| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 
 | /* eop_prec.cpp: precise precession matrix using EOP (Earth Orientation
Parameter) data
Copyright (C) 2016, Project Pluto
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.    */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <math.h>
#include "watdefs.h"
#include "afuncs.h"
double cubic_spline_interpolate_within_table(      /* spline.cpp */
         const double *table, const int n_entries, double x, int *err_code);
#define PI 3.1415926535897932384626433832795028841971693993751058209749445923
const double arcsec_to_radians = PI / (180. * 3600.);
const double marcsec_to_radians = PI / (180. * 3600.e+3);
#define TBLSIZE 4
/* This function loads Earth orientation parameters (EOP) from any of
http://maia.usno.navy.mil/ser7/finals.daily
http://maia.usno.navy.mil/ser7/finals.data
http://maia.usno.navy.mil/ser7/finals.all
   The 'daily' file gives EOPs for the last 90 days,  plus 90 days
of predictions.  'data' starts on 1992 January 1,  and 'all' on 1973
January 2,  each with a year of predictions.
   The EOP files give UT1-UTC.  This has one-second jumps and is not
suited to splining,  so we actually store Delta-T = TDT-UT1,  a continuous
function that _is_ suited to splining.  We could compute it by subtracting
the given UT1-UTC value from the result of the td_minus_utc( ) function.
To speed matters up a bit,  we do that _once_ for the first value.  After
that,  we just make sure each subsequent value is within 0.5 seconds of
the preceding value.
   The only errors that can be generated are that the file wasn't found,
or wasn't in the correct format,  or memory wasn't allocated for the data.
Otherwise,  the MJD for the last day of EOPs,  including the predictions,
is returned.  One can use that to tell the user,  "time to get new EOPs"
(or to automatically download them without even telling the user).
   In a multi-threaded environment,  call load_earth_orientation_params()
before forking/threading;  the following static values will then be set
and used thereafter in a read-only manner.  Call the function again with
a NULL filename to release the eop_data buffer.
   See 'prectest.cpp' for example usage.    */
static double *eop_data = NULL, eop_jd0;
static int eop_size, eop_usable, eop_usable_nutation;
const size_t eop_iline_len = 188;
static bool is_valid_eop_line( const char *iline)
{
   if( strlen( iline) != eop_iline_len || iline[12] != '.'
            || iline[27] != ' '
            || iline[20] != '.' || iline[13] != '0' || iline[14] != '0')
      return( false);
   else
      return( true);
}
int DLL_FUNC load_earth_orientation_params( const char *filename)
{
   int rval = 0;
   if( eop_data)
      {
      free( eop_data);
      eop_data = NULL;
      }
   if( filename)
      {
      FILE *ifile = fopen( filename, "rb");
      char buff[200];
      if( !ifile || !fgets( buff, sizeof( buff), ifile))
         rval = EOP_FILE_NOT_FOUND;
      else if( !is_valid_eop_line( buff) || buff[16] != 'I')
         rval = EOP_FILE_WRONG_FORMAT;
      else
         {
         int i;
         double initial_td_minus_utc;
         eop_jd0 = atof( buff + 7) + 2400000.5;
         initial_td_minus_utc = td_minus_utc( eop_jd0 + .1);
         fseek( ifile, 0L, SEEK_END);
         eop_size = (int)( ftell( ifile) / eop_iline_len);
         fseek( ifile, 0L, SEEK_SET);
         eop_data = (double *)calloc( eop_size * 5, sizeof( double));
         if( !eop_data)
            rval = EOP_ALLOC_FAILED;
         i = eop_usable = eop_usable_nutation = 0;
         while( !rval && i < eop_size && fgets( buff, sizeof( buff), ifile)
                      && buff[16] != ' ' && is_valid_eop_line( buff))
            {
            double *tptr = eop_data + i;
            *tptr = atof( buff + 18) * arcsec_to_radians;      /* Polar motion X, arcsec */
            tptr += eop_size;
            *tptr = atof( buff + 37) * arcsec_to_radians;      /* Polar motion Y, arcsec */
            tptr += eop_size;
            *tptr = -atof( buff + 58);      /* UTC - UT1,  in seconds: note sign flip */
            *tptr += initial_td_minus_utc;
            if( i)         /* correct if a leap second occurred */
               *tptr += floor( tptr[-1] - tptr[0] + .5);
            tptr += eop_size;
                  /* sigma at atof( buff + 69) */
            eop_usable++;
            if( buff[95] != ' ')
               {
               *tptr = atof( buff + 97) * marcsec_to_radians;   /* dPsi, milliarcsec */
               tptr += eop_size;
                        /* sigma at atof( buff + 109) */
               *tptr = atof( buff + 116) * marcsec_to_radians;  /* dEps, milliarcsec */
                        /* sigma at atof( buff + 128) */
               eop_usable_nutation++;
               }
            i++;
            }
         if( i < 16371)    /* as of 2016 Oct 29,  should be _at least_ */
            rval = EOP_FILE_WRONG_FORMAT;           /* this many lines */
         if( rval)   /* slightly tricky method to free up eop_data,  if */
            load_earth_orientation_params( NULL);  /* it's been alloced */
         else                            /* get MJD for preceding day */
            rval = atoi( buff + 7) - 1;
         }
      if( ifile)
         fclose( ifile);
      }
   return( rval);
}
/* If the above function was called and successfully loaded EOPs,  and if all
five parameters are successfully interpolated,  the return value is zero.  If
we don't have EOPs,  or they don't extend to the given JD,  a bit field is set
for each uncomputed parameter (and that parameter is set to zero).  The predictions
for polar motion and UT1-UTC run further than those for dEps and dPhi.  If you're
completely out of coverage (before the start time of the file or after the
predictions),  the return value is 31 = 11111 base 2.  If you're just past
the predictions for dPhi/dEps,  the return value is 24 = 11000 base 2.  */
int DLL_FUNC get_earth_orientation_params( const double jd,
                              earth_orientation_params *params)
{
   int i, rval = 0;
   double results[5];
   for( i = 0; i < 5; i++)
      results[i] = 0.;
   if( eop_data && params)
      {
      const double dt = jd - eop_jd0;
      for( i = 0; i < 5; i++)
         {
         int t_rval;
         double result;
         result = cubic_spline_interpolate_within_table(
                  eop_data + eop_size * i,
                  (i < 3 ? eop_usable : eop_usable_nutation),
                  dt, &t_rval);
         if( t_rval)
            rval |= (1 << i);
         else
            results[i] = result;
         }
      }
   else
      rval = -1;
   if( !results[2])        /* fill in using default Delta-T formula if we */
      results[2] = td_minus_ut( jd);   /* don't get a value from EOP data */
   params->dX = results[0];
   params->dY = results[1];
   params->tdt_minus_ut1 = results[2];
   params->dPsi = results[3];
   params->dEps = results[4];
   return( rval);
}
static const double J2000 = 2451545.;
/* Note that the matrix returned by this function gives the instantaneous
orientation of the earth,  with
matrix[0, 1, 2] = vector pointing at equator, 0 lon,  in J2000/ICRF
matrix[3, 4, 5] = vector pointing at equator, 90 E lon,  also J2000/ICRF
matrix[6, 7, 8] = vector pointing at north pole (+90 lat),  also J2000/ICRF
*/
int DLL_FUNC setup_precession_with_nutation_eops( double DLLPTR *matrix,
                    const double year)
{
   const double jdt = J2000 + (year - 2000.) * 365.25;
   earth_orientation_params eo_params;
   double ut1, rotation;
   const int rval = get_earth_orientation_params( jdt, &eo_params);
   setup_precession_with_nutation_delta( matrix, year,
                                    eo_params.dPsi, eo_params.dEps);
   ut1 = jdt - eo_params.tdt_minus_ut1 / seconds_per_day;
   rotation = green_sidereal_time( ut1);
   spin_matrix( matrix, matrix + 3, -rotation);
   spin_matrix( matrix, matrix + 6, -eo_params.dX);          /* polar motion in x */
   spin_matrix( matrix + 3, matrix + 6, eo_params.dY);      /* polar motion in y */
   return( rval);
}
 |