File: integrat.cpp

package info (click to toggle)
pluto-lunar 0.0~git20180825.e34c1d1-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, buster, forky, sid, trixie
  • size: 1,584 kB
  • sloc: cpp: 18,100; makefile: 653; ansic: 368
file content (1208 lines) | stat: -rw-r--r-- 41,925 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
/* integrat.cpp: numerically integrates 'mpcorb.dat' to arbitrary epochs

Copyright (C) 2010, Project Pluto

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.    */

#include <stdio.h>
#ifdef _MSC_VER
#include <conio.h>
#endif
#include <stdlib.h>
#include <assert.h>
#include <math.h>
#include <time.h>
#include <string.h>
#include "watdefs.h"
#include "comets.h"
#include "lunar.h"
#include "date.h"
#include "afuncs.h"        /* for rotate_vector( ) proto */

#if defined( __has_include) && !__has_include(<jpleph.h>)
   #error   \
        'jpleph.h' not found.  This project depends on the 'jpl_eph'\
        library.  See www.github.com/Bill-Gray/jpl_eph .\
        Clone that repository,  'make'  and 'make install' it.
#ifdef __GNUC__
   #include <stop_compiling_here>
         /* Above line suppresses cascading errors. */
#endif
#endif

#include "jpleph.h"

/* On some (non-Windows) system,  spreading the integration out to
multiple processes is possible.  It's handled a little oddly.  The number
of processes can be specified on the command line with the -z switch.
Things proceed unchanged at first,  until data for the three perturbing
asteroids (Ceres,  Pallas,  Vesta) have been read and their ephemerides
computed. _Then_ we fork,  with each process reading every n_processes
line,  and "chunk" files being created.  Thus,  if n_processes is 7,  the
first process will create a chunk file with asteroids 5, 12, 19, 26, ...
The second will process asteroids 6, 13, 20, ...

   Once all the processes complete,  the original process zippers the
results from the chunk files together and unlinks them.     */

#if defined( __linux) || defined( __unix__) || defined( __APPLE__)
   #define FORKING

   #include <unistd.h>     /* Symbolic Constants */
   #include <sys/types.h>  /* Primitive System Data Types */
   #include <errno.h>      /* Errors */
   #include <stdio.h>      /* Input/Output */
   #include <sys/wait.h>   /* Wait for Process Termination  */
            /* above basically allows for forking so we can */
            /* run different objects on different cores     */
   #include <sys/time.h>         /* these allow resource limiting */
   #include <sys/resource.h>     /* see '-r' command switch below */
#endif


#define PI 3.1415926535897932384626433832795028841971693993751058209749445923
#define GAUSS_K .01720209895
#define SOLAR_GM (GAUSS_K * GAUSS_K)

#define PERTURBERS_MERCURY_TO_NEPTUNE 0xff
#define PERTURBERS_PLUTO 0x100
#define PERTURBERS_MOON  0x200
#define PERTURBERS_PLUTO_AND_MOON (PERTURBERS_PLUTO | PERTURBERS_MOON)
/* Following macro isn't actually used...
   #define PERTURBERS_CERES_PALLAS_VESTA 0x1c00   */
#define N_PERTURBERS 13
         /* hash table sizes should be prime numbers: */
#define HASH_TABLE_SIZE 1000001

static int verbose = 0, n_steps_taken = 0, resync_freq = 50;
static int asteroid_perturber_number = -1;
static double *position_cache;
static unsigned long perturber_mask = PERTURBERS_MERCURY_TO_NEPTUNE;
      /*  PERTURBERS_MERCURY_TO_NEPTUNE | PERTURBERS_CERES_PALLAS_VESTA; */

int integrate_orbit( ELEMENTS *elem, const double jd_from, const double jd_to,
                              const double max_err, const int n_steps);

/* 28 Feb 2003:  modified heavily after getting an e-mail from Werner
Huget. See his e-mail and page 281 of the _Explanatory Supplement to the
Astronomical Almanac_ for details.  Basically,  computing the relativistic
acceleration in the simple manner I previously used led to significant
errors for Mercury,  and presumably for other objects orbiting close
to the Sun. */

static void add_relativistic_accel( double *accel, const double *posnvel)
{
   int i;
   const double c = AU_PER_DAY;           /* speed of light in AU per day */
   const double r_squared = posnvel[0] * posnvel[0] + posnvel[1] * posnvel[1]
                                                    + posnvel[2] * posnvel[2];
   const double v_squared = posnvel[3] * posnvel[3] + posnvel[4] * posnvel[4]
                                                    + posnvel[5] * posnvel[5];
   const double v_dot_r   = posnvel[0] * posnvel[3] + posnvel[1] * posnvel[4]
                                                    + posnvel[2] * posnvel[5];
   const double r = sqrt( r_squared), r_cubed_c_squared = r_squared * r * c * c;
   const double r_component =
                  (4. * SOLAR_GM / r - v_squared) / r_cubed_c_squared;
   const double v_component = 4. * v_dot_r / r_cubed_c_squared;

   for( i = 0; i < 3; i++)
      accel[i] += r_component * posnvel[i] + v_component * posnvel[i + 3];
}

static FILE *err_fopen( const char *filename, const char *permits)
{
   FILE *rval = fopen( filename, permits);

   if( !rval)
      {
      printf( "Couldn't open file '%s'\n", filename);
#ifdef _MSC_VER
      printf( "Hit any key:\n");
      getch( );
#endif
      exit( -1);
      }
   return( rval);
}

#ifdef FORKING
static char *chunk_filename( char *filename, const int chunk_number)
{
   sprintf( filename, "chunk%d.ugh", chunk_number);
   return( filename);
}
#endif

static void set_differential_acceleration( const double *posnvel,
                      const double *delta, double *accel)
{
   double p_squared = 0., r_squared = 0.;
   double pfactor, rfactor, posnvel_2[6];
   int i;

   for( i = 0; i < 6; i++)
      posnvel_2[i] = posnvel[i] + delta[i];
   for( i = 0; i < 3; i++)
      {
      p_squared += posnvel[i] * posnvel[i];
      r_squared += posnvel_2[i] * posnvel_2[i];
      }
               /* someday,  I'll do it right;  for the nonce,  do it quick: */
               /* SEE: \useless\smalldif.cpp */
   pfactor = 1. / (p_squared * sqrt( p_squared));
   rfactor = 1. / (r_squared * sqrt( r_squared));
   for( i = 0; i < 3; i++)
      accel[i] = pfactor * posnvel[i] - rfactor * posnvel_2[i];
   add_relativistic_accel( accel, posnvel_2);
}

int load_vsop_data( void);

static char *vsop_data;
static void *jpl_ephemeris;

/* perturber_loc[0, 1, 2] = heliocentric ecliptic coords */

static void compute_perturber( int perturber_no, double jd,
                             double *perturber_loc)
{
   if( vsop_data)
      {
      const double j2000 = 2451545.;
      double loc[15];

      compute_planet( vsop_data, perturber_no, (jd - j2000) / 36525., loc);
      memcpy( perturber_loc, loc + 12, 3 * sizeof( double));
      }
   else
      {
      static double jd0 = -1, posns[11][6];
      int i;

      if( jd0 != jd)
         {
         int list[14];
         const double ratio = 1. + jpl_get_double( jpl_ephemeris,
                                          JPL_EPHEM_EARTH_MOON_RATIO);

         for( i = 0; i < 14; i++)
            list[i] = (i < 10);
         jpl_state( jpl_ephemeris, jd, list, posns, NULL, 0);
         for( i = 0; i < 3; ++i)
            {
            posns[2][i] -= posns[9][i] / ratio;
            posns[9][i] += posns[2][i];
            }
         jd0 = jd;
         for( i = 0; i < 10; i++)
            {
            const double sin_obliq_2000 = 0.397777155931913701597179975942380896684;
            const double cos_obliq_2000 = 0.917482062069181825744000384639406458043;
            double temp = posns[i][1] * cos_obliq_2000 + posns[i][2] * sin_obliq_2000;

            posns[i][2] = posns[i][2] * cos_obliq_2000 - posns[i][1] * sin_obliq_2000;
            posns[i][1] = temp;
            }
         }

      for( i = 0; i < 3; ++i)
         perturber_loc[i] = posns[perturber_no - 1][i];  /* - posns[10][i]; */
               /* rotate equatorial J2000.0 into ecliptical J2000: */
      }
}

static double *make_position_cache( double jd0, const double stepsize,
                     const int n_steps)
{
   double *rval = (double *)calloc( 2 + (size_t)n_steps * N_PERTURBERS * 6 * 3,
                                           sizeof( double));
   double *tptr = rval + 2;
   int i, j, step;

   if( !rval)
      {
      printf( "Ran out of memory!\n");
      exit( -1);
      }
   rval[0] = jd0;
   rval[1] = stepsize;
   for( step = 0; step < n_steps; step++)
      {
      for( j = 0; j < 6; j++)
         {
         const double avals[6] = { 0., 2. / 9., 1./3., .75, 1., 5./6. };

         for( i = 0; i < N_PERTURBERS; i++)
            {
            if( (i < 10) && ((perturber_mask >> i) & 1ul))
               compute_perturber( i + 1, jd0 + avals[j] * stepsize, tptr);
            else        /* put it far,  far away where it won't do anything: */
               tptr[0] = tptr[1] = tptr[2] = 1.e+8;
            tptr += 3;
            }
         }
      jd0 += stepsize;
#ifdef OBSOLETE_DEBUGGING_CODE
      while( step * 70 / n_steps > counter)
         {
         printf( "%d", counter % 10);
         counter++;
         }
#endif
      }
   printf( "\n");
   return( rval);
}

#define EARTH_MOON_RATIO 81.30056

static double relative_mass[14] = { 1.,
         1.660136795271931e-007,                /* mercury */
         2.447838339664545e-006,                /* venus */
         3.003489596331057e-006,                /* Earth */
         3.227151445053866e-007,                /* Mars */
         0.0009547919384243268,                 /* Jupiter */
         0.0002858859806661309,                 /* saturn */
         4.366244043351564e-005,                /* Uranus */
         5.151389020466116e-005,                /* Neptune */
         7.396449704142013e-009,                /* Pluto */
         3.003489596331057e-006 / EARTH_MOON_RATIO, /* Moon */
         4.7622e-10, 1.0775e-10, 1.3412e-10 };    /* Ceres,  Pallas, Vesta */

static int compute_derivatives( const double jd, ELEMENTS *elems,
               double *delta, double *derivs, double *posn_data)
{
   double accel[3], posnvel[6];
   int i;

   comet_posn_and_vel( elems, jd, posnvel, posnvel + 3);
   set_differential_acceleration( posnvel, delta, accel);
   for( i = 0; i < N_PERTURBERS; i++)       /* include perturbers */
      if( (perturber_mask >> i) & 1ul)
         {
         double perturber_loc[3], diff[3], diff_squared = 0., dfactor;
         double radius_squared = 0., rfactor;
         int j;

         if( posn_data)
            memcpy( perturber_loc, posn_data + i * 3, 3 * sizeof( double));
         else
            if( i < 10)
               compute_perturber( i + 1, jd, perturber_loc);
            else
               perturber_loc[0] = perturber_loc[1] = perturber_loc[2] = 1.e+8;
         for( j = 0; j < 3; j++)
            {
            diff[j] = perturber_loc[j] - (posnvel[j] + delta[j]);
            diff_squared += diff[j] * diff[j];
            radius_squared += perturber_loc[j] * perturber_loc[j];
            }
         dfactor = relative_mass[i + 1] / (diff_squared * sqrt( diff_squared));
         rfactor = relative_mass[i + 1] / (radius_squared * sqrt( radius_squared));
         for( j = 0; j < 3; j++)
            accel[j] += diff[j] * dfactor - perturber_loc[j] * rfactor;
         }

                      /* copy in Ceres,  Pallas, Vesta loc if needed: */
   if( posn_data && asteroid_perturber_number >= 0)
      memcpy( posn_data + asteroid_perturber_number * 3, posnvel,
                        3 * sizeof( double));
   for( i = 0; i < 3; i++)
      {
      derivs[i] = delta[i + 3];
      derivs[i + 3] = SOLAR_GM * accel[i];
      }
   return( 0);
}

#define N_VALUES 6
      /* i.e.,  a state vector consumes six values: x, y, z, vx, vy, vz */

static int take_step( const double jd, ELEMENTS *elems,
                double *ival, double *ovals, double *errs,
                double step_size)
{
   double *ivals[7], *ivals_p[6];
   double ivals_1_buff[12 * N_VALUES];
   double *posn_data = NULL;
   int i, j, k;
   const double bvals[27] = {2. / 9.,
            1. / 12., 1. / 4.,
            69. / 128., -243. / 128., 135. / 64.,
            -17. / 12., 27. / 4., -27. / 5., 16. / 15.,
            65. / 432., -5. / 16., 13 / 16., 4 / 27., 5. / 144.,
            47. / 450., 0., 12 / 25., 32. / 225., 1. / 30., 6. / 25.,
            -1. / 150., 0., .03, -16. / 75., -.05, .24};
   const double *bptr = bvals;
   const double avals[6] = { 0., 2. / 9., 1./3., .75, 1., 5./6. };

   ivals[1] = ivals_1_buff;
   for( i = 0; i < 6; i++)
      {
      ivals[i + 1] = ivals[1] + i * N_VALUES;
      ivals_p[i] = ivals[1] + (i + 6) * N_VALUES;
      }

   if( fabs( step_size - position_cache[1]) < .000001)
      {
      int cache_loc = (int)floor( (jd - position_cache[0]) / step_size + .5);

      posn_data = position_cache + 2 + cache_loc * 6 * N_PERTURBERS * 3;
      }

   compute_derivatives( jd, elems, ival, ivals_p[0], posn_data);

   for( j = 1; j < 7; j++)
      {
      for( i = 0; i < N_VALUES; i++)
         {
         double tval = 0.;

         for( k = 0; k < j; k++)
            tval += bptr[k] * ivals_p[k][i];
         ivals[j][i] = tval * step_size + ival[i];
         }
      bptr += j;
      if( j != 6)
         compute_derivatives( jd + step_size * avals[j], elems,
                     ivals[j], ivals_p[j], posn_data ?
                     posn_data + j * N_PERTURBERS * 3 : NULL);
      }

   if( errs)
      for( i = 0; i < N_VALUES; i++)
         {
         double tval = 0.;

         for( k = 0; k < 6; k++)
            tval += bptr[k] * ivals_p[k][i];
         errs[i] = step_size * tval;
         }

   memcpy( ovals, ivals[6], N_VALUES * sizeof( double));
   n_steps_taken++;
   return( 0);
}

/* The following 'full_rk_step' integrates using the Runge-Kutta-Fehlberg
fifth-order integrator with automatic stepsize,  as described in J M A
Danby's _Fundamentals of Celestial Mechanics_,  second edition,  pages
297-299.  Basically,  the integration is done both to fourth and fifth
order.  The difference gives us an idea of the error for that step.  If
it is greater than some desired amount,  we can try again with a smaller
step size.

   After each step,  we recompute the step size:  if the previous step
resulted in a really low error,  we need to raise the step size,  and
if it caused a lot of error,  we decrease the step size.  */

static int full_rk_step( ELEMENTS *elems, double *ivals, double *ovals,
                double t0, double t1, double max_err)
{
   double step = t1 - t0;
   double errs[N_VALUES], new_vals[N_VALUES];
   int n_chickens = 0;

   memcpy( ovals, ivals, N_VALUES * sizeof( double));
   max_err *= max_err;
   while( t0 != t1)
      {
      double err_val = 0.;
      const double chicken_factor = .9;
      int i;

      take_step( t0, elems, ovals, new_vals, errs, step);
      for( i = 0; i < N_VALUES; i++)
         err_val += errs[i] * errs[i];
      if( err_val < max_err)   /* yeah,  it was a good step */
         {
         memcpy( ovals, new_vals, N_VALUES * sizeof( double));
         t0 += step;
         }
      else
         n_chickens++;
      step *= chicken_factor * exp( log( max_err / err_val) / 5.);
      if( t0 < t1)
         if( t0 + step > t1)
            step = t1 - t0;
      if( t1 < t0)
         if( t0 + step < t1)
            step = t1 - t0;
/*    if( err_val >= max_err)                             */
/*       printf( "Chickened out: new step %lf\n", step);  */
      }
   return( n_chickens);
}

/* 'integrate_orbit' integrates the elements over the desired time span to
   the desired maximum error,  using the number of steps requested.  The
   orbit is broken up into that many steps,  and 'full_rk_step' is then
   called for each step.  The individual steps will probably be taken in
   one RKF step,  but if their errors prove to be too great,  they'll
   be broken into sub-steps.  See comments for the above code.

   The reason for this is speed.  Much of Integrat's time is spent in
   computing planetary positions.  If the steps fall on an evenly spaced
   grid,  the positions can be drawn from a precomputed array.  For the
   cases that break up into sub-steps,  planetary positions have to be
   computed "from scratch".  But with a suitably short step size,  you
   can keep that from happening too often.

   The down side to all of this is complexity and (often) taking some
   unnecessary steps for main-belt objects,  where a larger step size
   would work just fine.  I _do_ have a better scheme in mind,  and it's
   implemented in my Find_Orb software... but not here (yet).   */

int integrate_orbit( ELEMENTS *elem, const double jd_from, const double jd_to,
                              const double max_err, const int n_steps)
{
   double delta[6],  posnvel[6], stepsize = (jd_to - jd_from) / (double)n_steps;
   double curr_jd = jd_from;
   int i, j;

   for( i = 0; i < 6; i++)
      delta[i] = 0.;
   for( i = 0; i < n_steps; i++)
      {
      double new_delta[6];
      int chickened_out;

      chickened_out = full_rk_step( elem, delta, new_delta, curr_jd,
                                         curr_jd + stepsize, max_err);
      memcpy( delta, new_delta, 6 * sizeof( double));
      curr_jd += stepsize;
      if( i && (i % resync_freq == 0 || chickened_out))
         {
         comet_posn_and_vel( elem, curr_jd, posnvel, posnvel + 3);
         for( j = 0; j < 6; j++)
            {
            posnvel[j] += delta[j];
            delta[j] = 0.;
            }
         elem->epoch = curr_jd;
         elem->gm = SOLAR_GM;
         calc_classical_elements( elem, posnvel, curr_jd, 1);
         }
      }
   comet_posn_and_vel( elem, jd_to, posnvel, posnvel + 3);
   for( i = 0; i < 6; i++)
      posnvel[i] += delta[i];
   elem->epoch = jd_to;
   elem->gm = SOLAR_GM;
   calc_classical_elements( elem, posnvel, jd_to, 1);
   return( 0);
}

int load_vsop_data( void)
{
   FILE *ifile = err_fopen( "vsop.bin", "rb");
   const unsigned vsop_size = 60874u;

   vsop_data = NULL;
   if( ifile)
      {
      vsop_data = (char *)calloc( vsop_size, 1);
      if( vsop_data)
         {
         const size_t bytes_read = fread( vsop_data, 1, vsop_size, ifile);

         assert( bytes_read == vsop_size);
         }
      fclose( ifile);
      }
   return( ifile && vsop_data ? 0 : -1);
}

static long extract_mpc_epoch( const char *epoch_buff)
{
   long year = 100 * (epoch_buff[0] - 'A' + 10) +
                10 * (epoch_buff[1] - '0') + (epoch_buff[2] - '0');
   int arr[2], i;

   for( i = 0; i < 2; i++)
      arr[i] = ((epoch_buff[i + 3] >= 'A') ? epoch_buff[i + 3] - 'A' + 10 :
                                             epoch_buff[i + 3] - '0');
   return( dmy_to_day( arr[1], arr[0], year, 0));
}

/* MPC stores many quantities that range from 0 to 61 in a single character */
/* where 0..9 = 0..9,  A...Z = 10...35,  a...z = 36...61.  As far as I know, */
/* there are no plans in place for handling overflow past 61.                */

static char extended_hex( const int ival)
{
   int rval;

   assert( ival >= 0 && ival < 62);
   if( ival < 10)
      rval = '0';
   else if( ival < 36)
      rval = 'A' - 10;
   else
      rval = 'a' - 36;
   return( (char)( rval + ival));
}

static inline void put_mpc_epoch( char *epoch_buff, long epoch)
{
   long year;
   int month, day;

   day_to_dmy( epoch, &day, &month, &year, 0);
   epoch_buff[0] = extended_hex( (int)year / 100);
   sprintf( epoch_buff + 1, "%02ld", year % 100L);
   epoch_buff[3] = extended_hex( month);
   epoch_buff[4] = extended_hex( day);
}

static void centralize( double *ang)
{
   while( *ang < 0.)
      *ang += PI + PI;
   while( *ang > PI + PI)
      *ang -= PI + PI;
}

static int extract_comet_dat( ELEMENTS *elem, const char *buff)
{
   int rval = 0;

   if( strlen( buff) > 104)
      {
      static const char check_bytes[20] = { 24, '.',   21, ' ',
                 18, ' ', 32, '.', 42, '.', 50, ' ',   74, '.',
                 89, ' ', 98, '.', 0,0 };
      int i;

      rval = 1;
      for( i = 0; check_bytes[i]; i += 2)
         if( buff[(int)check_bytes[i]] != check_bytes[i + 1])
            rval = 0;
      memset( elem, 0, sizeof( ELEMENTS));
      if( rval && buff[81] >= '1')
         {
         const long epoch_date = atol( buff + 81);

         elem->epoch = dmy_to_day( epoch_date % 100,
                  (epoch_date / 100) % 100, epoch_date / 10000, 0) - .5;
         elem->perih_time = dmy_to_day( 0, atoi( buff + 19),
                  atoi( buff + 14), 0) + atof( buff + 22) - .5;
         elem->arg_per      = atof( buff + 51) * PI / 180.;
         elem->asc_node     = atof( buff + 61) * PI / 180.;
         elem->incl         = atof( buff + 71) * PI / 180.;
         elem->ecc          = atof( buff + 41);
         elem->q =            atof( buff + 30);
         derive_quantities( elem, SOLAR_GM);
         }
      }
   return( rval);
}

static void comet_dat_to_guide_format( char *obuff, const char *ibuff)
{
   int i, j = 0;

   if( ibuff[102] <= '9')        /* periodic comet */
      {
      for( i = 102; ibuff[i] && ibuff[i] != '/'; i++)
         ;
      for( i++; ibuff[i] >= ' '; i++)
         obuff[j++] = ibuff[i];
      obuff[j++] = ' ';
      obuff[j++] = '(';
      for( i = 102; ibuff[i] != 'P'; i++)
         obuff[j++] = ibuff[i];
      obuff[j++] = 'P';
      obuff[j++] = ')';
      }
   else
      {
      int len;

      for( i = 102; ibuff[i] && ibuff[i] != '('; i++)
         ;
      len = i - 103;
      i++;
      while( ibuff[i] != ')')
         obuff[j++] = ibuff[i++];
      obuff[j++] = ' ';
      obuff[j++] = '(';
      memcpy( obuff + j, ibuff + 102, (size_t)len);
      j += len;
      obuff[j++] = ')';
      }
   memset( obuff + j, ' ', (size_t)( 160 - j));
   memcpy( obuff + 55, ibuff + 14, 4);    /* year */
   memcpy( obuff + 52, ibuff + 19, 2);    /* month */
   memcpy( obuff + 43, ibuff + 22, 8);    /* day */
   memcpy( obuff + 62, "0.0", 3);         /* mean anomaly = 0 for comets */
   memcpy( obuff + 73, ibuff + 30, 9);    /* q */
   memcpy( obuff + 86, ibuff + 41, 8);    /* ecc */
   memcpy( obuff + 96,  ibuff + 71, 9);    /* incl */
   memcpy( obuff + 108, ibuff + 51, 9);    /* arg per */
   memcpy( obuff + 120, ibuff + 61, 9);    /* asc node */
   memcpy( obuff + 132, "2000.0", 6);
   memcpy( obuff + 141, ibuff + 91, 9);    /* magnitude data */
   memcpy( obuff + 154, "Epoch:", 6);
   memcpy( obuff + 160, ibuff + 81, 8);    /* epoch */
   obuff[168] = '\0';
}

static int integrate_unperturbed = 0;

static int extract_mpcorb_dat( ELEMENTS *elem, const char *buff,
                              const int format_check_only)
{
   int rval = 0;

   elem->epoch = 0.;
   if( strlen( buff) > 200 && buff[10] == '.' && buff[16] == '.' &&
                buff[25] == ' ' && buff[29] == '.' && buff[36] == ' ')
      if( buff[142] != ' ' || integrate_unperturbed)
         {   /* it's a perturbed orbit,  or we're integrating it anyway */
         rval = 1;
         elem->epoch = (double)extract_mpc_epoch( buff + 20) - .5;
         if( format_check_only)
            return( rval);
         elem->mean_anomaly = atof( buff + 26) * PI / 180.;
         elem->arg_per      = atof( buff + 37) * PI / 180.;
         elem->asc_node     = atof( buff + 48) * PI / 180.;
         elem->incl         = atof( buff + 59) * PI / 180.;
         elem->ecc          = atof( buff + 69);
         elem->major_axis   = atof( buff + 92);
         elem->q = elem->major_axis * (1. - elem->ecc);
         derive_quantities( elem, SOLAR_GM);
         elem->perih_time = elem->epoch - elem->mean_anomaly * elem->t0;
         }
   return( rval);
}

static int convert_comets_to_guide_format = 0;

#define FOUR_DECIMAL_PLACES (4 << 4)

static double try_to_integrate( char *buff, const double dest_jd,
                         const double max_err, const double stepsize)
{
   ELEMENTS elem;
   int got_it = 0, pluto_removed = 0;

   if( extract_mpcorb_dat( &elem, buff, (dest_jd == .0)))
      got_it = 1;
   else if( extract_comet_dat( &elem, buff))
      got_it = 2;
   if( !memcmp( buff, "D4340 ", 6))           /* don't let (134340) Pluto */
      if( perturber_mask & PERTURBERS_PLUTO)    /* perturb itself! */
         {
         pluto_removed = 1;
         perturber_mask ^= PERTURBERS_PLUTO;
         }

   if( got_it && dest_jd != 0. && elem.epoch != 0.)
      {
      int n_steps;

      n_steps = (int)fabs( (dest_jd - elem.epoch) / stepsize) + 2;
      elem.angular_momentum = sqrt( SOLAR_GM * elem.q);
      elem.angular_momentum *= sqrt( 1. + elem.ecc);

      if( !position_cache)       /* gotta initialize it: */
         position_cache = make_position_cache( elem.epoch,
                     (dest_jd - elem.epoch) / (double)n_steps, n_steps);

      integrate_orbit( &elem, elem.epoch, dest_jd, max_err, n_steps);
      centralize( &elem.mean_anomaly);
      centralize( &elem.arg_per);
      centralize( &elem.asc_node);
      if( got_it == 1)        /* mpcorb.dat format */
         {
         const long epoch_stored = (long)floor( dest_jd + 1.); /* rounds up */
         const double time_diff = (double)epoch_stored - .5 - dest_jd;

         put_mpc_epoch( buff + 20, epoch_stored);
         elem.mean_anomaly += time_diff / elem.t0;

         sprintf( buff + 26, "%9.5f  %9.5f  %9.5f  %9.5f%12.8f",
                  elem.mean_anomaly * 180. / PI,
                  elem.arg_per * 180. / PI,
                  elem.asc_node * 180. / PI,
                  elem.incl * 180. / PI,
                  elem.ecc);
         sprintf( buff + 79, "%12.8f%12.7f", (180. / PI) / elem.t0,
                                            elem.major_axis);
         buff[103] = ' ';
         }
      else                    /* MPC's 'comet.dat' format */
         {
         char tbuff[50];

         full_ctime( buff + 14, elem.perih_time,
                  FULL_CTIME_YEAR_FIRST | FULL_CTIME_MONTHS_AS_DIGITS |
                  FULL_CTIME_MONTH_DAY |
                  FULL_CTIME_FORMAT_DAY | FOUR_DECIMAL_PLACES);
         if( buff[19] == ' ')
            buff[19] = '0';
         buff[strlen( buff)] = ' ';
         sprintf( buff + 30, "%9.6f%10.6f  %9.5f %9.5f %9.5f",
                  elem.q, elem.ecc, elem.arg_per * 180. / PI,
                  elem.asc_node * 180. / PI,
                  elem.incl * 180. / PI);
         buff[strlen( buff)] = ' ';

         full_ctime( tbuff, elem.epoch,
                  FULL_CTIME_YEAR_FIRST | FULL_CTIME_MONTHS_AS_DIGITS |
                  FULL_CTIME_MONTH_DAY | FULL_CTIME_LEADING_ZEROES |
                  FULL_CTIME_FORMAT_DAY);
         memcpy( buff + 81, tbuff, 4);           /* year */
         memcpy( buff + 85, tbuff + 5, 2);       /* month */
         memcpy( buff + 87, tbuff + 8, 2);       /* day */
         }
      }

   if( got_it == 2 && convert_comets_to_guide_format)
      {
      char tbuff[200];

      comet_dat_to_guide_format( tbuff, buff);
      strcpy( buff, tbuff);
      strcat( buff, "\n");
      }

   if( pluto_removed)
      perturber_mask ^= PERTURBERS_PLUTO;
   return( elem.epoch);
}

/* If we're updating a previous result,  we check to see if the designation,
H, G,  reference,  number of observations,  etc.  have changed.  If they
have, the data underlying the orbit have presumably changed,  and we need to
re-integrate that object's orbit.  But if our previous result does contain an
object with the same name and other details,  we don't have to do all the
math to integrate it all over again just to get the same result as before. */

static long compute_hash( const char *buff)
{
   long rval = 0;
   const long big_prime = 2141592701L;
   int i;

   for( i = 0; *buff >= ' '; i++, buff++)
      if( i < 20 || i > 105)        /* skip cols containing orbital elems */
         rval = rval * big_prime + (long)*buff;
   return( rval);
}

static unsigned find_in_table( const long *hashes, const long hash_val)
{
   unsigned i, loc = (unsigned)hash_val % HASH_TABLE_SIZE;

   for( i = 1; hashes[loc] && hashes[loc] != hash_val; i += 2)
      loc = (loc + i) % HASH_TABLE_SIZE;
   return( loc);
}

static void error_exit( void)
{
#ifdef _MSC_VER
   printf( "Hit any key:\n");
   getch( );
#endif
}

#define JAN_1970 2440587.5

int main( int argc, const char **argv)
{
   FILE *ifile, *ofile, *update_file = NULL;
   const char *temp_file_name = "ickywax.ugh";
   long *hashes, *file_offsets, hash_val;
   const char *ephem_filename = NULL;
   double dest_jd, max_err = 1.e-12, stepsize = 2., t_last_printout = 0.;
   double starting_jd = 0., curr_jd;
   char buff[220], time_buff[60];
   int i, n_integrated = 0, total_asteroids_in_file, header_found = 0;
   int max_asteroids = (1 << 30);
#ifdef FORKING
   int n_processes = 0, process_number = 0, child_status;
   bool forking_has_happened = false;
#endif
   int quit = 0, n_found_from_update = 0;
   clock_t t0;

   if( argc == 2 && !memcmp( argv[1], "today", 5))
      {
      static const char *new_args[5] = { NULL, "nea.dat", "neatod.dat",
                                          NULL, NULL };

      new_args[0] = argv[0];
      new_args[3] = argv[1];
      argv = new_args;
      argc = 4;
      }

   if( argc < 4)
      {
      printf( "INTEGRAT takes as command-line arguments the name of an input\n");
      printf( "file of the MPCORB.DAT or COMET.DAT type;  the name of the output\n");
      printf( "file that is to be created;  and the epoch (JD or YYYYMMDD)\n");
      printf( "of that file.  For example: either\n\n");
      printf( "integrat mpcorbcr.dat 2452600.mpc 2452600.5\n\n");
      printf( "integrat mpcorbcr.dat 2452600.mpc 20021122\n\n");
      printf( "would read in the 'mpcorbcr.dat' file,  and create a new file\n");
      printf( "updated to the epoch JD 2452600.5 = 22 Nov 2002.\n");
      printf( "Also:  in place of a date,  one can use 'today'.  For example:\n");
      printf( "\nintegrat nea.dat neatod.dat today\n\n");
      printf( "would read in 'nea.dat' and write out an 'neatod.dat' file.\n");
      error_exit( );
      return( -1);
      }
   setvbuf( stdout, NULL, _IONBF, 0);
   ifile = err_fopen( argv[1], "rb");
   if( !rename( argv[2], temp_file_name))
      {
      int n_hashes = 0;

      printf( "Using an update\n");
      update_file = err_fopen( temp_file_name, "rb");
      hashes = (long *)calloc( HASH_TABLE_SIZE * 2, sizeof( long));
      file_offsets = hashes + HASH_TABLE_SIZE;
      while( fgets( buff, sizeof( buff), update_file))
         if( (hash_val = compute_hash( buff)) != 0L)
            {
            const unsigned hash_loc = find_in_table( hashes, hash_val);

            hashes[hash_loc] = hash_val;
            file_offsets[hash_loc] = ftell( update_file) - strlen( buff);
            n_hashes++;
            }
      printf( "Got %d hashes\n", n_hashes);
      }
   else
      hashes = file_offsets = NULL;

   curr_jd = JAN_1970 + (double)time( NULL) / seconds_per_day;
               /* Start with the destination epoch being "right now",    */
               /* suitably rounded to 0h TD.  One can then set the time  */
               /* relative to that point (e.g., "25 Feb" will be assumed */
               /* to refer to that date in the current year).            */
   dest_jd = floor( curr_jd) + .5;
   *buff = '\0';
   for( i = 3; i < argc && argv[i][0] != '-'; i++)
      {
      strcat( buff, " ");
      strcat( buff, argv[i]);
      }
   if( !memcmp( buff, " today", 6))
      dest_jd += atof( buff + 6);
   else
      dest_jd = get_time_from_string( dest_jd, buff, FULL_CTIME_YMD, NULL);
   full_ctime( time_buff, dest_jd, 0);
   sprintf( buff, "Integrat version %s %s\nIntegrating to %s = JD %.5f\n",
                        __DATE__, __TIME__, time_buff, dest_jd);
   printf( "%s", buff);
   ofile = err_fopen( argv[2], "wb");
   if( dest_jd != floor( dest_jd) + .5)
      {
      printf( "WARNING: the MPCORB format can only handle 'standard' 0h TD epochs.\n");
      printf( "Integrat will create elements that give the correct position and velocity\n");
      printf( "at the epoch you've requested;  but the epoch stored in MPCORB format\n");
      printf( "will be rounded to the nearest day (and the mean anomaly suitably\n");
      printf( "corrected.)\n\nHit any key:\n");
#ifdef _MSC_VER
      getch( );
#endif
      }
   fprintf( ofile, "%s", buff);
   full_ctime( time_buff, curr_jd, 0);
   fprintf( ofile, "Time started: %s\n", time_buff);

   for( i = 1; i < argc; i++)
      if( argv[i][0] == '-')
         switch( argv[i][1])
            {
            case 'c':
               convert_comets_to_guide_format = 1;
               printf( "Comet output will be in Guide format\n");
               break;
            case 'f':
               ephem_filename = argv[i] + 2;
               if( !*ephem_filename && i < argc - 1)
                  ephem_filename = argv[i + 1];
               break;
            case 'n':
               max_asteroids = atoi( argv[i] + 2);
               printf( "Only integrating up to %d objects\n", max_asteroids);
               break;
            case 'p':
               integrate_unperturbed = 1;
               printf( "Integrating unperturbed objects,  too\n");
               break;
            case 'r':
               resync_freq = atoi( argv[i] + 2);
               break;
            case 's':
               stepsize = atof( argv[i] + 2);
               printf( "Step size set at %.2f days\n", stepsize);
               break;
            case 't':
               max_err = atof( argv[i] + 2);
               break;
            case 'v':
               verbose = 1 + atoi( argv[i] + 2);
               printf( "Setting verbose output\n");
               break;
#ifdef FORKING
            case 'z':
               n_processes = atoi( argv[i] + 2);
               break;
#endif
            default:
               printf( "Command-line option '%s' ignored\n", argv[i]);
               break;
            }
   if( ephem_filename)
      {
      jpl_ephemeris = jpl_init_ephemeris( ephem_filename, NULL, NULL);
      if( !jpl_ephemeris)
         {
         printf( "JPL ephemeris file '%s' not found\n", ephem_filename);
         error_exit( );
         return( -3);
         }
      perturber_mask |= PERTURBERS_PLUTO_AND_MOON;
      if( verbose)
         printf( "Using JPL ephemeris file '%s'\n", ephem_filename);
      }

   if( !jpl_ephemeris && load_vsop_data( ))
      {
      printf( "VSOP.BIN not loaded!\n");
      error_exit( );
      return( -4);
      }

   if( !ephem_filename)          /* gotta lump the Moon in with the earth: */
      relative_mass[3] += relative_mass[10];

   /* first,  go through the file to figure out how many asteroids  */
   /* we'll have integrate: */

   total_asteroids_in_file = 0;
   while( fgets( buff, sizeof( buff), ifile)
                     && total_asteroids_in_file < max_asteroids)
      {
      const double tval = try_to_integrate( buff, 0., max_err, stepsize);

      if( tval != 0. && starting_jd == 0.)
         {
         starting_jd = tval;
         full_ctime( time_buff, starting_jd, FULL_CTIME_DATE_ONLY | 0x30);
         sprintf( buff, "'%s' has elements for %s = JD %.1f\n",
                                argv[1], time_buff, starting_jd);
         printf( "%s", buff);
         fprintf( ofile, "%s", buff);
         }
      if( tval != 0.)
         total_asteroids_in_file++;
      if( !memcmp( buff, "--------------------", 20))
         header_found = 1;
      }

   sprintf( buff, "%d asteroids to be integrated\n", total_asteroids_in_file);
   printf( "%s", buff);
   fprintf( ofile, "%s", buff);
   if( !header_found)
      fprintf( ofile, "----------------------------------------------------------------\n");

   fseek( ifile, 0L, SEEK_SET);

   t0 = clock( );
   while( !quit && fgets( buff, sizeof( buff), ifile)
                                 && n_integrated < max_asteroids)
      {
      bool got_it_from_update = false;

      asteroid_perturber_number = -1;
      switch( atoi( buff))
         {
         case 1:              /* Ceres */
            if( strstr( buff + 174, "Ceres "))
               asteroid_perturber_number = 10;
            break;
         case 2:              /* Pallas */
            if( strstr( buff + 174, "Pallas "))
               asteroid_perturber_number = 11;
            break;
         case 4:              /* Vesta */
            if( strstr( buff + 174, "Vesta "))
               asteroid_perturber_number = 12;
            break;
         default:
            break;
         }
#ifdef FORKING
      if( (perturber_mask & 0x1c00) == 0x1c00 && n_processes
               && !forking_has_happened)
         {
         char outfile_name[50];
         int j;
         const long offset = ftell( ifile);

         forking_has_happened = true;
         fclose( ofile);
         fclose( ifile);
         if( jpl_ephemeris)
            jpl_close_ephemeris( jpl_ephemeris);
         if( update_file)
            fclose( update_file);
         while( process_number < n_processes - 1)
            {
            const pid_t childpid = fork( );

            if( childpid == -1)      /* fork( ) returns -1 on failure */
               {
               perror( "fork"); /* display error message */
               exit(0);
               }
            else if( childpid == 0)     /* we're a child process */
               {
//             printf( "Hi!  I'm child %d.  My PID is %d; parent's is %d\n",
//                      process_number, getpid( ), getppid( ));
               }
            else
               break;       /* break out of loop,  signalling we're a parent */
            process_number++;
            }
         printf( "Hi!  I've got process number %d,  PID %d,  parent's is %d\n",
                        process_number, getpid( ), getppid( ));
         sprintf( outfile_name, "chunk%d.ugh", process_number);
         ofile = err_fopen( chunk_filename( outfile_name, process_number), "wb");
         ifile = err_fopen( argv[1], "rb");
         fseek( ifile, offset, SEEK_SET);
         if( jpl_ephemeris)
            jpl_ephemeris = jpl_init_ephemeris( ephem_filename, NULL, NULL);
         if( update_file)
            update_file = err_fopen( temp_file_name, "rb");
         j = 0;
         while( j < process_number && fgets( buff, sizeof( buff), ifile))
            j++;
         }
#endif
      if( update_file && asteroid_perturber_number == -1
                          && (hash_val = compute_hash( buff)) != 0L)
         {
         char buff2[220];
         const unsigned hash_loc = find_in_table( hashes, hash_val);

         if( hashes[hash_loc])
            {
            assert( hashes[hash_loc] == hash_val);
            fseek( update_file, file_offsets[hash_loc], SEEK_SET);
            if( fgets( buff2, sizeof( buff2), update_file)
                         && !memcmp( buff2, buff, 20)
                         && !memcmp( buff2 + 105, buff + 105, 97))
               {
               strcpy( buff, buff2);
               got_it_from_update = true;
               n_found_from_update++;
               }
            }
         }

      if( !got_it_from_update &&
                  try_to_integrate( buff, dest_jd, max_err, stepsize) != 0.)
         {
         clock_t t = clock( );
         const double elapsed_time = (double)(t - t0) / (double)CLOCKS_PER_SEC;

         if( asteroid_perturber_number > 0)
            {
            printf( "Perturber %d calculated\n", asteroid_perturber_number);
            perturber_mask |= (1L << asteroid_perturber_number);
            }
         n_integrated++;
         if( verbose > 1)
            {
            char tbuff[30];

            memcpy( tbuff, buff, 29);
            tbuff[29] = '\0';
            printf( "%s: %.2f seconds;  %5d steps: %5d integrated\n",
                            tbuff, elapsed_time, n_steps_taken, n_integrated);
            t0 = t;        /* restart the clock */
            n_steps_taken = 0;
            }
         else if( elapsed_time > t_last_printout + 1.)
            {
            t_last_printout = elapsed_time;
            printf( "%.0f seconds elapsed;  %.0f seconds remain; %d done %d    \r",
                        elapsed_time,
                       (double)(total_asteroids_in_file - n_integrated)
                       * elapsed_time / (double)n_integrated,
                       n_integrated,
                       n_found_from_update);
            }
#ifdef _MSC_VER
         if( kbhit( ))
            if( getch( ) == 27)
               quit = 1;
#endif
         }
      fputs( buff, ofile);
#ifdef FORKING
      if( forking_has_happened)
         {
         int j = 1;

         while( j < n_processes && fgets( buff, sizeof( buff), ifile))
            j++;
         }
#endif
      }
   if( jpl_ephemeris)
      jpl_close_ephemeris( jpl_ephemeris);
   fclose( ifile);
   fclose( ofile);
#ifdef FORKING
   if( forking_has_happened)
      {
      printf( "Process %d is done\n", process_number);
      wait( &child_status); /* wait for child to exit, and store its status */
      printf( "Waiting is over for process %d\n", process_number);
      if( !process_number)
         {
         FILE **ifiles = (FILE **)calloc( n_processes, sizeof( FILE *));

         for( i = 0; i < n_processes; i++)
            ifiles[i] = err_fopen( chunk_filename( buff, i), "rb");
         ofile = err_fopen( argv[2], "ab");
         i = 0;
         while( fgets( buff, sizeof( buff), ifiles[i]))
            {
            fputs( buff, ofile);
            i = (i + 1) % n_processes;
            }
         for( i = 0; i < n_processes; i++)
            {
            fclose( ifiles[i]);
            unlink( chunk_filename( buff, i));
            }
         fclose( ofile);
         }
      }
#endif
   return( 0);
}