1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
|
/* integrat.cpp: numerically integrates 'mpcorb.dat' to arbitrary epochs
Copyright (C) 2010, Project Pluto
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
#include <stdio.h>
#ifdef _MSC_VER
#include <conio.h>
#endif
#include <stdlib.h>
#include <assert.h>
#include <math.h>
#include <time.h>
#include <string.h>
#include "watdefs.h"
#include "comets.h"
#include "lunar.h"
#include "date.h"
#include "afuncs.h" /* for rotate_vector( ) proto */
#if defined( __has_include) && !__has_include(<jpleph.h>)
#error \
'jpleph.h' not found. This project depends on the 'jpl_eph'\
library. See www.github.com/Bill-Gray/jpl_eph .\
Clone that repository, 'make' and 'make install' it.
#ifdef __GNUC__
#include <stop_compiling_here>
/* Above line suppresses cascading errors. */
#endif
#endif
#include "jpleph.h"
/* On some (non-Windows) system, spreading the integration out to
multiple processes is possible. It's handled a little oddly. The number
of processes can be specified on the command line with the -z switch.
Things proceed unchanged at first, until data for the three perturbing
asteroids (Ceres, Pallas, Vesta) have been read and their ephemerides
computed. _Then_ we fork, with each process reading every n_processes
line, and "chunk" files being created. Thus, if n_processes is 7, the
first process will create a chunk file with asteroids 5, 12, 19, 26, ...
The second will process asteroids 6, 13, 20, ...
Once all the processes complete, the original process zippers the
results from the chunk files together and unlinks them. */
#if defined( __linux) || defined( __unix__) || defined( __APPLE__)
#define FORKING
#include <unistd.h> /* Symbolic Constants */
#include <sys/types.h> /* Primitive System Data Types */
#include <errno.h> /* Errors */
#include <stdio.h> /* Input/Output */
#include <sys/wait.h> /* Wait for Process Termination */
/* above basically allows for forking so we can */
/* run different objects on different cores */
#include <sys/time.h> /* these allow resource limiting */
#include <sys/resource.h> /* see '-r' command switch below */
#endif
#define PI 3.1415926535897932384626433832795028841971693993751058209749445923
#define GAUSS_K .01720209895
#define SOLAR_GM (GAUSS_K * GAUSS_K)
#define PERTURBERS_MERCURY_TO_NEPTUNE 0xff
#define PERTURBERS_PLUTO 0x100
#define PERTURBERS_MOON 0x200
#define PERTURBERS_PLUTO_AND_MOON (PERTURBERS_PLUTO | PERTURBERS_MOON)
/* Following macro isn't actually used...
#define PERTURBERS_CERES_PALLAS_VESTA 0x1c00 */
#define N_PERTURBERS 13
/* hash table sizes should be prime numbers: */
#define HASH_TABLE_SIZE 1000001
static int verbose = 0, n_steps_taken = 0, resync_freq = 50;
static int asteroid_perturber_number = -1;
static double *position_cache;
static unsigned long perturber_mask = PERTURBERS_MERCURY_TO_NEPTUNE;
/* PERTURBERS_MERCURY_TO_NEPTUNE | PERTURBERS_CERES_PALLAS_VESTA; */
int integrate_orbit( ELEMENTS *elem, const double jd_from, const double jd_to,
const double max_err, const int n_steps);
/* 28 Feb 2003: modified heavily after getting an e-mail from Werner
Huget. See his e-mail and page 281 of the _Explanatory Supplement to the
Astronomical Almanac_ for details. Basically, computing the relativistic
acceleration in the simple manner I previously used led to significant
errors for Mercury, and presumably for other objects orbiting close
to the Sun. */
static void add_relativistic_accel( double *accel, const double *posnvel)
{
int i;
const double c = AU_PER_DAY; /* speed of light in AU per day */
const double r_squared = posnvel[0] * posnvel[0] + posnvel[1] * posnvel[1]
+ posnvel[2] * posnvel[2];
const double v_squared = posnvel[3] * posnvel[3] + posnvel[4] * posnvel[4]
+ posnvel[5] * posnvel[5];
const double v_dot_r = posnvel[0] * posnvel[3] + posnvel[1] * posnvel[4]
+ posnvel[2] * posnvel[5];
const double r = sqrt( r_squared), r_cubed_c_squared = r_squared * r * c * c;
const double r_component =
(4. * SOLAR_GM / r - v_squared) / r_cubed_c_squared;
const double v_component = 4. * v_dot_r / r_cubed_c_squared;
for( i = 0; i < 3; i++)
accel[i] += r_component * posnvel[i] + v_component * posnvel[i + 3];
}
static FILE *err_fopen( const char *filename, const char *permits)
{
FILE *rval = fopen( filename, permits);
if( !rval)
{
printf( "Couldn't open file '%s'\n", filename);
#ifdef _MSC_VER
printf( "Hit any key:\n");
getch( );
#endif
exit( -1);
}
return( rval);
}
#ifdef FORKING
static char *chunk_filename( char *filename, const int chunk_number)
{
sprintf( filename, "chunk%d.ugh", chunk_number);
return( filename);
}
#endif
static void set_differential_acceleration( const double *posnvel,
const double *delta, double *accel)
{
double p_squared = 0., r_squared = 0.;
double pfactor, rfactor, posnvel_2[6];
int i;
for( i = 0; i < 6; i++)
posnvel_2[i] = posnvel[i] + delta[i];
for( i = 0; i < 3; i++)
{
p_squared += posnvel[i] * posnvel[i];
r_squared += posnvel_2[i] * posnvel_2[i];
}
/* someday, I'll do it right; for the nonce, do it quick: */
/* SEE: \useless\smalldif.cpp */
pfactor = 1. / (p_squared * sqrt( p_squared));
rfactor = 1. / (r_squared * sqrt( r_squared));
for( i = 0; i < 3; i++)
accel[i] = pfactor * posnvel[i] - rfactor * posnvel_2[i];
add_relativistic_accel( accel, posnvel_2);
}
int load_vsop_data( void);
static char *vsop_data;
static void *jpl_ephemeris;
/* perturber_loc[0, 1, 2] = heliocentric ecliptic coords */
static void compute_perturber( int perturber_no, double jd,
double *perturber_loc)
{
if( vsop_data)
{
const double j2000 = 2451545.;
double loc[15];
compute_planet( vsop_data, perturber_no, (jd - j2000) / 36525., loc);
memcpy( perturber_loc, loc + 12, 3 * sizeof( double));
}
else
{
static double jd0 = -1, posns[11][6];
int i;
if( jd0 != jd)
{
int list[14];
const double ratio = 1. + jpl_get_double( jpl_ephemeris,
JPL_EPHEM_EARTH_MOON_RATIO);
for( i = 0; i < 14; i++)
list[i] = (i < 10);
jpl_state( jpl_ephemeris, jd, list, posns, NULL, 0);
for( i = 0; i < 3; ++i)
{
posns[2][i] -= posns[9][i] / ratio;
posns[9][i] += posns[2][i];
}
jd0 = jd;
for( i = 0; i < 10; i++)
{
const double sin_obliq_2000 = 0.397777155931913701597179975942380896684;
const double cos_obliq_2000 = 0.917482062069181825744000384639406458043;
double temp = posns[i][1] * cos_obliq_2000 + posns[i][2] * sin_obliq_2000;
posns[i][2] = posns[i][2] * cos_obliq_2000 - posns[i][1] * sin_obliq_2000;
posns[i][1] = temp;
}
}
for( i = 0; i < 3; ++i)
perturber_loc[i] = posns[perturber_no - 1][i]; /* - posns[10][i]; */
/* rotate equatorial J2000.0 into ecliptical J2000: */
}
}
static double *make_position_cache( double jd0, const double stepsize,
const int n_steps)
{
double *rval = (double *)calloc( 2 + (size_t)n_steps * N_PERTURBERS * 6 * 3,
sizeof( double));
double *tptr = rval + 2;
int i, j, step;
if( !rval)
{
printf( "Ran out of memory!\n");
exit( -1);
}
rval[0] = jd0;
rval[1] = stepsize;
for( step = 0; step < n_steps; step++)
{
for( j = 0; j < 6; j++)
{
const double avals[6] = { 0., 2. / 9., 1./3., .75, 1., 5./6. };
for( i = 0; i < N_PERTURBERS; i++)
{
if( (i < 10) && ((perturber_mask >> i) & 1ul))
compute_perturber( i + 1, jd0 + avals[j] * stepsize, tptr);
else /* put it far, far away where it won't do anything: */
tptr[0] = tptr[1] = tptr[2] = 1.e+8;
tptr += 3;
}
}
jd0 += stepsize;
#ifdef OBSOLETE_DEBUGGING_CODE
while( step * 70 / n_steps > counter)
{
printf( "%d", counter % 10);
counter++;
}
#endif
}
printf( "\n");
return( rval);
}
#define EARTH_MOON_RATIO 81.30056
static double relative_mass[14] = { 1.,
1.660136795271931e-007, /* mercury */
2.447838339664545e-006, /* venus */
3.003489596331057e-006, /* Earth */
3.227151445053866e-007, /* Mars */
0.0009547919384243268, /* Jupiter */
0.0002858859806661309, /* saturn */
4.366244043351564e-005, /* Uranus */
5.151389020466116e-005, /* Neptune */
7.396449704142013e-009, /* Pluto */
3.003489596331057e-006 / EARTH_MOON_RATIO, /* Moon */
4.7622e-10, 1.0775e-10, 1.3412e-10 }; /* Ceres, Pallas, Vesta */
static int compute_derivatives( const double jd, ELEMENTS *elems,
double *delta, double *derivs, double *posn_data)
{
double accel[3], posnvel[6];
int i;
comet_posn_and_vel( elems, jd, posnvel, posnvel + 3);
set_differential_acceleration( posnvel, delta, accel);
for( i = 0; i < N_PERTURBERS; i++) /* include perturbers */
if( (perturber_mask >> i) & 1ul)
{
double perturber_loc[3], diff[3], diff_squared = 0., dfactor;
double radius_squared = 0., rfactor;
int j;
if( posn_data)
memcpy( perturber_loc, posn_data + i * 3, 3 * sizeof( double));
else
if( i < 10)
compute_perturber( i + 1, jd, perturber_loc);
else
perturber_loc[0] = perturber_loc[1] = perturber_loc[2] = 1.e+8;
for( j = 0; j < 3; j++)
{
diff[j] = perturber_loc[j] - (posnvel[j] + delta[j]);
diff_squared += diff[j] * diff[j];
radius_squared += perturber_loc[j] * perturber_loc[j];
}
dfactor = relative_mass[i + 1] / (diff_squared * sqrt( diff_squared));
rfactor = relative_mass[i + 1] / (radius_squared * sqrt( radius_squared));
for( j = 0; j < 3; j++)
accel[j] += diff[j] * dfactor - perturber_loc[j] * rfactor;
}
/* copy in Ceres, Pallas, Vesta loc if needed: */
if( posn_data && asteroid_perturber_number >= 0)
memcpy( posn_data + asteroid_perturber_number * 3, posnvel,
3 * sizeof( double));
for( i = 0; i < 3; i++)
{
derivs[i] = delta[i + 3];
derivs[i + 3] = SOLAR_GM * accel[i];
}
return( 0);
}
#define N_VALUES 6
/* i.e., a state vector consumes six values: x, y, z, vx, vy, vz */
static int take_step( const double jd, ELEMENTS *elems,
double *ival, double *ovals, double *errs,
double step_size)
{
double *ivals[7], *ivals_p[6];
double ivals_1_buff[12 * N_VALUES];
double *posn_data = NULL;
int i, j, k;
const double bvals[27] = {2. / 9.,
1. / 12., 1. / 4.,
69. / 128., -243. / 128., 135. / 64.,
-17. / 12., 27. / 4., -27. / 5., 16. / 15.,
65. / 432., -5. / 16., 13 / 16., 4 / 27., 5. / 144.,
47. / 450., 0., 12 / 25., 32. / 225., 1. / 30., 6. / 25.,
-1. / 150., 0., .03, -16. / 75., -.05, .24};
const double *bptr = bvals;
const double avals[6] = { 0., 2. / 9., 1./3., .75, 1., 5./6. };
ivals[1] = ivals_1_buff;
for( i = 0; i < 6; i++)
{
ivals[i + 1] = ivals[1] + i * N_VALUES;
ivals_p[i] = ivals[1] + (i + 6) * N_VALUES;
}
if( fabs( step_size - position_cache[1]) < .000001)
{
int cache_loc = (int)floor( (jd - position_cache[0]) / step_size + .5);
posn_data = position_cache + 2 + cache_loc * 6 * N_PERTURBERS * 3;
}
compute_derivatives( jd, elems, ival, ivals_p[0], posn_data);
for( j = 1; j < 7; j++)
{
for( i = 0; i < N_VALUES; i++)
{
double tval = 0.;
for( k = 0; k < j; k++)
tval += bptr[k] * ivals_p[k][i];
ivals[j][i] = tval * step_size + ival[i];
}
bptr += j;
if( j != 6)
compute_derivatives( jd + step_size * avals[j], elems,
ivals[j], ivals_p[j], posn_data ?
posn_data + j * N_PERTURBERS * 3 : NULL);
}
if( errs)
for( i = 0; i < N_VALUES; i++)
{
double tval = 0.;
for( k = 0; k < 6; k++)
tval += bptr[k] * ivals_p[k][i];
errs[i] = step_size * tval;
}
memcpy( ovals, ivals[6], N_VALUES * sizeof( double));
n_steps_taken++;
return( 0);
}
/* The following 'full_rk_step' integrates using the Runge-Kutta-Fehlberg
fifth-order integrator with automatic stepsize, as described in J M A
Danby's _Fundamentals of Celestial Mechanics_, second edition, pages
297-299. Basically, the integration is done both to fourth and fifth
order. The difference gives us an idea of the error for that step. If
it is greater than some desired amount, we can try again with a smaller
step size.
After each step, we recompute the step size: if the previous step
resulted in a really low error, we need to raise the step size, and
if it caused a lot of error, we decrease the step size. */
static int full_rk_step( ELEMENTS *elems, double *ivals, double *ovals,
double t0, double t1, double max_err)
{
double step = t1 - t0;
double errs[N_VALUES], new_vals[N_VALUES];
int n_chickens = 0;
memcpy( ovals, ivals, N_VALUES * sizeof( double));
max_err *= max_err;
while( t0 != t1)
{
double err_val = 0.;
const double chicken_factor = .9;
int i;
take_step( t0, elems, ovals, new_vals, errs, step);
for( i = 0; i < N_VALUES; i++)
err_val += errs[i] * errs[i];
if( err_val < max_err) /* yeah, it was a good step */
{
memcpy( ovals, new_vals, N_VALUES * sizeof( double));
t0 += step;
}
else
n_chickens++;
step *= chicken_factor * exp( log( max_err / err_val) / 5.);
if( t0 < t1)
if( t0 + step > t1)
step = t1 - t0;
if( t1 < t0)
if( t0 + step < t1)
step = t1 - t0;
/* if( err_val >= max_err) */
/* printf( "Chickened out: new step %lf\n", step); */
}
return( n_chickens);
}
/* 'integrate_orbit' integrates the elements over the desired time span to
the desired maximum error, using the number of steps requested. The
orbit is broken up into that many steps, and 'full_rk_step' is then
called for each step. The individual steps will probably be taken in
one RKF step, but if their errors prove to be too great, they'll
be broken into sub-steps. See comments for the above code.
The reason for this is speed. Much of Integrat's time is spent in
computing planetary positions. If the steps fall on an evenly spaced
grid, the positions can be drawn from a precomputed array. For the
cases that break up into sub-steps, planetary positions have to be
computed "from scratch". But with a suitably short step size, you
can keep that from happening too often.
The down side to all of this is complexity and (often) taking some
unnecessary steps for main-belt objects, where a larger step size
would work just fine. I _do_ have a better scheme in mind, and it's
implemented in my Find_Orb software... but not here (yet). */
int integrate_orbit( ELEMENTS *elem, const double jd_from, const double jd_to,
const double max_err, const int n_steps)
{
double delta[6], posnvel[6], stepsize = (jd_to - jd_from) / (double)n_steps;
double curr_jd = jd_from;
int i, j;
for( i = 0; i < 6; i++)
delta[i] = 0.;
for( i = 0; i < n_steps; i++)
{
double new_delta[6];
int chickened_out;
chickened_out = full_rk_step( elem, delta, new_delta, curr_jd,
curr_jd + stepsize, max_err);
memcpy( delta, new_delta, 6 * sizeof( double));
curr_jd += stepsize;
if( i && (i % resync_freq == 0 || chickened_out))
{
comet_posn_and_vel( elem, curr_jd, posnvel, posnvel + 3);
for( j = 0; j < 6; j++)
{
posnvel[j] += delta[j];
delta[j] = 0.;
}
elem->epoch = curr_jd;
elem->gm = SOLAR_GM;
calc_classical_elements( elem, posnvel, curr_jd, 1);
}
}
comet_posn_and_vel( elem, jd_to, posnvel, posnvel + 3);
for( i = 0; i < 6; i++)
posnvel[i] += delta[i];
elem->epoch = jd_to;
elem->gm = SOLAR_GM;
calc_classical_elements( elem, posnvel, jd_to, 1);
return( 0);
}
int load_vsop_data( void)
{
FILE *ifile = err_fopen( "vsop.bin", "rb");
const unsigned vsop_size = 60874u;
vsop_data = NULL;
if( ifile)
{
vsop_data = (char *)calloc( vsop_size, 1);
if( vsop_data)
{
const size_t bytes_read = fread( vsop_data, 1, vsop_size, ifile);
assert( bytes_read == vsop_size);
}
fclose( ifile);
}
return( ifile && vsop_data ? 0 : -1);
}
static long extract_mpc_epoch( const char *epoch_buff)
{
long year = 100 * (epoch_buff[0] - 'A' + 10) +
10 * (epoch_buff[1] - '0') + (epoch_buff[2] - '0');
int arr[2], i;
for( i = 0; i < 2; i++)
arr[i] = ((epoch_buff[i + 3] >= 'A') ? epoch_buff[i + 3] - 'A' + 10 :
epoch_buff[i + 3] - '0');
return( dmy_to_day( arr[1], arr[0], year, 0));
}
/* MPC stores many quantities that range from 0 to 61 in a single character */
/* where 0..9 = 0..9, A...Z = 10...35, a...z = 36...61. As far as I know, */
/* there are no plans in place for handling overflow past 61. */
static char extended_hex( const int ival)
{
int rval;
assert( ival >= 0 && ival < 62);
if( ival < 10)
rval = '0';
else if( ival < 36)
rval = 'A' - 10;
else
rval = 'a' - 36;
return( (char)( rval + ival));
}
static inline void put_mpc_epoch( char *epoch_buff, long epoch)
{
long year;
int month, day;
day_to_dmy( epoch, &day, &month, &year, 0);
epoch_buff[0] = extended_hex( (int)year / 100);
sprintf( epoch_buff + 1, "%02ld", year % 100L);
epoch_buff[3] = extended_hex( month);
epoch_buff[4] = extended_hex( day);
}
static void centralize( double *ang)
{
while( *ang < 0.)
*ang += PI + PI;
while( *ang > PI + PI)
*ang -= PI + PI;
}
static int extract_comet_dat( ELEMENTS *elem, const char *buff)
{
int rval = 0;
if( strlen( buff) > 104)
{
static const char check_bytes[20] = { 24, '.', 21, ' ',
18, ' ', 32, '.', 42, '.', 50, ' ', 74, '.',
89, ' ', 98, '.', 0,0 };
int i;
rval = 1;
for( i = 0; check_bytes[i]; i += 2)
if( buff[(int)check_bytes[i]] != check_bytes[i + 1])
rval = 0;
memset( elem, 0, sizeof( ELEMENTS));
if( rval && buff[81] >= '1')
{
const long epoch_date = atol( buff + 81);
elem->epoch = dmy_to_day( epoch_date % 100,
(epoch_date / 100) % 100, epoch_date / 10000, 0) - .5;
elem->perih_time = dmy_to_day( 0, atoi( buff + 19),
atoi( buff + 14), 0) + atof( buff + 22) - .5;
elem->arg_per = atof( buff + 51) * PI / 180.;
elem->asc_node = atof( buff + 61) * PI / 180.;
elem->incl = atof( buff + 71) * PI / 180.;
elem->ecc = atof( buff + 41);
elem->q = atof( buff + 30);
derive_quantities( elem, SOLAR_GM);
}
}
return( rval);
}
static void comet_dat_to_guide_format( char *obuff, const char *ibuff)
{
int i, j = 0;
if( ibuff[102] <= '9') /* periodic comet */
{
for( i = 102; ibuff[i] && ibuff[i] != '/'; i++)
;
for( i++; ibuff[i] >= ' '; i++)
obuff[j++] = ibuff[i];
obuff[j++] = ' ';
obuff[j++] = '(';
for( i = 102; ibuff[i] != 'P'; i++)
obuff[j++] = ibuff[i];
obuff[j++] = 'P';
obuff[j++] = ')';
}
else
{
int len;
for( i = 102; ibuff[i] && ibuff[i] != '('; i++)
;
len = i - 103;
i++;
while( ibuff[i] != ')')
obuff[j++] = ibuff[i++];
obuff[j++] = ' ';
obuff[j++] = '(';
memcpy( obuff + j, ibuff + 102, (size_t)len);
j += len;
obuff[j++] = ')';
}
memset( obuff + j, ' ', (size_t)( 160 - j));
memcpy( obuff + 55, ibuff + 14, 4); /* year */
memcpy( obuff + 52, ibuff + 19, 2); /* month */
memcpy( obuff + 43, ibuff + 22, 8); /* day */
memcpy( obuff + 62, "0.0", 3); /* mean anomaly = 0 for comets */
memcpy( obuff + 73, ibuff + 30, 9); /* q */
memcpy( obuff + 86, ibuff + 41, 8); /* ecc */
memcpy( obuff + 96, ibuff + 71, 9); /* incl */
memcpy( obuff + 108, ibuff + 51, 9); /* arg per */
memcpy( obuff + 120, ibuff + 61, 9); /* asc node */
memcpy( obuff + 132, "2000.0", 6);
memcpy( obuff + 141, ibuff + 91, 9); /* magnitude data */
memcpy( obuff + 154, "Epoch:", 6);
memcpy( obuff + 160, ibuff + 81, 8); /* epoch */
obuff[168] = '\0';
}
static int integrate_unperturbed = 0;
static int extract_mpcorb_dat( ELEMENTS *elem, const char *buff,
const int format_check_only)
{
int rval = 0;
elem->epoch = 0.;
if( strlen( buff) > 200 && buff[10] == '.' && buff[16] == '.' &&
buff[25] == ' ' && buff[29] == '.' && buff[36] == ' ')
if( buff[142] != ' ' || integrate_unperturbed)
{ /* it's a perturbed orbit, or we're integrating it anyway */
rval = 1;
elem->epoch = (double)extract_mpc_epoch( buff + 20) - .5;
if( format_check_only)
return( rval);
elem->mean_anomaly = atof( buff + 26) * PI / 180.;
elem->arg_per = atof( buff + 37) * PI / 180.;
elem->asc_node = atof( buff + 48) * PI / 180.;
elem->incl = atof( buff + 59) * PI / 180.;
elem->ecc = atof( buff + 69);
elem->major_axis = atof( buff + 92);
elem->q = elem->major_axis * (1. - elem->ecc);
derive_quantities( elem, SOLAR_GM);
elem->perih_time = elem->epoch - elem->mean_anomaly * elem->t0;
}
return( rval);
}
static int convert_comets_to_guide_format = 0;
#define FOUR_DECIMAL_PLACES (4 << 4)
static double try_to_integrate( char *buff, const double dest_jd,
const double max_err, const double stepsize)
{
ELEMENTS elem;
int got_it = 0, pluto_removed = 0;
if( extract_mpcorb_dat( &elem, buff, (dest_jd == .0)))
got_it = 1;
else if( extract_comet_dat( &elem, buff))
got_it = 2;
if( !memcmp( buff, "D4340 ", 6)) /* don't let (134340) Pluto */
if( perturber_mask & PERTURBERS_PLUTO) /* perturb itself! */
{
pluto_removed = 1;
perturber_mask ^= PERTURBERS_PLUTO;
}
if( got_it && dest_jd != 0. && elem.epoch != 0.)
{
int n_steps;
n_steps = (int)fabs( (dest_jd - elem.epoch) / stepsize) + 2;
elem.angular_momentum = sqrt( SOLAR_GM * elem.q);
elem.angular_momentum *= sqrt( 1. + elem.ecc);
if( !position_cache) /* gotta initialize it: */
position_cache = make_position_cache( elem.epoch,
(dest_jd - elem.epoch) / (double)n_steps, n_steps);
integrate_orbit( &elem, elem.epoch, dest_jd, max_err, n_steps);
centralize( &elem.mean_anomaly);
centralize( &elem.arg_per);
centralize( &elem.asc_node);
if( got_it == 1) /* mpcorb.dat format */
{
const long epoch_stored = (long)floor( dest_jd + 1.); /* rounds up */
const double time_diff = (double)epoch_stored - .5 - dest_jd;
put_mpc_epoch( buff + 20, epoch_stored);
elem.mean_anomaly += time_diff / elem.t0;
sprintf( buff + 26, "%9.5f %9.5f %9.5f %9.5f%12.8f",
elem.mean_anomaly * 180. / PI,
elem.arg_per * 180. / PI,
elem.asc_node * 180. / PI,
elem.incl * 180. / PI,
elem.ecc);
sprintf( buff + 79, "%12.8f%12.7f", (180. / PI) / elem.t0,
elem.major_axis);
buff[103] = ' ';
}
else /* MPC's 'comet.dat' format */
{
char tbuff[50];
full_ctime( buff + 14, elem.perih_time,
FULL_CTIME_YEAR_FIRST | FULL_CTIME_MONTHS_AS_DIGITS |
FULL_CTIME_MONTH_DAY |
FULL_CTIME_FORMAT_DAY | FOUR_DECIMAL_PLACES);
if( buff[19] == ' ')
buff[19] = '0';
buff[strlen( buff)] = ' ';
sprintf( buff + 30, "%9.6f%10.6f %9.5f %9.5f %9.5f",
elem.q, elem.ecc, elem.arg_per * 180. / PI,
elem.asc_node * 180. / PI,
elem.incl * 180. / PI);
buff[strlen( buff)] = ' ';
full_ctime( tbuff, elem.epoch,
FULL_CTIME_YEAR_FIRST | FULL_CTIME_MONTHS_AS_DIGITS |
FULL_CTIME_MONTH_DAY | FULL_CTIME_LEADING_ZEROES |
FULL_CTIME_FORMAT_DAY);
memcpy( buff + 81, tbuff, 4); /* year */
memcpy( buff + 85, tbuff + 5, 2); /* month */
memcpy( buff + 87, tbuff + 8, 2); /* day */
}
}
if( got_it == 2 && convert_comets_to_guide_format)
{
char tbuff[200];
comet_dat_to_guide_format( tbuff, buff);
strcpy( buff, tbuff);
strcat( buff, "\n");
}
if( pluto_removed)
perturber_mask ^= PERTURBERS_PLUTO;
return( elem.epoch);
}
/* If we're updating a previous result, we check to see if the designation,
H, G, reference, number of observations, etc. have changed. If they
have, the data underlying the orbit have presumably changed, and we need to
re-integrate that object's orbit. But if our previous result does contain an
object with the same name and other details, we don't have to do all the
math to integrate it all over again just to get the same result as before. */
static long compute_hash( const char *buff)
{
long rval = 0;
const long big_prime = 2141592701L;
int i;
for( i = 0; *buff >= ' '; i++, buff++)
if( i < 20 || i > 105) /* skip cols containing orbital elems */
rval = rval * big_prime + (long)*buff;
return( rval);
}
static unsigned find_in_table( const long *hashes, const long hash_val)
{
unsigned i, loc = (unsigned)hash_val % HASH_TABLE_SIZE;
for( i = 1; hashes[loc] && hashes[loc] != hash_val; i += 2)
loc = (loc + i) % HASH_TABLE_SIZE;
return( loc);
}
static void error_exit( void)
{
#ifdef _MSC_VER
printf( "Hit any key:\n");
getch( );
#endif
}
#define JAN_1970 2440587.5
int main( int argc, const char **argv)
{
FILE *ifile, *ofile, *update_file = NULL;
const char *temp_file_name = "ickywax.ugh";
long *hashes, *file_offsets, hash_val;
const char *ephem_filename = NULL;
double dest_jd, max_err = 1.e-12, stepsize = 2., t_last_printout = 0.;
double starting_jd = 0., curr_jd;
char buff[220], time_buff[60];
int i, n_integrated = 0, total_asteroids_in_file, header_found = 0;
int max_asteroids = (1 << 30);
#ifdef FORKING
int n_processes = 0, process_number = 0, child_status;
bool forking_has_happened = false;
#endif
int quit = 0, n_found_from_update = 0;
clock_t t0;
if( argc == 2 && !memcmp( argv[1], "today", 5))
{
static const char *new_args[5] = { NULL, "nea.dat", "neatod.dat",
NULL, NULL };
new_args[0] = argv[0];
new_args[3] = argv[1];
argv = new_args;
argc = 4;
}
if( argc < 4)
{
printf( "INTEGRAT takes as command-line arguments the name of an input\n");
printf( "file of the MPCORB.DAT or COMET.DAT type; the name of the output\n");
printf( "file that is to be created; and the epoch (JD or YYYYMMDD)\n");
printf( "of that file. For example: either\n\n");
printf( "integrat mpcorbcr.dat 2452600.mpc 2452600.5\n\n");
printf( "integrat mpcorbcr.dat 2452600.mpc 20021122\n\n");
printf( "would read in the 'mpcorbcr.dat' file, and create a new file\n");
printf( "updated to the epoch JD 2452600.5 = 22 Nov 2002.\n");
printf( "Also: in place of a date, one can use 'today'. For example:\n");
printf( "\nintegrat nea.dat neatod.dat today\n\n");
printf( "would read in 'nea.dat' and write out an 'neatod.dat' file.\n");
error_exit( );
return( -1);
}
setvbuf( stdout, NULL, _IONBF, 0);
ifile = err_fopen( argv[1], "rb");
if( !rename( argv[2], temp_file_name))
{
int n_hashes = 0;
printf( "Using an update\n");
update_file = err_fopen( temp_file_name, "rb");
hashes = (long *)calloc( HASH_TABLE_SIZE * 2, sizeof( long));
file_offsets = hashes + HASH_TABLE_SIZE;
while( fgets( buff, sizeof( buff), update_file))
if( (hash_val = compute_hash( buff)) != 0L)
{
const unsigned hash_loc = find_in_table( hashes, hash_val);
hashes[hash_loc] = hash_val;
file_offsets[hash_loc] = ftell( update_file) - strlen( buff);
n_hashes++;
}
printf( "Got %d hashes\n", n_hashes);
}
else
hashes = file_offsets = NULL;
curr_jd = JAN_1970 + (double)time( NULL) / seconds_per_day;
/* Start with the destination epoch being "right now", */
/* suitably rounded to 0h TD. One can then set the time */
/* relative to that point (e.g., "25 Feb" will be assumed */
/* to refer to that date in the current year). */
dest_jd = floor( curr_jd) + .5;
*buff = '\0';
for( i = 3; i < argc && argv[i][0] != '-'; i++)
{
strcat( buff, " ");
strcat( buff, argv[i]);
}
if( !memcmp( buff, " today", 6))
dest_jd += atof( buff + 6);
else
dest_jd = get_time_from_string( dest_jd, buff, FULL_CTIME_YMD, NULL);
full_ctime( time_buff, dest_jd, 0);
sprintf( buff, "Integrat version %s %s\nIntegrating to %s = JD %.5f\n",
__DATE__, __TIME__, time_buff, dest_jd);
printf( "%s", buff);
ofile = err_fopen( argv[2], "wb");
if( dest_jd != floor( dest_jd) + .5)
{
printf( "WARNING: the MPCORB format can only handle 'standard' 0h TD epochs.\n");
printf( "Integrat will create elements that give the correct position and velocity\n");
printf( "at the epoch you've requested; but the epoch stored in MPCORB format\n");
printf( "will be rounded to the nearest day (and the mean anomaly suitably\n");
printf( "corrected.)\n\nHit any key:\n");
#ifdef _MSC_VER
getch( );
#endif
}
fprintf( ofile, "%s", buff);
full_ctime( time_buff, curr_jd, 0);
fprintf( ofile, "Time started: %s\n", time_buff);
for( i = 1; i < argc; i++)
if( argv[i][0] == '-')
switch( argv[i][1])
{
case 'c':
convert_comets_to_guide_format = 1;
printf( "Comet output will be in Guide format\n");
break;
case 'f':
ephem_filename = argv[i] + 2;
if( !*ephem_filename && i < argc - 1)
ephem_filename = argv[i + 1];
break;
case 'n':
max_asteroids = atoi( argv[i] + 2);
printf( "Only integrating up to %d objects\n", max_asteroids);
break;
case 'p':
integrate_unperturbed = 1;
printf( "Integrating unperturbed objects, too\n");
break;
case 'r':
resync_freq = atoi( argv[i] + 2);
break;
case 's':
stepsize = atof( argv[i] + 2);
printf( "Step size set at %.2f days\n", stepsize);
break;
case 't':
max_err = atof( argv[i] + 2);
break;
case 'v':
verbose = 1 + atoi( argv[i] + 2);
printf( "Setting verbose output\n");
break;
#ifdef FORKING
case 'z':
n_processes = atoi( argv[i] + 2);
break;
#endif
default:
printf( "Command-line option '%s' ignored\n", argv[i]);
break;
}
if( ephem_filename)
{
jpl_ephemeris = jpl_init_ephemeris( ephem_filename, NULL, NULL);
if( !jpl_ephemeris)
{
printf( "JPL ephemeris file '%s' not found\n", ephem_filename);
error_exit( );
return( -3);
}
perturber_mask |= PERTURBERS_PLUTO_AND_MOON;
if( verbose)
printf( "Using JPL ephemeris file '%s'\n", ephem_filename);
}
if( !jpl_ephemeris && load_vsop_data( ))
{
printf( "VSOP.BIN not loaded!\n");
error_exit( );
return( -4);
}
if( !ephem_filename) /* gotta lump the Moon in with the earth: */
relative_mass[3] += relative_mass[10];
/* first, go through the file to figure out how many asteroids */
/* we'll have integrate: */
total_asteroids_in_file = 0;
while( fgets( buff, sizeof( buff), ifile)
&& total_asteroids_in_file < max_asteroids)
{
const double tval = try_to_integrate( buff, 0., max_err, stepsize);
if( tval != 0. && starting_jd == 0.)
{
starting_jd = tval;
full_ctime( time_buff, starting_jd, FULL_CTIME_DATE_ONLY | 0x30);
sprintf( buff, "'%s' has elements for %s = JD %.1f\n",
argv[1], time_buff, starting_jd);
printf( "%s", buff);
fprintf( ofile, "%s", buff);
}
if( tval != 0.)
total_asteroids_in_file++;
if( !memcmp( buff, "--------------------", 20))
header_found = 1;
}
sprintf( buff, "%d asteroids to be integrated\n", total_asteroids_in_file);
printf( "%s", buff);
fprintf( ofile, "%s", buff);
if( !header_found)
fprintf( ofile, "----------------------------------------------------------------\n");
fseek( ifile, 0L, SEEK_SET);
t0 = clock( );
while( !quit && fgets( buff, sizeof( buff), ifile)
&& n_integrated < max_asteroids)
{
bool got_it_from_update = false;
asteroid_perturber_number = -1;
switch( atoi( buff))
{
case 1: /* Ceres */
if( strstr( buff + 174, "Ceres "))
asteroid_perturber_number = 10;
break;
case 2: /* Pallas */
if( strstr( buff + 174, "Pallas "))
asteroid_perturber_number = 11;
break;
case 4: /* Vesta */
if( strstr( buff + 174, "Vesta "))
asteroid_perturber_number = 12;
break;
default:
break;
}
#ifdef FORKING
if( (perturber_mask & 0x1c00) == 0x1c00 && n_processes
&& !forking_has_happened)
{
char outfile_name[50];
int j;
const long offset = ftell( ifile);
forking_has_happened = true;
fclose( ofile);
fclose( ifile);
if( jpl_ephemeris)
jpl_close_ephemeris( jpl_ephemeris);
if( update_file)
fclose( update_file);
while( process_number < n_processes - 1)
{
const pid_t childpid = fork( );
if( childpid == -1) /* fork( ) returns -1 on failure */
{
perror( "fork"); /* display error message */
exit(0);
}
else if( childpid == 0) /* we're a child process */
{
// printf( "Hi! I'm child %d. My PID is %d; parent's is %d\n",
// process_number, getpid( ), getppid( ));
}
else
break; /* break out of loop, signalling we're a parent */
process_number++;
}
printf( "Hi! I've got process number %d, PID %d, parent's is %d\n",
process_number, getpid( ), getppid( ));
sprintf( outfile_name, "chunk%d.ugh", process_number);
ofile = err_fopen( chunk_filename( outfile_name, process_number), "wb");
ifile = err_fopen( argv[1], "rb");
fseek( ifile, offset, SEEK_SET);
if( jpl_ephemeris)
jpl_ephemeris = jpl_init_ephemeris( ephem_filename, NULL, NULL);
if( update_file)
update_file = err_fopen( temp_file_name, "rb");
j = 0;
while( j < process_number && fgets( buff, sizeof( buff), ifile))
j++;
}
#endif
if( update_file && asteroid_perturber_number == -1
&& (hash_val = compute_hash( buff)) != 0L)
{
char buff2[220];
const unsigned hash_loc = find_in_table( hashes, hash_val);
if( hashes[hash_loc])
{
assert( hashes[hash_loc] == hash_val);
fseek( update_file, file_offsets[hash_loc], SEEK_SET);
if( fgets( buff2, sizeof( buff2), update_file)
&& !memcmp( buff2, buff, 20)
&& !memcmp( buff2 + 105, buff + 105, 97))
{
strcpy( buff, buff2);
got_it_from_update = true;
n_found_from_update++;
}
}
}
if( !got_it_from_update &&
try_to_integrate( buff, dest_jd, max_err, stepsize) != 0.)
{
clock_t t = clock( );
const double elapsed_time = (double)(t - t0) / (double)CLOCKS_PER_SEC;
if( asteroid_perturber_number > 0)
{
printf( "Perturber %d calculated\n", asteroid_perturber_number);
perturber_mask |= (1L << asteroid_perturber_number);
}
n_integrated++;
if( verbose > 1)
{
char tbuff[30];
memcpy( tbuff, buff, 29);
tbuff[29] = '\0';
printf( "%s: %.2f seconds; %5d steps: %5d integrated\n",
tbuff, elapsed_time, n_steps_taken, n_integrated);
t0 = t; /* restart the clock */
n_steps_taken = 0;
}
else if( elapsed_time > t_last_printout + 1.)
{
t_last_printout = elapsed_time;
printf( "%.0f seconds elapsed; %.0f seconds remain; %d done %d \r",
elapsed_time,
(double)(total_asteroids_in_file - n_integrated)
* elapsed_time / (double)n_integrated,
n_integrated,
n_found_from_update);
}
#ifdef _MSC_VER
if( kbhit( ))
if( getch( ) == 27)
quit = 1;
#endif
}
fputs( buff, ofile);
#ifdef FORKING
if( forking_has_happened)
{
int j = 1;
while( j < n_processes && fgets( buff, sizeof( buff), ifile))
j++;
}
#endif
}
if( jpl_ephemeris)
jpl_close_ephemeris( jpl_ephemeris);
fclose( ifile);
fclose( ofile);
#ifdef FORKING
if( forking_has_happened)
{
printf( "Process %d is done\n", process_number);
wait( &child_status); /* wait for child to exit, and store its status */
printf( "Waiting is over for process %d\n", process_number);
if( !process_number)
{
FILE **ifiles = (FILE **)calloc( n_processes, sizeof( FILE *));
for( i = 0; i < n_processes; i++)
ifiles[i] = err_fopen( chunk_filename( buff, i), "rb");
ofile = err_fopen( argv[2], "ab");
i = 0;
while( fgets( buff, sizeof( buff), ifiles[i]))
{
fputs( buff, ofile);
i = (i + 1) % n_processes;
}
for( i = 0; i < n_processes; i++)
{
fclose( ifiles[i]);
unlink( chunk_filename( buff, i));
}
fclose( ofile);
}
}
#endif
return( 0);
}
|