1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
|
/* gust86.cpp: functions for Uranian satellite coords
Copyright (C) 2010, Project Pluto
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
/*
** gust86.cpp
** Implementation of the Lascar and Jacobson theory of the
** motion of the satellites of Uranus. Written by Chris Marriott for
** SkyMap, with some modifications by me (Bill J. Gray).
** Based on :
**
** Laskar J., Jacobson, R.: 1987, GUST86 - An analytical ephemeris of the
** Uranian satellites, Astron. Astrophys. 188, 212-224
** http://articles.adsabs.harvard.edu/cgi-bin/nph-journal_query?volume=188&plate_select=NO&page=212&plate=&cover=&journal=A%2BA..
**
** Created: 17-JUL-98
**
** $History: gust86.cpp $
**
1 Feb 2012: BJG: Revised code to avoid errors on stricter compilers
such as OpenWATCOM.
5 Nov 2008: BJG: Revised code to be more C-like and less C++-like,
did general cleanup & simplifying. Now, you can just get positions
and velocities with one relatively simple function.
** 10 Jan 2003: Bill J Gray: changed the output from B1950 to J2000,
** by replacing the Uranicentric-to-B1950 matrix in "Position( )" with
** an Uranicentric-to-J2000 one. (The original code is still available
** with #define ORIGINAL_B1950.)
**
** The individual "per-satellite" functions contained a great deal
** of code identical except for coefficient values; I put that code into
** sum_uranian_series() with the coefficients passed in as arrays.
** Most (though not all!) comments are now in English instead of French.
**
** ***************** Version 1 *****************
** User: Chris Date: 2/10/98 Time: 6:54
** Created in $/SkyMap 4.0
** Moved from solar system DLL into main project.
**
** ***************** Version 2 *****************
** User: Chris Date: 18/07/98 Time: 4:49p
** Updated in $/SkyMap 4.0/SolarSys
** Initial working version.
**
** ***************** Version 1 *****************
** User: Chris Date: 17/07/98 Time: 11:59a
** Created in $/SkyMap 4.0/SolarSys
** Initial version.
*/
#include <math.h>
#include <assert.h>
#include "gust86.h"
#define PI 3.1415926535897932384626433832795028841971693993751058209749445923
#define DEGREES_TO_RADIANS (PI/180.)
static double an[5], ae[5], ai[5]; // satellite position data
// OrbitalPosition
// Compute basic orbital position data for the satellites.
static void gust86_mean_parameters( const double jde )
{
static double curr_jde_set = -1.;
if( jde != curr_jde_set)
{
const double t0 = 2444239.5; // origin date for the theory: 1980 Jan 1
const double days_since_1980 = jde - t0; // time from origin
const double days_per_year = 365.25; // days in a year
const double years_since_1980 = days_since_1980 / days_per_year;
int i; // loop counter
static const double fqn[5] = /* mean motion at epoch in radians/day */
{
4445190.550e-06, 2492952.519e-06, 1516148.111e-06,
721718.509e-06, 466692.120e-06
};
static const double fqe[5] = /* in degrees/year */
{
20.082, 6.217, 2.865, 2.078, 0.386
};
static const double fqi[5] = /* in degrees/year */
{
-20.309, -6.288, -2.836, -1.843, -0.259
};
static const double phn[5] = /* mean longitude at epoch in radians */
{
-238051.e-06, 3098046.e-06, 2285402.e-06,
856359.e-06, -915592.e-06
};
static const double phe[5] = /* in radians */
{
0.611392, 2.408974, 2.067774, 0.735131, 0.426767
};
static const double phi[5] = /* in radians */
{
5.702313, 0.395757, 0.589326, 1.746237, 4.206896
};
// Compute the orbital data.
for( i = 0; i < 5; i++)
{
an[i] = fqn[i] * days_since_1980 + phn[i];
ae[i] = fqe[i] * DEGREES_TO_RADIANS * years_since_1980 + phe[i];
ai[i] = fqi[i] * DEGREES_TO_RADIANS * years_since_1980 + phi[i];
}
}
}
static void sum_uranian_series( double *elems,
const double *ae_series, const double *aet,
const double *ai_series, const double *ait,
const double *amplitudes, const double *phases, int n_extra_terms)
{
int i;
for( i = 2; i < 6; i++)
elems[i] = 0;
for( i = 5; i; i--)
{
elems[2] += *ae_series * cos( *aet );
elems[3] += *ae_series++ * sin( *aet++);
elems[4] += *ai_series * cos( *ait );
elems[5] += *ai_series++ * sin( *ait++);
}
while( n_extra_terms--)
{
elems[2] += *amplitudes * cos( *phases);
elems[3] += *amplitudes++ * sin( *phases++);
}
}
// miranda_elems
// Compute the orbital elements of Miranda.
static void miranda_elems( const double t, double *elems)
{
/* --- Z = K + IH ---- */
static const double ae_series[5] = { 1312.38e-6, 71.81e-6, 69.77e-6,
6.75e-6, 6.27e-6 };
static const double amplitudes[3] = {
-123.31e-6, 39.52e-6, 194.10e-6 };
double phases[3];
/* --- ZETA = Q + IP --- */
static const double ai_series[5] = { 37871.71e-06, +27.01e-06, +30.76e-06,
+12.18e-06, +5.37e-06 };
/* --- RN => mean motion (radians/day) ---- */
elems[0] = 4443522.67e-06
-34.92e-06*cos(an[0]-3.e0*an[1]+2.e0*an[2])
+8.47e-06*cos(2.*an[0]-6.*an[1]+4.*an[2])
+1.31e-06*cos(3.*an[0]-9.*an[1]+6.*an[2])
-52.28e-06*cos(an[0]-an[1])
-136.65e-06*cos(2.*an[0]-2.*an[1]);
/* --- RL => mean longitude (radians) ---- */
elems[1] = -238051.58e-06
+4445190.55e-06*t
+25472.17e-06*sin(an[0]-3.*an[1]+2.*an[2])
-3088.31e-06*sin(2.*an[0]-6.*an[1]+4.*an[2])
-318.10e-06*sin(3.*an[0]-9.*an[1]+6.*an[2])
-37.49e-06*sin(4.*an[0]-12.*an[1]+8.*an[2])
-57.85e-06*sin(an[0]-an[1])
-62.32e-06*sin(2.*an[0]-2.*an[1])
-27.95e-06*sin(3.*an[0]-3.*an[1]);
phases[0] = -an[0] + 2.*an[1];
phases[1] = -2. * an[0] + 3.*an[1];
phases[2] = an[0];
sum_uranian_series( elems, ae_series, ae, ai_series, ai,
amplitudes, phases, 3);
}
// ariel_elems
// Compute the orbital elements of Ariel.
static void ariel_elems( const double t, double *elems)
{
/* --- Z = K + IH --- */
static const double ae_series[5] = { -3.35e-6, 1187.63e-6, 861.59e-6,
71.50e-6, 55.59e-6 };
static const double ai_series[5] = { -121.75e-6, 358.25e-06, 290.08e-06,
97.78e-06, 33.97e-06 };
static const double amplitudes[4] = {
-84.60e-06, +91.81e-06, +20.03e-06, +89.77e-06 };
double phases[4];
/* --- RN => mean motion (radians/day) --- */
elems[0] = 2492542.57e-06
+2.55e-06*cos(an[0]-3.*an[1]+2.*an[2])
-42.16e-06*cos(an[1]-an[2])
-102.56e-06*cos(2.*an[1]-2.*an[2]);
/* --- RL => mean longitude (radians) --- */
elems[1] = 3098046.41e-06
+2492952.52e-06*t
-1860.50e-06*sin(an[0]-3.*an[1]+2.*an[2])
+219.99e-06*sin(2.*an[0]-6.*an[1]+4.*an[2])
+23.10e-06*sin(3.*an[0]-9.*an[1]+6.*an[2])
+4.30e-06*sin(4.*an[0]-12.*an[1]+8.*an[2])
-90.11e-06*sin(an[1]-an[2])
-91.07e-06*sin(2.*an[1]-2.*an[2])
-42.75e-06*sin(3.*an[1]-3.*an[2])
-16.49e-06*sin(2.*an[1]-2.*an[3]);
phases[0] = 2. * an[2] - an[1];
phases[1] = 3. * an[2] - 2. * an[1];
phases[2] = 2. * an[3] - an[1];
phases[3] = an[1];
sum_uranian_series( elems, ae_series, ae, ai_series, ai,
amplitudes, phases, 4);
/*
*---- ZETA = Q + IP ----------------------------------------------------
*/
}
// umbriel_elems
// Compute the orbital elements of Umbriel.
static void umbriel_elems( const double t, double *elems)
{
/* --- Z = K + IH --- */
static const double ae_series[5] = { -0.21e-6, -227.95e-6, 3904.69e-6,
309.17e-6, 221.92e-6 };
static const double ai_series[5] = { -10.86e-6, -81.51e-06, 1113.36e-06,
350.14e-06, 106.50e-06 };
static const double amplitudes[11] = {
29.34e-6, 26.20e-6, 51.19e-6, -103.86e-6, -27.16e-6,
-16.22e-6, 549.23e-6, 34.70e-6, 12.81e-6, 21.81e-6,
46.25e-6 };
double phases[11];
/* --- RN => mean motion (radians/day) --- */
elems[0] = 1515954.90e-06
+9.74e-06*cos(an[2]-2.*an[3]+ae[2])
-106.00e-06*cos(an[1]-an[2])
+54.16e-06*cos(2.*an[1]-2.*an[2])
-23.59e-06*cos(an[2]-an[3])
-70.70e-06*cos(2.*an[2]-2.*an[3])
-36.28e-06*cos(3.*an[2]-3.*an[3]);
/* --- RL => mean longitude (radians) --- */
elems[1] = 2285401.69e-06
+1516148.11e-06*t
+660.57e-06*sin(an[0]-3.*an[1]+2.*an[2])
-76.51e-06*sin(2.*an[0]-6.*an[1]+4.*an[2])
-8.96e-06*sin(3.*an[0]-9.*an[1]+6.*an[2])
-2.53e-06*sin(4.*an[0]-12.*an[1]+8.*an[2])
-52.91e-06*sin(an[2]-4.*an[3]+3.*an[4])
-7.34e-06*sin(an[2]-2.*an[3]+ae[4])
-1.83e-06*sin(an[2]-2.*an[3]+ae[3])
+147.91e-06*sin(an[2]-2.*an[3]+ae[2]);
elems[1] += -7.77e-06*sin(an[2]-2.*an[3]+ae[1])
+97.76e-06*sin(an[1]-an[2])
+73.13e-06*sin(2.*an[1]-2.*an[2])
+34.71e-06*sin(3.*an[1]-3.*an[2])
+18.89e-06*sin(4.*an[1]-4.*an[2])
-67.89e-06*sin(an[2]-an[3])
-82.86e-06*sin(2.*an[2]-2.*an[3]);
elems[1] += -33.81e-06*sin(3.*an[2]-3.*an[3])
-15.79e-06*sin(4.*an[2]-4.*an[3])
-10.21e-06*sin(an[2]-an[4])
-17.08e-06*sin(2.*an[2]-2.*an[4]);
phases[0] = an[1];
phases[1] = an[2];
phases[2] = -an[1]+2.*an[2];
phases[3] = -2.*an[1]+3.*an[2];
phases[4] = -3.*an[1]+4.*an[2];
phases[5] = an[3];
phases[6] = -an[2]+2.*an[3];
phases[7] = -2.*an[2]+3.*an[3];
phases[8] = -3.*an[2]+4.*an[3];
phases[9] = -an[2]+2.*an[4];
phases[10] = an[2];
sum_uranian_series( elems, ae_series, ae, ai_series, ai,
amplitudes, phases, 11);
/*
*---- ZETA = Q + IP ----------------------------------------------------
*/
}
// titania_elems
// Compute the orbital elements of Titania.
static void titania_elems( const double t, double *elems)
{
static const double ae_series[5] = { -0.02e-6, -1.29e-6, -324.51e-6,
932.81e-6, 1120.89e-6 };
static const double ai_series[5] = { -1.43e-6, -1.06e-06, -140.13e-06,
685.72e-06, 378.32e-06 };
static const double amplitudes[13] = {
33.86e-6, 17.46e-6, 16.58e-6, 28.89e-6, -35.86e-6,
-17.86e-6, -32.10e-6, -177.83e-6, 793.43e-6, 99.48e-6,
44.83e-6, 25.13e-6, 15.43e-6 };
double phases[13];
/* --- RN => mean motion (radians/day) --- */
elems[0] = 721663.16e-06
-2.64e-06*cos(an[2]-2.*an[3]+ae[2])
-2.16e-06*cos(2.*an[3]-3.*an[4]+ae[4])
+6.45e-06*cos(2.*an[3]-3.*an[4]+ae[3])
-1.11e-06*cos(2.*an[3]-3.*an[4]+ae[2]);
elems[0] += -62.23e-06*cos(an[1]-an[3])
-56.13e-06*cos(an[2]-an[3])
-39.94e-06*cos(an[3]-an[4])
-91.85e-06*cos(2.*an[3]-2.*an[4])
-58.31e-06*cos(3.*an[3]-3.*an[4])
-38.60e-06*cos(4.*an[3]-4.*an[4])
-26.18e-06*cos(5.*an[3]-5.*an[4])
-18.06e-06*cos(6.*an[3]-6.*an[4]);
/* --- RL => mean longitude (radians) --- */
elems[1] = 856358.79e-06
+721718.51e-06*t
+20.61e-06*sin(an[2]-4.*an[3]+3.*an[4])
-2.07e-06*sin(an[2]-2.*an[3]+ae[4])
-2.88e-06*sin(an[2]-2.*an[3]+ae[3])
-40.79e-06*sin(an[2]-2.*an[3]+ae[2])
+2.11e-06*sin(an[2]-2.*an[3]+ae[1])
-51.83e-06*sin(2.*an[3]-3.*an[4]+ae[4])
+159.87e-06*sin(2.*an[3]-3.*an[4]+ae[3]);
elems[1] += -35.05e-06*sin(2.*an[3]-3.*an[4]+ae[2])
-1.56e-06*sin(3.*an[3]-4.*an[4]+ae[4])
+40.54e-06*sin(an[1]-an[3])
+46.17e-06*sin(an[2]-an[3])
-317.76e-06*sin(an[3]-an[4])
-305.59e-06*sin(2.*an[3]-2.*an[4])
-148.36e-06*sin(3.*an[3]-3.*an[4])
-82.92e-06*sin(4.*an[3]-4.*an[4]);
elems[1] += -49.98e-06*sin(5.*an[3]-5.*an[4])
-31.56e-06*sin(6.*an[3]-6.*an[4])
-20.56e-06*sin(7.*an[3]-7.*an[4])
-13.69e-06*sin(8.*an[3]-8.*an[4]);
phases[0] = an[1];
phases[1] = an[3];
phases[2] = -an[1]+2.*an[3];
phases[3] = an[2];
phases[4] = -an[2]+2.*an[3];
phases[5] = an[3];
phases[6] = an[4];
phases[7] = -an[3]+2.*an[4];
phases[8] = -2.*an[3]+3.*an[4];
phases[9] = -3.*an[3]+4.*an[4];
phases[10] = -4.*an[3]+5.*an[4];
phases[11] = -5.*an[3]+6.*an[4];
phases[12] = -6.*an[3]+7.*an[4];
sum_uranian_series( elems, ae_series, ae, ai_series, ai,
amplitudes, phases, 13);
/*
*---- ZETA= Q + IP ----------------------------------------------------
*/
}
// oberon_elems
// Compute the orbital elements of Oberon.
static void oberon_elems( const double t, double *elems)
{
static const double ae_series[5] = { 0.00e-6, -0.35e-6, 74.53e-6,
-758.68e-6, 1397.34e-6 };
static const double ai_series[5] = { -0.44e-6, -0.31e-06, 36.89e-06,
-596.33e-06, 451.69e-06 };
static const double amplitudes[12] = {
39.00e-6, 17.66e-6, 32.42e-6, 79.75e-6, 75.66e-6, 134.04e-6,
-987.26e-6, -126.09e-6, -57.42e-6, -32.41e-6, -19.99e-6, -12.94e-6 };
double phases[12];
/* --- RN => mean motion (radians/day) --- */
elems[0] = 466580.54e-06
+2.08e-06*cos(2.*an[3]-3.*an[4]+ae[4])
-6.22e-06*cos(2.*an[3]-3.*an[4]+ae[3])
+1.07e-06*cos(2.*an[3]-3.*an[4]+ae[2])
-43.10e-06*cos(an[1]-an[4]);
elems[0] += -38.94e-06*cos(an[2]-an[4])
-80.11e-06*cos(an[3]-an[4])
+59.06e-06*cos(2.*an[3]-2.*an[4])
+37.49e-06*cos(3.*an[3]-3.*an[4])
+24.82e-06*cos(4.*an[3]-4.*an[4])
+16.84e-06*cos(5.*an[3]-5.*an[4]);
elems[1] = -915591.80e-06
+466692.12e-06*t
-7.82e-06*sin(an[2]-4.*an[3]+3.*an[4])
+51.29e-06*sin(2.*an[3]-3.*an[4]+ae[4])
-158.24e-06*sin(2.*an[3]-3.*an[4]+ae[3])
+34.51e-06*sin(2.*an[3]-3.*an[4]+ae[2])
+47.51e-06*sin(an[1]-an[4])
+38.96e-06*sin(an[2]-an[4])
+359.73e-06*sin(an[3]-an[4]);
elems[1] += 282.78e-06*sin(2.*an[3]-2.*an[4])
+138.60e-06*sin(3.*an[3]-3.*an[4])
+78.03e-06*sin(4.*an[3]-4.*an[4])
+47.29e-06*sin(5.*an[3]-5.*an[4])
+30.00e-06*sin(6.*an[3]-6.*an[4])
+19.62e-06*sin(7.*an[3]-7.*an[4])
+13.11e-06*sin(8.*an[3]-8.*an[4]);
phases[0] = an[1];
phases[1] = -an[1]+2.*an[4];
phases[2] = an[2];
phases[3] = an[3];
phases[4] = an[4];
phases[5] = -an[3]+2.*an[4];
phases[6] = -2.*an[3]+3.*an[4];
phases[7] = -3.*an[3]+4.*an[4];
phases[8] = -4.*an[3]+5.*an[4];
phases[9] = -5.*an[3]+6.*an[4];
phases[10] = -6.*an[3]+7.*an[4];
phases[11] = -7.*an[3]+8.*an[4];
sum_uranian_series( elems, ae_series, ae, ai_series, ai,
amplitudes, phases, 12);
/*
*---- ZETA = Q + IP ---------------------------------------------------
*/
}
// keplkh
// Solve Kepler's equation.
static double keplkh( const double rl, const double rk, const double rh)
{
/*
SUBROUTINE KEPLKH (RL,RK,RH,F,IT,IPRT)
*
*---- KEPLKH 1.0 12 DECEMBRE 1985 J. LASKAR --------------------------
*
* RESOLUTION DE L'EQUATION DE KEPLER EN VARIABLES LONGITUDES, K, H
*
*-----------------------------------------------------------------------
*
*/
const double eps = 1.0e-16;
double f;
double f0, e0;
const int itmax = 20;
int it;
if( rl==0.0)
return( 0.);
f0 = rl;
e0 = fabs(rl);
for( it=0; it<itmax; it++)
{
int k = 0;
const double sf = sin(f0);
const double cf = cos(f0);
double e;
const double ff0 = f0 - rk*sf + rh*cf - rl;
const double fpf0 = 1.0 - rk*cf - rh*sf;
double sdir = ff0/fpf0;
double sdir_over_2_to_the_kth = sdir;
do
{
f = f0 - sdir_over_2_to_the_kth;
e = fabs(f - f0);
if (e>e0)
{
k++;
sdir_over_2_to_the_kth *= .5;
}
}
while( e > e0);
if (k==0 && e<=eps && ff0<=eps)
it = itmax; /* time to break out of loop */
else
{
f0 = f;
e0 = e;
}
}
return( f);
}
// ellipx
// Compute rectangular coordinates from a set of orbital elements.
static void ellipx( const double ell[6], const double rmu, double xyz[6] )
{
/*
SUBROUTINE ELLIPX (ELL,RMU,XYZ,DXYZ,IDER,IPRT)
*
*---- ELLIPX 1.1 18 March 1986 J. LASKAR -----------------------------
*
* Calculate Cartesian coordinates (positions & velocities) and their
* partial derivatives with respect to orbital elements, given the
* orbital elements as input.
*
* ELL(6) : Orbital elements A: Semimajor axis
* L: Mean longitude
* K: ecc*COS(LONG asc node+ ARG PERI)
* H: ecc*SIN(LONG asc node+ ARG PERI)
* Q: SIN(Incl/2)*COS(asc node)
* P: SIN(Incl/2)*SIN(asc node)
* RMU : Constant of gravitation for the two-body problem
* RMU = G*M1*(1+M2/M1) M1 Central mass
* M2 Satellite mass
* XYZ(6) : State vector; 0..2 = position, 3..5 = velocity
* (The following three items were in the original code,
* but have been removed:)
* DXYZ(6,7) : Partial derivatives of the state vector with respect to
* the six orbital elements...
* DXYZ(I,J)=DRON(XYZ(I))/DRON(ELL(J))
* ...and with respect to the total GM:
* DXYZ(I,7)=DRON(XYZ(I))/DRON(RMU)
* IDER : 0 Get the state vector only, or...
* 1 Get the partial derivatives also
* IPRT : Print out results (not used)
*
* Subroutine used: KEPLKH
*/
double rot[2][3];
double tx1[2], tx1t[2];
double ra, rl, rk, rh, rp, rq;
double rn, phi, psi, rki;
int i, j;
double f, sf, cf;
double rlmf, umrsa, asr, rna2sr;
/*
*---- ELEMENTS UTILES --------------------------------------------------
*/
ra=ell[0];
rl=ell[1];
rk=ell[2];
rh=ell[3];
rq=ell[4];
rp=ell[5];
rn=sqrt(rmu/(ra*ra*ra));
phi=sqrt( 1.0 - rk*rk - rh*rh );
rki = sqrt( 1.0 - rq*rq - rp*rp );
psi = 1.0/(1.0 + phi);
/*
*---- Rotational matrix: ----------------------------------------------
*/
rot[0][0] = 1.0 - 2*rp*rp;
rot[1][0] = 2*rp*rq;
rot[0][1] = 2*rp*rq;
rot[1][1] = 1.0 - 2*rq*rq;
rot[0][2] = -2*rp*rki;
rot[1][2] = 2*rq*rki;
/*
*---- CALCUL DE LA LONGITUDE EXCENTRIQUE F -----------------------------
*---- F = ANOMALIE EXCENTRIQUE E + LONGITUDE DU PERIAPSE OMEGAPI -------
*/
f = keplkh( rl, rk, rh);
sf =sin(f);
cf =cos(f);
rlmf =-rk*sf+rh*cf;
umrsa =rk*cf+rh*sf;
asr =1.0/(1.0-umrsa);
rna2sr=rn*ra*asr;
/*
*---- CALCUL DE TX1 ET TX1T --------------------------------------------
tx1 = (x, y) location of satellite in the plane of its own orbit,
tx1t = (vx, vy) in similar plane, z = vz = 0.
*/
tx1[0] =ra*(cf-psi*rh*rlmf-rk);
tx1[1] =ra*(sf+psi*rk*rlmf-rh);
tx1t[0]=rna2sr*(-sf+psi*rh*umrsa);
tx1t[1]=rna2sr*( cf-psi*rk*umrsa);
/*
*---- CALCUL DE XYZ ----------------------------------------------------
Now rotate from the plane of the orbit to the plane of Uranus' equator.
*/
for (i=0; i<3; i++)
{
xyz[i] =0.0;
xyz[i+3]=0.0;
for (j=0; j<2; j++)
{
xyz[i] += rot[j][i]*tx1[j];
xyz[i+3] += rot[j][i]*tx1t[j];
}
}
}
// Position
// Compute position and velocity components for a single satellite
// at a specified time.
#define VERY_VERBOSE_OUTPUT
/* Define the above to get a "play-by-play" of what values are */
/* computed. Should make it easier to build an implementation */
/* of this theory, since you can get test values... */
#ifdef VERY_VERBOSE_OUTPUT
#include <stdio.h>
#endif
void __stdcall gust86_posn( const double jde, const int isat, double *r )
// Input arguments:
// jde Julian date, TDT
// isat Satellite index
//
// Output arguments
// r Data array [0..2] position, [3..5] velocity components.
// These are equatorial rectangular coordinates in km and
// km/sec respectively, referred to epoch J2000.0.
{
static const double gms[5] =
{ // GM of each of the five satellites
4.4, 86.1, 84.0, 230.0, 200.0 // in km^3/s^2
};
const double AU_in_km = 149597870.0; // 1AU in km
// NOTE: modern value is 149597870.7, 700 m larger
const double t0 = 2444239.5; // origin date for the theory = 1980 Jan 1
const double gmsu = 5794554.5; // Total GM of Uranus plus satellites,
// in km^3/s^2
const double gmu = gmsu - (gms[0]+gms[1]+gms[2]+gms[3]+gms[4]);
/* Above is GM of Uranus alone, without the satellites */
/* Satellite GMs sum to 604.5; gmu = 5794950.5 */
const double rmu = gmu + gms[isat];
/* Above is GM of Uranus plus the satellite we want */
const double seconds_per_day = 24. * 60. * 60.;
const double seconds_per_day_squared = seconds_per_day * seconds_per_day;
const double days_since_1980 = jde - t0;
double el[6], xu[6];
int i, j;
/*---- INITIALISATIONS --------------------------------------------------*/
/*---- Test parameters: ----------------------------------------------*/
gust86_mean_parameters( jde);
// The function to call depends on the satellite.
switch (isat)
{
case GUST86_ARIEL:
ariel_elems( days_since_1980, el);
break;
case GUST86_UMBRIEL:
umbriel_elems( days_since_1980, el);
break;
case GUST86_TITANIA:
titania_elems( days_since_1980, el);
break;
case GUST86_OBERON:
oberon_elems( days_since_1980, el);
break;
case GUST86_MIRANDA:
miranda_elems( days_since_1980, el);
break;
default: /* should never happen */
assert( 1);
return;
}
#ifdef VERY_VERBOSE_OUTPUT
printf( "Asked for satellite %d at JDE %f\n", isat, jde);
printf( "elems %f %f %f %f %f %f\n",
el[0], el[1], el[2], el[3], el[4], el[5]);
#endif
/* el[0] from the above actually gives the mean motion, in radians
per day. Use Kepler's 3rd law to convert this to a semimajor
axis in kilometers. */
el[0] = pow( rmu*seconds_per_day_squared/(el[0] * el[0]), 1.0/3.0 );
/*---- Calculate Uranicentric XYZ coordinates (position & velocity) ----- */
ellipx( el, rmu, xu );
#ifdef VERY_VERBOSE_OUTPUT
printf( " Revised el[0]: %f km\n", el[0]);
printf( " Posn/vel in Uranus' plane:\n");
printf( " %14.6f %14.6f %14.6f km\n", xu[0], xu[1], xu[2]);
printf( " %14.6f %14.6f %14.6f km/s\n", xu[3], xu[4], xu[5]);
#endif
for( i=0; i<6; i++)
r[i] = 0.0;
/* Output is in the Uranicentric frame of reference. Doing */
/* a matrix multiply by 'trans' converts to J2000. See */
/* 'gust_ref.cpp' for details as to how this matrix was made. */
for( i=0; i<3; i++)
for( j=0; j<3; j++)
{
const double trans[3][3] = {
{ 0.9753206898, -0.2207422915, 0.0047321138},
{ 0.0619432123, 0.2529905682, -0.9654837185},
{ 0.2119259083, 0.9419493686, 0.2604204221} };
r[i] += trans[j][i]*xu[j];
r[i+3] += trans[j][i]*xu[j+3];
}
#ifdef VERY_VERBOSE_OUTPUT
printf( " Posn/vel in J2000:\n");
printf( " %14.6f %14.6f %14.6f km\n", r[0], r[1], r[2]);
printf( " %14.6f %14.6f %14.6f km/s\n", r[3], r[4], r[5]);
#endif
for (i=0; i<6; i++) /* scale output to be in AU & AU/s */
r[i] /= AU_in_km;
}
|