1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
|
/* elp82dat.cpp: computes lunar coords using ELP-82
Copyright (C) 2010, Project Pluto
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <stdint.h>
#include "watdefs.h"
#include "lunar.h"
/* 12 Dec 1998: Following an e-mail from Luc Desamore, I 'offset' the */
/* time used in the ELP function by: */
/* -0.000091 (n + 26)(year-1955)^2 seconds, n being here -23.8946. */
/* This shift (in seconds) corresponds to a difference in Delta-T between */
/* that used for VSOP, etc., and that used for ELP-82. */
static double elp_time_offset( const double t_centuries)
{
const double n = -23.8946;
const double x = t_centuries * 100. + 45.;
const double seconds_per_century = 86400. * 36525.;
return( (-.000091 / seconds_per_century) * (n + 26.) * x * x);
}
#define PI 3.1415926535897932384626433832795028841971693993751058209749445923
#define DMS_TO_RAD( D, M, S) ((D + M / 60. + S / 3600.) * (PI / 180.))
#define SEC_TO_RAD( X) (X * (PI / 180.) / 3600.)
#define W1_0 DMS_TO_RAD( 218., 18., 59.95571)
#define W1_1 SEC_TO_RAD( 1732559343.73604)
#define W2_0 DMS_TO_RAD( 83., 21., 11.67475)
#define W2_1 SEC_TO_RAD( 14643420.2632)
#define W3_0 DMS_TO_RAD( 125., 2., 40.39816)
#define W3_1 SEC_TO_RAD( -6967919.3622)
#define T_0 DMS_TO_RAD( 100., 27., 59.22059)
#define T_1 SEC_TO_RAD( 129597742.2758)
#define OHP_0 DMS_TO_RAD( 102., 56., 14.42753)
#define OHP_1 SEC_TO_RAD( 1161.2283)
#define D_0 (W1_0 - T_0 + PI)
#define D_1 (W1_1 - T_1)
#define LPRIME_0 (T_0 - OHP_0)
#define LPRIME_1 (T_1 - OHP_1)
#define L_0 (W1_0 - W2_0)
#define L_1 (W1_1 - W2_1)
#define F_0 (W1_0 - W3_0)
#define F_1 (W1_1 - W3_1)
#define P SEC_TO_RAD( 5029.0966)
#define W1 fund[0]
#define W2 fund[1]
#define W3 fund[2]
#define T fund[3]
#define OHP fund[4]
#define D fund[5]
#define L_PRIME fund[6]
#define L fund[7]
#define F fund[8]
#define ZETA fund[17]
#define D_LINEAR fund[18]
#define LP_LINEAR fund[19]
#define L_LINEAR fund[20]
#define F_LINEAR fund[21]
#define T_LINEAR fund[22]
#define N_FUND_COEFFS 23
#define A0 384747980.674
static void compute_lunar_polynomials( const double t_cen, double *fund,
const double *icoeffs)
{
int i;
const double *tptr = icoeffs;
for( i = 0; i < 5; i++, tptr += 5)
fund[i] = tptr[0] + t_cen * (tptr[1] + t_cen * (tptr[2] + t_cen *
(tptr[3] + t_cen * tptr[4])));
for( i = 0; i < 7; i++, tptr++)
fund[i + 9] = tptr[0] + t_cen * tptr[7];
/* from page 8: compute Delaunay arguments */
D = W1 - T + PI;
L_PRIME = T - OHP;
L = W1 - W2;
F = W1 - W3;
/* Zeta is given by (2), p. 7: */
ZETA = W1_0 + (W1_1 + P) * t_cen;
/* For series ELP4 to ELP36, we need linear versions: */
D_LINEAR = D_0 + t_cen * D_1;
LP_LINEAR = LPRIME_0 + t_cen * LPRIME_1;
L_LINEAR = L_0 + t_cen * L_1;
F_LINEAR = F_0 + t_cen * F_1;
T_LINEAR = T_0 + t_cen * T_1;
fund[16] = 0.; /* wound up unused */
for( i = 0; i < N_FUND_COEFFS; i++)
{
fund[i] = fmod( fund[i], 2. * PI);
if( fund[i] < 0.)
fund[i] += PI + PI;
}
}
#define CHUNK_SIZE 10000
static double add_in_series( FILE *ifile, const int series_no,
const double *fund, const double prec, long n_terms)
{
double rval = 0.;
char *tptr, *ibuff;
int i, coeffs[N_FUND_COEFFS];
const int series_type = series_no / 3;
size_t term_size, chunk_size;
long lprec = (long)( prec * 100000.); /* work in .00001-arcsec units */
for( i = 0; i < N_FUND_COEFFS; i++)
coeffs[i] = 0;
switch( series_type)
{
case 0: /* main problem */
term_size = 8;
break;
case 1: case 2: /* Earth figure perturbations */
term_size = 13;
break;
case 7: case 8: case 9: case 10: case 11:
term_size = 12;
break;
case 3: case 4: /* Planetary perturbations */
case 5: case 6: /* Planetary perturbations */
term_size = 19;
break;
default:
#ifdef TEST_CODE
printf( "??? series type %d\n", series_type);
#endif
return( 0.);
}
chunk_size = CHUNK_SIZE / term_size;
if( chunk_size > (size_t)n_terms)
chunk_size = (size_t)n_terms;
ibuff = tptr = (char *)calloc( (size_t)chunk_size, term_size);
if( !ibuff)
#ifdef TEST_CODE
{
printf( "Failed to alloc %u * %u bytes\n", chunk_size, term_size);
printf( "n_terms: %ld\n", n_terms);
}
#else
return( 0.);
#endif
while( n_terms--)
{
long amplitude;
double angle;
if( ibuff == tptr)
if( !fread( ibuff, chunk_size, term_size, ifile))
{
free( ibuff);
return( 0.);
}
amplitude = *(int32_t *)tptr;
if( amplitude < lprec && amplitude > -lprec)
return( rval * 1.e-5);
switch( series_type)
{
case 0: /* main problem */
for( i = 4; i < 8; i++)
coeffs[i + 1] = (int)tptr[i];
break;
case 1: case 2: /* Earth figure perturbations */
case 7: case 8: case 9: case 10: case 11: /* a hodgepodge of things */
for( i = 8; i < 12; i++)
coeffs[i + 10] = (int)tptr[i];
if( series_type < 3) /* yes, there is a zeta term */
coeffs[17] = tptr[12];
break;
case 3: case 4: /* Planetary perturbations */
coeffs[9] = tptr[8];
coeffs[10] = tptr[9];
coeffs[22] = tptr[10];
coeffs[11] = tptr[11];
coeffs[12] = tptr[12];
coeffs[13] = tptr[13];
coeffs[14] = tptr[14];
coeffs[15] = tptr[15];
coeffs[18] = tptr[16];
coeffs[20] = tptr[17];
coeffs[21] = tptr[18];
break;
case 5: case 6: /* Planetary perturbations */
coeffs[9] = tptr[8];
coeffs[10] = tptr[9];
coeffs[22] = tptr[10];
coeffs[11] = tptr[11];
coeffs[12] = tptr[12];
coeffs[13] = tptr[13];
coeffs[14] = tptr[14];
coeffs[18] = tptr[15];
coeffs[19] = tptr[16];
coeffs[20] = tptr[17];
coeffs[21] = tptr[18];
break;
}
if( series_type)
angle = (double)*(int32_t *)( tptr + 4) * (PI / 180.) / 100000.;
else
angle = 0.;
for( i = 0; i < N_FUND_COEFFS; i++)
if( coeffs[i])
{
if( coeffs[i] == 1)
angle += fund[i];
else if( coeffs[i] == -1)
angle -= fund[i];
else
angle += (double)coeffs[i] * fund[i];
coeffs[i] = 0;
}
if( series_no == 2) /* main distance theory is oddball */
rval += (double)amplitude * cos( angle);
else
rval += (double)amplitude * sin( angle);
tptr += term_size;
if( (size_t)( tptr - ibuff) == chunk_size * term_size) /* end of line */
tptr = ibuff;
}
free( ibuff);
return( rval * 1.e-5);
}
#define ELP_DATA_HEADER struct elp_data_header
ELP_DATA_HEADER
{
int32_t offsets[37 * 2];
double poly_coeffs[5 * 5 + 7 * 2];
};
static int get_elp_values( FILE *ifile, const double t_cen,
const double prec0, double *ovals)
{
int i;
double addition;
double fund[N_FUND_COEFFS];
ELP_DATA_HEADER *hdr = (ELP_DATA_HEADER *)malloc( sizeof( ELP_DATA_HEADER));
if( !hdr)
return( -1);
if( !fread( hdr, sizeof( ELP_DATA_HEADER), 1, ifile))
{
free( hdr);
return( -2);
}
compute_lunar_polynomials( t_cen, fund, hdr->poly_coeffs);
/* First longitude term has to be 'adjusted': */
ovals[0] = fund[0] + (22639.58578 * PI / 180.) * sin( fund[7]) / 3600.;
ovals[1] = 0.;
ovals[2] = 385000.52719;
for( i = 0; i < 36; i++)
{
double prec = prec0;
int series_type = i / 3;
if( prec != 0.)
{
if( i % 3 == 2) /* distance term: cvt to kilometers */
prec *= A0 / 1000.;
else /* angular term: cvt to arcseconds */
prec *= (180. * 3600. / PI);
}
fseek( ifile, hdr->offsets[i + i], SEEK_SET);
if( hdr->offsets[i + i + 1])
addition = add_in_series( ifile, i, fund, prec,
hdr->offsets[i + i + 1]);
else
addition = 0.;
if( series_type == 2 || series_type == 4 ||
series_type == 6 || series_type == 8)
addition *= t_cen;
if( series_type == 11)
addition *= t_cen * t_cen;
if( (i % 3) == 2)
ovals[2] += addition;
else
ovals[i % 3] += addition * (PI / 180.) / 3600.;
}
free( hdr);
return( 0);
}
/* Laskar's coeffs for precession, p. 12: */
#define P_0 0.10180391e-4
#define P_1 0.47020439e-6
#define P_2 -0.5417367e-9
#define P_3 -0.2507948e-11
#define P_4 0.463486e-14
#define Q_0 -0.113469002e-3
#define Q_1 0.12372674e-6
#define Q_2 0.1265417e-8
#define Q_3 -0.1371808e-11
#define Q_4 -0.320334e-14
int DLL_FUNC compute_elp_xyz( FILE *ifile, const double t_cen,
const double prec, double *ecliptic_xyz_2000)
{
double uvr[3];
int i, close_file = 0, rval;
const double adjusted_t_cen = t_cen + elp_time_offset( t_cen);
if( !ifile)
{
ifile = fopen( "elp82.dat", "rb");
if( !ifile)
return( -1);
close_file = 1;
}
fseek( ifile, 0L, SEEK_SET);
rval = get_elp_values( ifile, adjusted_t_cen, prec, uvr);
if( rval)
for( i = 0; i < 4; i++)
*ecliptic_xyz_2000++ = 0.;
else
{
const double x = uvr[2] * cos( uvr[0]) * cos( uvr[1]);
const double y = uvr[2] * sin( uvr[0]) * cos( uvr[1]);
const double z = uvr[2] * sin( uvr[1]);
double p = 0., q = 0., twice_root_pq_term;
static const double p_coeff[5] = { P_4, P_3, P_2, P_1, P_0 };
static const double q_coeff[5] = { Q_4, Q_3, Q_2, Q_1, Q_0 };
double matrix[9];
for( i = 0; i < 5; i++)
{
p = p * adjusted_t_cen + p_coeff[i];
q = q * adjusted_t_cen + q_coeff[i];
}
p *= adjusted_t_cen;
q *= adjusted_t_cen;
twice_root_pq_term = 2. * sqrt( 1. - p * p - q * q);
matrix[0] = 1. - 2. * p * p;
matrix[1] = matrix[3] = 2. * p * q;
matrix[2] = p * twice_root_pq_term;
matrix[6] = -matrix[2];
matrix[7] = q * twice_root_pq_term;
matrix[5] = -matrix[7];
matrix[4] = 1. - 2. * q * q;
matrix[8] = matrix[0] - 2. * q * q;
for( i = 0; i < 9; i += 3)
*ecliptic_xyz_2000++ =
matrix[i] * x + matrix[i + 1] * y + matrix[i + 2] * z;
*ecliptic_xyz_2000++ = uvr[2]; /* give the radius, too */
}
if( close_file)
fclose( ifile);
return( rval);
}
#ifdef TEST_CODE
#define J2000 2451545.0
#define TEST_PREC (5.e-5 * (PI / 180.) / 3600.)
#define TEST_T -.13400608189
void main( int argc, char **argv)
{
FILE *ifile = fopen( "elp82.dat", "rb");
double xyz[4], t;
int i;
const double prec = (argc == 1 ? 0 : atof( argv[1]));
const double results_from_book[5][3] = {
-361602.98536, 44996.99510, -30696.65316,
-363132.34248, 35863.65378, -33196.00409,
-371577.58161, 75271.14315, -32227.94618,
-373896.15893, 127406.79129, -30037.79225,
-346331.77361, 206365.40364, -28502.11732 };
if( !ifile)
{
printf( "elp82.dat not found\n");
exit( -1);
}
for( i = 0; i < 5; i++)
{
t = 2469000.5 - 20000. * (double)i;
compute_elp_xyz( ifile, (t - J2000) / 36525., prec, xyz);
printf( "%.3lf: %15.5lf %15.5lf %15.5lf %15.5lf\n", t,
xyz[0], xyz[1], xyz[2], xyz[3]);
printf( " %15.5lf %15.5lf %15.5lf\n",
results_from_book[i][0] - xyz[0],
results_from_book[i][1] - xyz[1],
results_from_book[i][2] - xyz[2] );
}
for( i = 2; i < argc; i++)
{
t = atof( argv[i]);
compute_elp_xyz( ifile, (t - J2000) / 36525., 0., xyz);
printf( "%.3lf: %15.5lf %15.5lf %15.5lf %15.5lf\n", t,
xyz[0], xyz[1], xyz[2], xyz[3]);
}
fclose( ifile);
}
#endif
|