_extra_params;
static const double sphere_of_influence_radius[10] = {
10000., 0.00075, 0.00412, 0.00618, /* sun, mer, ven, ear */
0.00386, 0.32229, 0.36466, 0.34606, /* mar, jup, sat, ura */
0.57928, 0.02208 }; /* nep, plu */
static const double planet_radius[11] = {
SUN_R * FUDGE_FACTOR, MERCURY_R * FUDGE_FACTOR,
VENUS_R * FUDGE_FACTOR, EARTH_R * FUDGE_FACTOR,
MARS_R * FUDGE_FACTOR, JUPITER_R * FUDGE_FACTOR,
SATURN_R * FUDGE_FACTOR, URANUS_R * FUDGE_FACTOR,
NEPTUNE_R * FUDGE_FACTOR, PLUTO_R * FUDGE_FACTOR,
MOON_R * FUDGE_FACTOR };
assert( fabs( jd) < 1e+9);
oval[0] = ival[3];
oval[1] = ival[4];
oval[2] = ival[5];
best_fit_planet = 0;
planet_hit = -1;
for( i = 0; i < 3; i++)
r2 += ival[i] * ival[i];
r = sqrt( r2);
if( n_extra_params == 1) /* straightforward radiation pressure */
{
extern double solar_pressure[];
solar_accel -= solar_pressure[0];
}
if( r < planet_radius[0]) /* special fudge to keep acceleration from reaching */
{ /* infinity inside the sun; see above notes */
solar_accel *= compute_accel_multiplier( r / planet_radius[0]);
planet_hit = 0;
if( debug_level)
debug_printf( "Inside the sun: %f km\n", r * AU_IN_KM);
if( !solar_accel)
{
for( i = 3; i < 6; i++)
oval[i] = 0.;
return( 0);
}
}
solar_accel *= -SOLAR_GM / (r2 * r);
if( perturbers)
set_relativistic_accel( relativistic_accel, ival);
else /* shut off relativity if no perturbers */
for( i = 0; i < 3; i++)
relativistic_accel[i] = 0.;
solar_accel *= include_thrown_in_planets( r);
for( i = 0; i < 3; i++)
oval[i + 3] = solar_accel * ival[i]
+ SOLAR_GM * relativistic_accel[i];
if( (local_perturbers >> IDX_ASTEROIDS) & 1)
if( r < 11.5 && r > 1.)
detect_perturbers( jd, ival, oval); /* bc405.cpp */
if( n_extra_params == 2 || n_extra_params == 3)
{ /* Marsden & Sekanina comet formula */
const double g = comet_g_func( r);
extern double solar_pressure[];
double transverse[3], dot_prod = 0.;
memcpy( transverse, ival + 3, 3 * sizeof( double));
for( i = 0; i < 3; i++)
dot_prod += transverse[i] * ival[i];
for( i = 0; i < 3; i++)
transverse[i] -= ival[i] * dot_prod / r;
dot_prod = vector3_length( transverse);
for( i = 0; i < 3; i++)
oval[i + 3] += g * (solar_pressure[0] * ival[i] / r
+ solar_pressure[1] * transverse[i] / dot_prod);
if( n_extra_params == 3)
{
double out_of_plane[3];
vector_cross_product( out_of_plane, ival, transverse);
dot_prod = vector3_length( out_of_plane);
for( i = 0; i < 3; i++)
oval[i + 3] += g * solar_pressure[2] * out_of_plane[i] / dot_prod;
}
}
if( perturbers)
for( i = 1; i < N_PERTURB + 1; i++)
if( ((local_perturbers >> i) & 1)
&& !((excluded_perturbers >> i) & 1))
{
double planet_loc[15], accel[3], mass_to_use = planet_mass[i];
double accel_multiplier = 1.;
r = r2 = 0.;
if( i >= IDX_IO) /* Galileans, Titan */
{
double matrix[10], sat_loc[15];
const double t_years = (jd - J2000) / 365.25;
if( i >= IDX_TETHYS) /* Saturnian satell */
calc_ssat_loc( jd, sat_loc,
((i == IDX_IAPETUS) ? 7 : i - 13), 0L);
else
{
calc_jsat_loc( jd, sat_loc, 1 << (i - IDX_IO), 0L);
memmove( sat_loc, sat_loc + (i - IDX_IO) * 3,
3 * sizeof( double));
}
/* turn ecliptic of date to equatorial: */
rotate_vector( sat_loc, mean_obliquity( t_years / 100.), 0);
/* then to equatorial J2000: */
setup_precession( matrix, 2000. + t_years, 2000.);
precess_vector( matrix, sat_loc, planet_loc + 12);
/* then to ecliptic J2000: */
equatorial_to_ecliptic( planet_loc + 12);
for( j = 0; j < 3; j++)
{
double coord;
if( i >= IDX_TETHYS) /* Saturnian */
coord = saturn_loc[j] + planet_loc[12 + j];
else
coord = jupiter_loc[j] + planet_loc[12 + j] * JUPITER_R;
r2 += coord * coord;
planet_loc[12 + j] = coord;
}
planet_loc[2] = sqrt( r2);
}
else
{
if( local_perturbers & 1024) /* if the moon is included */
{
if( i == 3)
earth_lunar_posn( jd, planet_loc, lunar_loc);
else if( i == 10)
memcpy( planet_loc, lunar_loc, 3 * sizeof( double));
else
planet_posn( i, jd, planet_loc);
}
else
planet_posn( i, jd, planet_loc);
for( j = 0; j < 3; j++)
r2 += planet_loc[j] * planet_loc[j];
memcpy( planet_loc + 12, planet_loc, 3 * sizeof( double));
planet_loc[2] = sqrt( r2);
}
for( j = 0; j < 3; j++)
{
accel[j] = ival[j] - planet_loc[12 + j];
r += accel[j] * accel[j];
}
r = sqrt( r);
if( i == IDX_JUPITER)
{
if( r < GALILEAN_LIMIT)
{
memcpy( jupiter_loc, planet_loc + 12, 3 * sizeof( double));
local_perturbers |= (15 << 11);
}
else /* "throw" Galileans into Jupiter: */
mass_to_use = MASS_JUPITER_SYSTEM;
}
if( i == IDX_SATURN)
{
if( r < TITAN_LIMIT)
{
memcpy( saturn_loc, planet_loc + 12, 3 * sizeof( double));
local_perturbers |= (31 << 15);
}
else /* "throw" saturn's satellites into the primary: */
mass_to_use = MASS_SATURN_SYSTEM;
}
if( r < planet_radius[i])
{
accel_multiplier = compute_accel_multiplier( r / planet_radius[i]);
planet_hit = i;
}
if( i >= IDX_EARTH && i <= IDX_NEPTUNE && r < .015 && j2_multiplier
&& accel_multiplier)
{ /* Within .015 AU, we take J2 into account: */
double grad[3], delta_j2000[3], matrix[10], delta_planet[3];
const double j2[6] = { EARTH_J2, MARS_J2, JUPITER_J2,
SATURN_J2, URANUS_J2, NEPTUNE_J2 };
const double j3[6] = { EARTH_J3, MARS_J3, JUPITER_J3,
SATURN_J3, URANUS_J3, NEPTUNE_J3 };
const double j4[6] = { EARTH_J4, MARS_J4, JUPITER_J4,
SATURN_J4, URANUS_J4, NEPTUNE_J4 };
const double total_j_mul = j2_multiplier * accel_multiplier;
calc_approx_planet_orientation( i, 0, jd, matrix);
/* Remembering the 'accels' are 'deltas' now... */
memcpy( delta_j2000, accel, 3 * sizeof( double));
/* Cvt ecliptic to equatorial 2000...: */
ecliptic_to_equatorial( delta_j2000);
/* ...then to planet-centered coords: */
precess_vector( matrix, delta_j2000, delta_planet);
if( total_j_mul)
numerical_gradient( grad, delta_planet,
planet_mass[i] * SOLAR_GM,
j2[i - 3], j3[i - 3], j4[i - 3]);
else /* inside the planet */
for( j = 0; j < 3; j++)
grad[j] = 0.;
/* Cvt gradient from planet-centric to equatorial: */
deprecess_vector( matrix, grad, delta_j2000);
/* Cvt equatorial to ecliptic: */
equatorial_to_ecliptic( delta_j2000);
/* And add 'em to the output acceleration: */
for( j = 0; j < 3; j++)
oval[j + 3] -= total_j_mul * delta_j2000[j];
if( i == IDX_EARTH && r < ATMOSPHERIC_LIMIT && n_extra_params == 1
&& !*get_environment_ptr( "DRAG_SHUTOFF"))
{
extern double solar_pressure[];
const double SRP1AU = 2.3e-7; /* kg*AU^3 / (m^2*d^2) */
const double amr_drag = solar_pressure[0] * SOLAR_GM / SRP1AU;
const double rho_cos_phi = sqrt( delta_planet[0] * delta_planet[0]
+ delta_planet[1] * delta_planet[1]) / EARTH_R;
const double rho_sin_phi = delta_planet[2] / EARTH_R;
double ht_in_meters, rho;
const double meters_per_km = 1000.;
const double dt = .5 / minutes_per_day; /* half a minute */
const double Cd = 0.47; /* drag coeff for a sphere */
double earth_loc[3]; /* 2nd location of earth, used for getting vel */
double vel[3]; /* velocity of obj relative to the earth */
double speed; /* magnitude of the vel[] vector */
double drag[3]; /* drag acceleration, in m/s^2 */
double accel_coeff;
parallax_to_lat_alt( rho_cos_phi, rho_sin_phi, NULL,
&ht_in_meters, i);
// debug_printf( "Parallax: %f %f; ht in meters %f\n",
// rho_cos_phi, rho_sin_phi, ht_in_meters);
rho = atmospheric_density( ht_in_meters / meters_per_km);
earth_lunar_posn( jd + dt, earth_loc, NULL);
for( j = 0; j < 3; j++)
{
/* in degrees/day, sidereal... */
const double earth_rotation_rate = 360.98564736629;
/* ...and converted to radians/day: */
const double earth_omega = earth_rotation_rate * (PI / 180.);
const double earth_vel = (earth_loc[j] - planet_loc[j + 12]) / dt;
const double topo_vel = earth_omega *
(delta_planet[0] * matrix[j + 3] - delta_planet[1] * matrix[j]);
vel[j] = earth_vel - oval[j]; /* in AU/day */
vel[j] -= topo_vel * accel_multiplier;
vel[j] *= AU_IN_METERS / seconds_per_day; /* cvt to m/s */
}
speed = vector3_length( vel); /* also in m/s */
accel_coeff = rho * Cd * speed * amr_drag / 2.;
for( j = 0; j < 3; j++)
drag[j] = vel[j] * accel_coeff;
// debug_printf( "Height %7.2f km; speed %7.1f m/s; accel %6.1f m/s^2\n",
// ht_in_meters / meters_per_km, speed, vector3_length( drag));
for( j = 0; j < 3; j++)
oval[j + 3] += drag[j] * seconds_per_day * seconds_per_day / AU_IN_METERS;
}
}
/* If we're including the earth, but the moon isn't */
/* being included separately, add the mass of the moon:*/
if( i == IDX_EARTH)
if( !((local_perturbers >> IDX_MOON) & 1) ||
((excluded_perturbers >> IDX_MOON) & 1))
mass_to_use += planet_mass[IDX_MOON];
if( i < 10 && r < sphere_of_influence_radius[i]
&& reference_planet != -1)
{
best_fit_planet = i;
best_fit_planet_dist = r;
}
if( accel_multiplier)
{
const double accel_factor = -SOLAR_GM * accel_multiplier
* mass_to_use / (r * r * r);
for( j = 0; j < 3; j++)
oval[j + 3] += accel_factor * accel[j];
}
if( i != reference_planet)
{
if( reference_planet >= 0)
{
double planet_posn[3];
get_planet_posn_vel( jd, reference_planet, planet_posn, NULL);
for( j = 0; j < 3; j++)
planet_loc[j + 12] -= planet_posn[j];
r = vector3_length( planet_loc + 12);
}
else
r = planet_loc[2];
if( r)
r = -SOLAR_GM * mass_to_use / (r * r * r);
for( j = 0; j < 3; j++)
oval[j + 3] += r * planet_loc[j + 12];
}
else /* subtract sun's attraction to reference planet */
{
r = planet_loc[2];
if( r)
r = SOLAR_GM / (r * r * r);
for( j = 0; j < 3; j++)
oval[j + 3] += r * planet_loc[j + 12];
}
}
return( planet_hit);
}
int calc_derivativesl( const ldouble jd, const ldouble *ival, ldouble *oval,
const int reference_planet)
{
unsigned i;
int rval;
double ival1[6], oval1[6];
assert( fabs( (double)jd) < 1e+9);
for( i = 0; i < 6; i++)
ival1[i] = (double)ival[i];
rval = calc_derivatives( (double)jd, ival1, oval1, reference_planet);
for( i = 0; i < 6; i++)
oval[i] = (ldouble)oval1[i];
return( rval);
}
static int get_planet_posn_vel( const double jd, const int planet_no,
double *posn, double *vel)
{
assert( fabs( jd) < 1e+9);
if( posn)
{
if( !planet_no) /* sun doesn't move in the heliocentric frame */
memset( posn, 0, 3 * sizeof( double));
else if( planet_no == 3)
earth_lunar_posn( jd, posn, NULL);
else if( planet_no == 10)
earth_lunar_posn( jd, NULL, posn);
else
planet_posn( planet_no, jd, posn);
}
if( vel)
{
if( !planet_no) /* sun doesn't move in the heliocentric frame */
memset( vel, 0, 3 * sizeof( double));
else
{
int i;
double loc1[3], loc2[3];
const double delta = 1. / minutes_per_day; /* one minute delta... */
get_planet_posn_vel( jd + delta, planet_no, loc2, NULL);
get_planet_posn_vel( jd - delta, planet_no, loc1, NULL);
for( i = 0; i < 3; i++)
vel[i] = (loc2[i] - loc1[i]) / (2. * delta);
}
}
return( 0);
}
int find_relative_orbit( const double jd, const double *ivect,
ELEMENTS *elements, const int ref_planet)
{
double local_rel_vect[6];
assert( ref_planet >= 0);
memcpy( local_rel_vect, ivect, 6 * sizeof( double));
if( ref_planet)
{
double planet_state[6];
int i;
get_planet_posn_vel( jd, ref_planet, planet_state, planet_state + 3);
for( i = 0; i < 6; i++)
local_rel_vect[i] -= planet_state[i];
}
// if( rel_vect)
// memcpy( rel_vect, local_rel_vect, 6 * sizeof( double));
if( elements)
{
elements->gm = SOLAR_GM * planetary_system_mass( ref_planet);
calc_classical_elements( elements, local_rel_vect, jd, 1);
elements->epoch = jd;
elements->central_obj = ref_planet;
}
return( 0);
}
int check_for_perturbers( const double t_cen, const double *vect); /* sm_vsop*/
int find_best_fit_planet( const double jd, const double *ivect,
double *rel_vect)
{
int i, j, rval = 0;
double best_fit = 0., vel[3];
int included = 1; /* the Sun is always included in this */
const int possible_perturber = check_for_perturbers( (jd - J2000) / 36525.,
ivect);
assert( ivect);
assert( rel_vect);
included |= (1 << possible_perturber);
if( possible_perturber == 3)
included |= (1 << 10);
for( i = 0; i < 11; i++)
if( (included >> i) & 1)
{
double planet_loc[3], delta[3], dist2 = 0., curr_fit;
get_planet_posn_vel( jd, i, planet_loc, NULL);
for( j = 0; j < 3; j++)
{
delta[j] = ivect[j] - planet_loc[j];
dist2 += delta[j] * delta[j];
}
curr_fit = planet_mass[i] / exp( log( dist2) * 1.25);
if( !i || curr_fit > best_fit)
{
rval = i;
best_fit = curr_fit;
memcpy( rel_vect, delta, 3 * sizeof( double));
}
}
get_planet_posn_vel( jd, rval, NULL, vel);
for( j = 0; j < 3; j++)
rel_vect[j + 3] = ivect[j + 3] - vel[j];
return( rval);
}
static void compute_ref_state( ELEMENTS *ref_orbit, double *ref_state,
const double jd)
{
double r2 = 0., accel;
int i;
if( ref_orbit->central_obj < 0) /* using the method of Cowell */
{
memset( ref_state, 0, 9 * sizeof( double));
return;
}
comet_posn_and_vel( ref_orbit, jd, ref_state, ref_state + 3);
for( i = 0; i < 3; i++)
r2 += ref_state[i] * ref_state[i];
accel = -SOLAR_GM * planetary_system_mass( ref_orbit->central_obj) / (r2 * sqrt( r2));
for( i = 0; i < 3; i++)
ref_state[i + 6] = accel * ref_state[i];
if( ref_orbit->central_obj)
{
double planet_state[6];
get_planet_posn_vel( jd, ref_orbit->central_obj, planet_state, planet_state + 3);
for( i = 0; i < 6; i++)
ref_state[i] += planet_state[i];
}
}
#define B_2_1 .0555555555555555555555555555556
#define B_3_1 .0208333333333333333333333333333
#define B_3_2 .0625
#define B_4_1 .03125
#define B_4_2 0.
#define B_4_3 .09375
#define B_5_1 .3125
#define B_5_2 0.
#define B_5_3 -1.171875
#define B_5_4 1.171875
#define B_6_1 .0375
#define B_6_2 0.
#define B_6_3 0.
#define B_6_4 .1875
#define B_6_5 .15
#define B_7_1 .0479101371111111111111111111111
#define B_7_2 0.
#define B_7_3 0.
#define B_7_4 .112248712777777777777777777778
#define B_7_5 -.0255056737777777777777777777778
#define B_7_6 .0128468238888888888888888888889
#define B_8_1 .016917989787292281181431107136
#define B_8_2 0.
#define B_8_3 0.
#define B_8_4 .387848278486043169526545744159
#define B_8_5 .0359773698515003278967008896348
#define B_8_6 .196970214215666060156715256072
#define B_8_7 -.172713852340501838761392997002
#define B_9_1 .0690957533591923006485645489846
#define B_9_2 0.
#define B_9_3 0.
#define B_9_4 -.634247976728854151882807874972
#define B_9_5 -.161197575224604080366876923982
#define B_9_6 .138650309458825255419866950133
#define B_9_7 .94092861403575626972423968413
#define B_9_8 .211636326481943981855372117132
#define B_10_1 .183556996839045385489806023537
#define B_10_2 0.
#define B_10_3 0.
#define B_10_4 -2.46876808431559245274431575997
#define B_10_5 -.291286887816300456388002572804
#define B_10_6 -.026473020233117375688439799466
#define B_10_7 2.84783876419280044916451825422
#define B_10_8 .281387331469849792539403641827
#define B_10_9 .123744899863314657627030212664
#define B_11_1 -1.21542481739588805916051052503
#define B_11_2 0.
#define B_11_3 0.
#define B_11_4 16.6726086659457724322804132886
#define B_11_5 .915741828416817960595718650451
#define B_11_6 -6.05660580435747094755450554309
#define B_11_7 -16.0035735941561781118417064101
#define B_11_8 14.849303086297662557545391898
#define B_11_9 -13.3715757352898493182930413962
#define B_11_10 5.13418264817963793317325361166
#define B_12_1 .258860916438264283815730932232
#define B_12_2 0.
#define B_12_3 0.
#define B_12_4 -4.77448578548920511231011750971
#define B_12_5 -.43509301377703250944070041181
#define B_12_6 -3.04948333207224150956051286631
#define B_12_7 5.57792003993609911742367663447
#define B_12_8 6.15583158986104009733868912669
#define B_12_9 -5.06210458673693837007740643391
#define B_12_10 2.19392617318067906127491429047
#define B_12_11 .134627998659334941535726237887
#define B_13_1 .822427599626507477963168204773
#define B_13_2 0.
#define B_13_3 0.
#define B_13_4 -11.6586732572776642839765530355
#define B_13_5 -.757622116690936195881116154088
#define B_13_6 .713973588159581527978269282765
#define B_13_7 12.0757749868900567395661704486
#define B_13_8 -2.12765911392040265639082085897
#define B_13_9 1.99016620704895541832807169835
#define B_13_10 -.234286471544040292660294691857
#define B_13_11 .17589857770794226507310510589
#define B_13_12 0.
/* The coefficients BHAT(*) refer to the formula used to advance the
integration, here the one of order 8. The coefficients B(*) refer
to the other formula, here the one of order 7. */
#define CHAT_1 .0417474911415302462220859284685
#define CHAT_2 0.
#define CHAT_3 0.
#define CHAT_4 0.
#define CHAT_5 0.
#define CHAT_6 -.0554523286112393089615218946547
#define CHAT_7 .239312807201180097046747354249
#define CHAT_8 .70351066940344302305804641089
#define CHAT_9 -.759759613814460929884487677085
#define CHAT_10 .660563030922286341461378594838
#define CHAT_11 .158187482510123335529614838601
#define CHAT_12 -.238109538752862804471863555306
#define CHAT_13 .25
#define C_1 .029553213676353496981964883112
#define C_2 0.
#define C_3 0.
#define C_4 0.
#define C_5 0.
#define C_6 -.828606276487797039766805612689
#define C_7 .311240900051118327929913751627
#define C_8 2.46734519059988698196468570407
#define C_9 -2.54694165184190873912738007542
#define C_10 1.44354858367677524030187495069
#define C_11 .0794155958811272872713019541622
#define C_12 .0444444444444444444444444444445
#define C_13 0.
#define A_1 0.
#define A_2 .0555555555555555555555555555556
#define A_3 .0833333333333333333333333333334
#define A_4 .125
#define A_5 .3125
#define A_6 .375
#define A_7 .1475
#define A_8 .465
#define A_9 .564865451382259575398358501426
#define A_10 .65
#define A_11 .924656277640504446745013574318
#define A_12 1.
#define A_13 A_12
#define N_EVALS 13
#define N_EVALS_PLUS_ONE 14
double take_pd89_step( const double jd, ELEMENTS *ref_orbit,
const double *ival, double *ovals,
const int n_vals, const double step)
{
double *ivals[N_EVALS_PLUS_ONE], *ivals_p[N_EVALS], rval = 0.;
int i, j, k;
const double bvals[91] = { B_2_1,
B_3_1, B_3_2,
B_4_1, B_4_2, B_4_3,
B_5_1, B_5_2, B_5_3, B_5_4,
B_6_1, B_6_2, B_6_3, B_6_4, B_6_5,
B_7_1, B_7_2, B_7_3, B_7_4, B_7_5, B_7_6,
B_8_1, B_8_2, B_8_3, B_8_4, B_8_5, B_8_6, B_8_7,
B_9_1, B_9_2, B_9_3, B_9_4, B_9_5, B_9_6, B_9_7, B_9_8,
B_10_1, B_10_2, B_10_3, B_10_4, B_10_5, B_10_6, B_10_7, B_10_8, B_10_9,
B_11_1, B_11_2, B_11_3, B_11_4, B_11_5, B_11_6, B_11_7, B_11_8, B_11_9, B_11_10,
B_12_1, B_12_2, B_12_3, B_12_4, B_12_5, B_12_6, B_12_7, B_12_8, B_12_9, B_12_10, B_12_11,
B_13_1, B_13_2, B_13_3, B_13_4, B_13_5, B_13_6, B_13_7, B_13_8, B_13_9, B_13_10, B_13_11, B_13_12,
CHAT_1, CHAT_2, CHAT_3, CHAT_4, CHAT_5, CHAT_6, CHAT_7, CHAT_8, CHAT_9, CHAT_10, CHAT_11, CHAT_12, CHAT_13 };
const double avals[N_EVALS_PLUS_ONE] = { 0, A_1, A_2, A_3, A_4, A_5,
A_6, A_7, A_8, A_9, A_10, A_11, A_12, A_13 };
const double *bptr = bvals;
ivals[0] = (double *)calloc( (2 * N_EVALS + 1) * n_vals, sizeof( double));
assert( ivals[0]);
if( !ivals[0])
return( 0.);
for( i = 0; i < N_EVALS; i++)
{
ivals[i + 1] = ivals[0] + (i + 1) * n_vals;
ivals_p[i] = ivals[0] + (i + N_EVALS + 1) * n_vals;
}
for( j = 0; j <= N_EVALS; j++)
{
double ref_state_j[9], state_j[6];
const double jd_j = jd + step * avals[j];
compute_ref_state( ref_orbit, ref_state_j, jd_j);
if( !j)
{
memcpy( state_j, ival, 6 * sizeof( double));
/* subtract the analytic posn/vel from the numeric: */
for( i = 0; i < n_vals; i++)
ivals[0][i] = ival[i] - ref_state_j[i];
}
else
for( i = 0; i < n_vals; i++)
{
double tval = 0.;
for( k = 0; k < j; k++)
tval += bptr[k] * ivals_p[k][i];
ivals[j][i] = tval * step + ivals[0][i];
state_j[i] = ivals[j][i] + ref_state_j[i];
}
bptr += j;
if( j != N_EVALS)
{
assert( fabs( jd_j) < 1e+9);
calc_derivatives( jd_j, state_j, ivals_p[j], ref_orbit->central_obj);
for( k = 0; k < 6; k++)
ivals_p[j][k] -= ref_state_j[k + 3];
}
else /* on last iteration, we have our answer: */
memcpy( ovals, state_j, n_vals * sizeof( double));
}
for( i = 0; i < n_vals; i++)
{
double tval = 0.;
const double err_coeff[N_EVALS] = { CHAT_1 - C_1, CHAT_2 - C_2,
CHAT_3 - C_3, CHAT_4 - C_4, CHAT_5 - C_5, CHAT_6 - C_6,
CHAT_7 - C_7, CHAT_8 - C_8, CHAT_9 - C_9, CHAT_10 - C_10,
CHAT_11 - C_11, CHAT_12 - C_12, CHAT_13 - C_13 };
for( k = 0; k < N_EVALS; k++)
tval += err_coeff[k] * ivals_p[k][i];
rval += tval * tval;
}
return( sqrt( rval * step * step));
}
#define ORIGINAL_FEHLBERG_CONSTANTS
/* These "original" constants can be found in Danby, p. 298. */
/* The ones actually used are from _Numerical Recipes_, and */
/* are for the Cash-Karp variant of Runge-Kutta. NR says */
/* these constants are slightly better. (Must admit, I've not */
/* done a really careful comparison!) Dormand-Prince's method */
/* (the 5/4 order version, not the 9/8 one given above) may also */
/* be worth a look. */
#ifdef ORIGINAL_FEHLBERG_CONSTANTS
#define RKF_B21 2. / 9.
#define RKF_B31 1. / 12.
#define RKF_B32 1. / 4.
#define RKF_B41 69. / 128.
#define RKF_B42 -243. / 128.
#define RKF_B43 135. / 64.
#define RKF_B51 -17. / 12.
#define RKF_B52 27. / 4.
#define RKF_B53 -27. / 5.
#define RKF_B54 16. / 15.
#define RKF_B61 65. / 432.
#define RKF_B62 -5. / 16.
#define RKF_B63 13 / 16.
#define RKF_B64 4 / 27.
#define RKF_B65 5. / 144.
#define RKF_CHAT1 47. / 450.
#define RKF_CHAT2 0.
#define RKF_CHAT3 12 / 25.
#define RKF_CHAT4 32. / 225.
#define RKF_CHAT5 1. / 30.
#define RKF_CHAT6 6. / 25.
#define RKF_C1 1. / 9.
#define RKF_C2 0.
#define RKF_C3 9. / 20.
#define RKF_C4 16. / 45.
#define RKF_C5 1. / 12.
#define RKF_C6 0.
#define RKF_A1 0.
#define RKF_A2 2. / 9.
#define RKF_A3 1. / 3.
#define RKF_A4 .75
#define RKF_A5 1.
#define RKF_A6 5. / 6.
#else
#define RKF_B21 1. / 5.
#define RKF_B31 3. / 40.
#define RKF_B32 9. / 40.
#define RKF_B41 3. / 10.
#define RKF_B42 -9. / 10.
#define RKF_B43 6. / 5.
#define RKF_B51 -11. / 54.
#define RKF_B52 5. / 2.
#define RKF_B53 -70. / 27.
#define RKF_B54 35. / 27.
#define RKF_B61 1631. / 55296
#define RKF_B62 175. / 512.
#define RKF_B63 575. / 13824.
#define RKF_B64 44275. / 110592.
#define RKF_B65 253. / 4096.
#define RKF_CHAT1 2825. / 27648.
#define RKF_CHAT2 0.
#define RKF_CHAT3 18575. / 48384.
#define RKF_CHAT4 13525. / 55296.
#define RKF_CHAT5 277. / 14336.
#define RKF_CHAT6 .25
#define RKF_C1 37. / 378.
#define RKF_C2 0.
#define RKF_C3 250. / 621.
#define RKF_C4 125. / 594.
#define RKF_C5 0.
#define RKF_C6 512. / 1771.
#define RKF_A1 0.
#define RKF_A2 .2
#define RKF_A3 .3
#define RKF_A4 .6
#define RKF_A5 1.
#define RKF_A6 .875
#endif
/* Butcher tableau looks like this :
A1 |
A2 | B21
A3 | B31 B32
A4 | B41 B42 B43
A5 | B51 B52 B53 B54
A6 | B61 B62 B63 B64 B65
---+---------------------
| C1 C2 C3 C4 C5 C6
| C^1 C^2 C^3 C^4 C^5 C^6 */
ldouble take_rk_stepl( const ldouble jd, ELEMENTS *ref_orbit,
const ldouble *ival, ldouble *ovals,
const int n_vals, const ldouble step)
{
ldouble *ivals[7], *ivals_p[6], rval = 0.;
int i, j, k;
/* Revised values from _Numerical Recipes_: */
const ldouble bvals[21] = { RKF_B21,
RKF_B31, RKF_B32,
RKF_B41, RKF_B42, RKF_B43,
RKF_B51, RKF_B52, RKF_B53, RKF_B54,
RKF_B61, RKF_B62, RKF_B63, RKF_B64, RKF_B65,
RKF_CHAT1, RKF_CHAT2, RKF_CHAT3,
RKF_CHAT4, RKF_CHAT5, RKF_CHAT6 };
const ldouble avals[7] = { RKF_A1, RKF_A2, RKF_A3, RKF_A4, RKF_A5, RKF_A6, 1.};
const ldouble *bptr = bvals;
ldouble temp_ivals[78];
if( n_vals > 6)
ivals[0] = (ldouble *)calloc( 13 * n_vals, sizeof( ldouble));
else
ivals[0] = temp_ivals;
assert( ivals[0]);
if( !ivals[0])
return( 0.);
for( i = 0; i < 6; i++)
{
ivals[i + 1] = ivals[0] + (i + 1) * n_vals;
ivals_p[i] = ivals[0] + (i + 7) * n_vals;
}
for( j = 0; j < 7; j++)
{
ldouble ref_state_j[9], state_j[6];
const ldouble jd_j = jd + step * avals[j];
double temp_array[9];
compute_ref_state( ref_orbit, temp_array, (double)jd_j);
for( i = 0; i < 9; i++)
ref_state_j[i] = (ldouble)temp_array[i];
if( !j)
{
memcpy( state_j, ival, 6 * sizeof( ldouble));
/* subtract the analytic posn/vel from the numeric: */
for( i = 0; i < n_vals; i++)
ivals[0][i] = ival[i] - ref_state_j[i];
}
else
for( i = 0; i < n_vals; i++)
{
ldouble tval = 0.;
for( k = 0; k < j; k++)
tval += bptr[k] * ivals_p[k][i];
ivals[j][i] = tval * step + ivals[0][i];
state_j[i] = ivals[j][i] + ref_state_j[i];
}
bptr += j;
if( j != 6)
{
#ifndef __WATCOMC__
assert( fabsl( jd_j) < 1e+9);
#endif
calc_derivativesl( jd_j, state_j, ivals_p[j], ref_orbit->central_obj);
for( k = 0; k < 6; k++)
ivals_p[j][k] -= ref_state_j[k + 3];
}
else /* on last iteration, we have our answer: */
memcpy( ovals, state_j, n_vals * sizeof( ldouble));
}
for( i = 0; i < n_vals; i++)
{
ldouble tval = 0.;
static const ldouble err_coeffs[6] = {
RKF_CHAT1 - RKF_C1, RKF_CHAT2 - RKF_C2, RKF_CHAT3 - RKF_C3,
RKF_CHAT4 - RKF_C4, RKF_CHAT5 - RKF_C5, RKF_CHAT6 - RKF_C6 };
for( k = 0; k < 6; k++)
tval += err_coeffs[k] * ivals_p[k][i];
rval += tval * tval;
}
if( n_vals > 6)
free( ivals[0]);
return( sqrtl( rval * step * step));
}
double take_rk_step( const double jd, ELEMENTS *ref_orbit,
const double *ival, double *ovals,
const int n_vals, const double step)
{
ldouble ivall[6], ovalsl[6], rvall;
unsigned i;
for( i = 0; i < 6; i++)
ivall[i] = (ldouble)ival[i];
rvall = take_rk_stepl( (long double)jd, ref_orbit, ivall,
ovalsl, n_vals, (long double)step);
for( i = 0; i < 6; i++)
ovals[i] = (double)ovalsl[i];
return( (double)rvall);
}
int symplectic_6( double jd, ELEMENTS *ref_orbit, double *vect,
const double dt)
{
int i, j;
#ifdef FOR_REFERENCE_ONLY
/* Some compilers object to mathematically defined consts, so */
/* I had to replace these lines with explicit numerical consts: */
const double w1 = -0.117767998417887E1;
const double w2 = 0.235573213359357E0;
const double w3 = 0.784513610477560E0;
const double w0 = (1-2*(w1+w2+w3));
const double d6[7] = { w3, w2, w1, w0, w1, w2, w3 };
const double c6[8] = { w3/2, (w3+w2)/2, (w2+w1)/2, (w1+w0)/2,
(w1+w0)/2, (w2+w1)/2, (w3+w2)/2, w3/2 };
#endif
static const double d6[7] = { 0.7845136104775600, 0.2355732133593570,
-1.1776799841788700, 1.3151863206839060, -1.1776799841788700,
0.2355732133593570, 0.7845136104775600 };
static const double c6[8] = { 0.3922568052387800, 0.5100434119184585,
-0.4710533854097566, 0.0687531682525180, 0.0687531682525180,
-0.4710533854097566, 0.5100434119184585, 0.3922568052387800 };
for( i = 0; i < 8; i++)
{
double deriv[6];
const double step = dt * c6[i];
for( j = 0; j < 3; j++)
vect[j] += step * vect[j + 3];
jd += step;
if( i != 7)
{
assert( fabs( jd) < 1e+9);
calc_derivatives( jd, vect, deriv, ref_orbit->central_obj);
for( j = 3; j < 6; j++)
vect[j] += dt * d6[i] * deriv[j];
}
}
return( 0);
}
|