1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
|
/* classel.cpp: converts state vects to classical elements
Copyright (C) 2010, Project Pluto
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
#include <math.h>
#include <assert.h>
#ifndef __cplusplus
#include <stdbool.h>
#endif
#include "watdefs.h"
#include "afuncs.h"
#include "comets.h"
/* MS only got around to adding 'isfinite', asinh in VS2013 : */
#if defined( _MSC_VER) && (_MSC_VER < 1800)
#include <float.h>
#define isfinite _finite
static double asinh( const double x)
{
return( log( x + sqrt( x * x + 1.)));
}
#endif
#define PI 3.1415926535897932384626433832795028841971693993751058209749445923
#define SQRT_2 1.4142135623730950488016887242096980785696718753769480731766797
/* 2011 Aug 11: in dealing with exactly circular orbits, and those
nearly exactly circular, I found several loss of precision problems
in the angular elements (which become degenerate for e=0; you can
add an arbitrary amount to the mean anomaly, as long as you subtract
the same amount from the argument of periapsis.) Also, q was
computed incorrectly for such cases when roundoff error resulted in
the square root of a number that should be zero, but rounded below
zero, was taken. All this is fixed now. */
/* 2009 Nov 24: noticed a loss of precision problem in computing arg_per.
This was done by computing the cosine of that value, then taking the
arc-cosine. But if that value is close to +/-1, precision is lost
(you can actually end up with a domain error if the roundoff goes
against you). I added code so that, if |cos_arg_per| > .7, we
compute the _sine_ of the argument of periapsis and use that instead.
While doing this, I also noticed that several variables could be made
of type const. */
/* calc_classical_elements( ) will take a given state vector r at a time t,
for an object orbiting a mass gm; and will compute the orbital elements
and store them in the elem structure. Normally, ref=1. You can set
it to 0 if you don't care about the angular elements (inclination,
longitude of ascending node, argument of perihelion). */
static double dot_product( const double *a, const double *b)
{
return( a[0] * b[0] + a[1] * b[1] + a[2] * b[2]);
}
/* In determining the mean anomaly from the eccentricity and
eccentric anomaly, use of the "normal" formulae
M = E - ecc * sin( E) (elliptical case)
M = E - ecc * sinh( E) (hyperbolic case)
you run into nasty loss-of-precision problems with near-parabolic orbits:
E and ecc * sin(E) will be nearly equal quantities. In such cases, it's
better to use power series for the sin/sinh function, rearranging to get
M = E(1-ecc) - ecc( -E^3/3! + E^5/5! - E^7/7!...) (elliptical)
M = E(1-ecc) - ecc( E^3/3! + E^5/5! + E^7/7!...) (hyperbolic)
...in which the infinite series is that for sin/sinh, minus
the leading term E. This can be expressed as
M = E(1-ecc) - ecc * E * remaining_terms( -E^2) (elliptical)
M = E(1-ecc) - ecc * E * remaining_terms( E^2) (hyperbolic)
*/
static double remaining_terms( const double ival)
{
double rval = 0., z = 1;
const double tolerance = 1e-30;
int i = 2;
do
{
z *= ival / (double)( i * (i + 1));
rval += z;
i += 2;
} while( fabs( z) > tolerance);
return( rval);
}
int DLL_FUNC calc_classical_elements( ELEMENTS *elem, const double *r,
const double t, const int ref)
{
const double *v = r + 3;
const double r_dot_v = dot_product( r, v);
const double dist = vector3_length( r);
const double v2 = dot_product( v, v);
double inv_major_axis = 2. / dist - v2 / elem->gm;
double h0, n0, tval;
double h[3], e[3], ecc2;
double ecc;
int i;
assert( elem->gm != 0.);
vector_cross_product( h, r, v);
n0 = h[0] * h[0] + h[1] * h[1];
h0 = n0 + h[2] * h[2];
assert( dist > 0.);
assert( v2 > 0.); /* elements are undefined if the object is at rest */
assert( h0 > 0.); /* or if its velocity vector runs through the sun */
n0 = sqrt( n0);
h0 = sqrt( h0);
/* See Danby, p 204-206, for much of this: */
if( ref & 1)
{
if( !n0) /* orbit is in xy plane; asc node is undefined; make */
elem->asc_node = 0.; /* arbitrary choice h[0] = 0, h[1] = -epsilon */
else
elem->asc_node = atan2( h[0], -h[1]);
elem->incl = asine( n0 / h0);
if( h[2] < 0.) /* retrograde orbit */
elem->incl = PI - elem->incl;
}
vector_cross_product( e, v, h);
for( i = 0; i < 3; i++)
e[i] = e[i] / elem->gm - r[i] / dist;
tval = dot_product( e, h) / h0; /* "flatten" e vector into the rv */
for( i = 0; i < 3; i++) /* plane to avoid roundoff; see */
e[i] -= h[i] * tval; /* above comments */
ecc2 = dot_product( e, e);
if( fabs( ecc2 - 1.) < 1.e-14) /* avoid roundoff issues w/nearly */
ecc2 = 1.; /* parabolic orbits */
elem->minor_to_major = sqrt( fabs( 1. - ecc2));
ecc = elem->ecc = sqrt( ecc2);
if( !ecc) /* for purely circular orbits, e is */
{ /* arbitrary in the orbit plane; choose */
for( i = 0; i < 3; i++) /* r normalized */
e[i] = r[i] / dist;
}
else /* ...and if it's not circular, */
for( i = 0; i < 3; i++) /* normalize e: */
e[i] /= ecc;
if( ecc < .9)
elem->q = (1. - ecc) / inv_major_axis;
else /* at eccentricities near one, the above suffers */
{ /* a loss of precision problem, and we switch to: */
const double gm_over_h0 = elem->gm / h0;
/* const double perihelion_speed = gm_over_h0 +
sqrt( fabs( gm_over_h0 * gm_over_h0 - inv_major_axis * elem->gm));
*/ const double perihelion_speed = gm_over_h0 *
(1. + sqrt( 1. - inv_major_axis * h0 * h0 / elem->gm));
assert( h0 != 0.);
assert( gm_over_h0 != 0.);
assert( isfinite( inv_major_axis));
assert( isfinite( gm_over_h0));
assert( isfinite( perihelion_speed));
assert( perihelion_speed != 0.);
elem->q = h0 / perihelion_speed;
assert( elem->q != 0.); /* For q=0, nothing is defined */
inv_major_axis = (1. - ecc) / elem->q;
}
assert( elem->q != 0.); /* For q=0, nothing is defined */
assert( elem->q > 0.);
if( inv_major_axis)
{
elem->major_axis = 1. / inv_major_axis;
elem->t0 = elem->major_axis * sqrt( fabs( elem->major_axis) / elem->gm);
}
vector_cross_product( elem->sideways, h, e);
if( ref & 1)
{
double cos_arg_per;
if( n0)
cos_arg_per = (h[0] * e[1] - h[1] * e[0]) / n0;
else
cos_arg_per = e[0];
if( cos_arg_per < .7 && cos_arg_per > -.7)
elem->arg_per = acos( cos_arg_per);
else
{
double sin_arg_per;
if( n0)
sin_arg_per = (e[0] * h[0] * h[2] + e[1] * h[1] * h[2] - e[2] * n0 * n0)
/ (n0 * h0);
else
sin_arg_per = e[1] * h[2] / h0;
elem->arg_per = fabs( asin( sin_arg_per));
if( cos_arg_per < 0.)
elem->arg_per = PI - elem->arg_per;
}
if( e[2] < 0.)
elem->arg_per = PI + PI - elem->arg_per;
}
if( inv_major_axis && elem->minor_to_major)
{
const bool is_nearly_parabolic = (ecc > .99999 && ecc < 1.00001);
const double r_cos_true_anom = dot_product( r, e);
const double r_sin_true_anom = dot_product( r, elem->sideways) / h0;
const double sin_E = r_sin_true_anom * inv_major_axis
/ elem->minor_to_major;
assert( elem->minor_to_major);
assert( isfinite( ecc));
assert( isfinite( h0));
assert( isfinite( r_cos_true_anom));
assert( isfinite( r_sin_true_anom));
assert( isfinite( sin_E));
if( inv_major_axis > 0.) /* parabolic case */
{
const double cos_E = r_cos_true_anom * inv_major_axis + ecc;
const double ecc_anom = atan2( sin_E, cos_E);
assert( isfinite( cos_E));
assert( isfinite( ecc_anom));
if( is_nearly_parabolic)
elem->mean_anomaly = ecc_anom * (1 - ecc)
- ecc * ecc_anom * remaining_terms( -ecc_anom * ecc_anom);
else
elem->mean_anomaly = ecc_anom - ecc * sin_E;
assert( isfinite( elem->mean_anomaly));
elem->perih_time = t - elem->mean_anomaly * elem->t0;
}
else /* hyperbolic case */
{
const double ecc_anom = asinh( sin_E);
if( is_nearly_parabolic)
elem->mean_anomaly = ecc_anom * (1 - ecc)
- ecc * ecc_anom * remaining_terms( ecc_anom * ecc_anom);
else
elem->mean_anomaly = ecc_anom - ecc * sin_E;
assert( isfinite( elem->mean_anomaly));
assert( elem->t0 <= 0.);
elem->perih_time = t - elem->mean_anomaly * fabs( elem->t0);
h0 = -h0;
}
}
else /* parabolic case */
{
double tau;
tau = sqrt( dist / elem->q - 1.);
if( r_dot_v < 0.)
tau = -tau;
elem->w0 = (3. / SQRT_2) / (elem->q * sqrt( elem->q / elem->gm));
/* elem->perih_time = t - tau * (tau * tau / 3. + 1) * */
/* elem->q * sqrt( 2. * elem->q / elem->gm); */
elem->perih_time = t - tau * (tau * tau / 3. + 1) * 3. / elem->w0;
}
/* At this point, elem->sideways has length h0. Make it a unit vect: */
for( i = 0; i < 3; i++)
{
elem->perih_vec[i] = e[i];
elem->sideways[i] /= h0;
}
elem->angular_momentum = h0;
return( 0);
}
|