1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
|
/* jevent.cpp: computes Galilean satellite events
Copyright (C) 2010, Project Pluto
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
/* The following code is an early and somewhat embarrassing effort.
Please do not judge my programming abilities by it.
It computes the date/times of "classical" Jovian satellite events
(transits, shadows, occultations, eclipses) over a given time
span, and sorts them out to produce the sort of event list one
sees in _Sky and Telescope_ and similar publications. It can
also store them in a binary form that is used within Guide, so
that that program can show Galilean events without having to
do all the math itself. */
#include <math.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "watdefs.h"
#include "lunar.h"
#include "afuncs.h"
#include "date.h"
#define PI 3.1415926535897932384626433832795028841971693993751058209749445923
#define JUPITER_DIAMETER_IN_KM (88000. * 1.609)
#define AU_PER_JRAD (JUPITER_DIAMETER_IN_KM / AU_IN_KM)
#define EVENT struct event
#define VSOP_CHUNK 2767U
EVENT
{
double t;
unsigned sat, event_type;
};
/* We don't actually explicitly use these four macros :
#define OCCULTA 0x00
#define TRANSIT 0x01
#define ECLIPSE 0x02
#define SHADOW 0x03
*/
#define IN_FRONT 0x01
#define FROM_SUN 0x02
#define EVENT_START 0x04
#define EVENT_UNSEEN 0x08
const double speeds[4] = {203.488955432, 101.374724550, 50.317609110, 21.571071314};
static char FAR *vsop_data;
static int quiet = 0;
static void show_event( FILE *ofile, EVENT *e)
{
const char *event_str[4] = {"Occ", "Tra", "Ecl", "Sha"};
char buff[80];
const double ut_jd = e->t - td_minus_ut( e->t) / seconds_per_day;
if( e->event_type & EVENT_UNSEEN)
return;
full_ctime( buff, ut_jd, FULL_CTIME_FORMAT_HH_MM);
fprintf( ofile, "sat %u: %s %s: %s\n", e->sat, event_str[e->event_type & 3],
(e->event_type & EVENT_START) ? "start" : "end ", buff);
}
static unsigned find_events( unsigned sat_no, double t1, double t2, int viewpoint, EVENT *e)
{
double t, lon_j, lat_j, rad_j, lon_e, lat_e, rad_e;
double loc[9], tloc[18], *tptr, step, delta_lat, prev_delta_lat = 0.;
double tc, lon_s, lat_s, rad_s, prev_delta = 0., delta;
int i;
unsigned rval = 0;
t = t1;
step = 10. / speeds[sat_no - 1];
while( t < t2)
{
tc = (t - 2451545.) / 36525.; /* re-cvt to julian centuries */
lon_j = calc_vsop_loc( vsop_data, 5, 0, tc, 0.);
lat_j = calc_vsop_loc( vsop_data, 5, 1, tc, 0.);
rad_j = calc_vsop_loc( vsop_data, 5, 2, tc, 0.);
lon_e = calc_vsop_loc( vsop_data, 3, 0, tc, 0.);
lat_e = calc_vsop_loc( vsop_data, 3, 1, tc, 0.);
rad_e = calc_vsop_loc( vsop_data, 3, 2, tc, 0.);
loc[0] = rad_j * cos( lat_j) * cos( lon_j);
loc[1] = rad_j * cos( lat_j) * sin( lon_j);
loc[2] = rad_j * sin( lat_j);
loc[6] = rad_e * cos( lat_e) * cos( lon_e);
loc[7] = rad_e * cos( lat_e) * sin( lon_e);
loc[8] = rad_e * sin( lat_e);
calc_jsat_loc( t, tloc, 1 << (sat_no - 1), 0L);
tptr = tloc + (sat_no - 1) * 3;
loc[3] = loc[0] + tptr[0] * AU_PER_JRAD;
loc[4] = loc[1] + tptr[1] * AU_PER_JRAD;
loc[5] = loc[2] + tptr[2] * AU_PER_JRAD;
if( viewpoint)
{
for( i = 0; i < 9; i++)
loc[i] -= loc[6 + i % 3];
lon_j = atan2( loc[1], loc[0]);
lat_j = atan( loc[2] / sqrt( loc[0] * loc[0] + loc[1] * loc[1]));
}
rad_s = sqrt( loc[3] * loc[3] + loc[4] * loc[4] + loc[5] * loc[5]);
lon_s = atan2( loc[4], loc[3]);
while( lon_s - lon_j > PI)
lon_s -= PI + PI;
while( lon_s - lon_j <-PI)
lon_s += PI + PI;
lat_s = asin( loc[5] / rad_s);
delta = (lon_s - lon_j) * rad_s / AU_PER_JRAD;
delta_lat = (lat_s - lat_j) * rad_s / AU_PER_JRAD;
delta_lat *= 1.071374; /* stretch for jup's oblateness */
if( delta * prev_delta < 0.) /* zero crossed */
{
double t_crossing, diff, a, b, c, dx, dy, dist = 0.;
dx = prev_delta - delta;
dy = prev_delta_lat - delta_lat;
a = dx * dx + dy * dy; /* quadratic for intercept */
b = 2. * (dx * delta + dy * delta_lat);
c = delta_lat * delta_lat + delta * delta - 1.;
diff = b * b - 4. * a * c;
t_crossing = t + b * step / (2. * a);
t = t_crossing + (180. / speeds[sat_no - 1]) * .9;
if( diff > 0.) /* if real solution, ie, sat doesn't miss */
{
diff = sqrt( diff) * step / (2. * a);
diff = fabs( diff);
for( i = 0; i < 3; i++)
dist += (loc[i + 6] - loc[i]) * (loc[i + 6] - loc[i]);
t_crossing += sqrt( dist) / AU_PER_DAY;
e[0].t = t_crossing - diff;
e[0].sat = sat_no;
e[0].event_type = (prev_delta > 0.);
if( !viewpoint)
e[0].event_type |= FROM_SUN;
e[1].t = t_crossing + diff;
e[1].sat = sat_no;
e[1].event_type = e[0].event_type;
e[0].event_type |= EVENT_START;
if( !quiet)
{
show_event( stdout, e);
show_event( stdout, e + 1);
}
e += 2;
rval += 2;
}
delta = 0.;
}
prev_delta = delta;
prev_delta_lat = delta_lat;
t += step;
}
return( rval);
}
int main( int argc, char **argv)
{
unsigned i, j, k, julian = 0, gap;
unsigned n_days = 30, sat_no = 15;
unsigned max_events;
unsigned n_events = 0, n_sun, n_earth;
double t1, t2;
long jd;
EVENT *e;
FILE *ofile = NULL, *data_file = NULL;
FILE *vsop_file;
char *vsop_tbuff;
vsop_file = fopen( "vsop.bin", "rb");
if( !vsop_file)
{
printf( "Couldn't open vsop.bin");
return( -3);
}
vsop_tbuff = (char *)malloc( VSOP_CHUNK);
vsop_data = (char FAR *)FMALLOC( VSOP_CHUNK * 22U);
for( i = 0; i < 22; i++)
{
if( !fread( vsop_tbuff, VSOP_CHUNK, 1, vsop_file))
{
printf( "Couldn't read VSOP data\n");
free( vsop_tbuff);
free( vsop_data);
return( -1);
}
memcpy( vsop_data + (unsigned)i * VSOP_CHUNK, vsop_tbuff, VSOP_CHUNK);
}
fclose( vsop_file);
free( vsop_tbuff);
if( argc < 4)
{
printf( "JEVENT calculates Jovian satellite events (transits, eclipses,\n");
printf( "shadows, occultations) as seen from Earth. It requires, as a\n");
printf( "minimum, a day, month, and year. Given, say, the command\n");
printf( "\nJEVENT 18 4 1993\n\n");
printf( "JEVENT will calculate all events from 18 Apr 1993 for the next\n");
printf( "thirty days. You can add on the following parameters:\n\n");
printf( " -j Use Julian calendar\n");
printf( " -d(#) Calculate for (#) days instead of 30\n");
printf( " -f(name) Put results in ASCII file (name) as well as on screen\n");
return( -2);
}
for( i = 0; i < (unsigned)argc; i++)
if( argv[i][0] == '-')
switch( argv[i][1])
{
case 'j': case 'J':
julian = 1;
break;
case 'q': case 'Q':
quiet = 1;
break;
case 's': case 'S':
sat_no = (unsigned)atoi( argv[i] + 2);
break;
case 'd': case 'D':
n_days = (unsigned)atoi( argv[i] + 2);
break;
case 'f': case 'F':
ofile = fopen( argv[i] + 2, "wb");
break;
case 'r': case 'R':
data_file = fopen( argv[i] + 2, "ab");
printf( "Appending data to %s\n", argv[i] + 2);
break;
default:
break;
}
/* We seem to average about eight events/day, before */
/* sorting and removing 'hidden' events. But let's */
/* allow a little margin : */
max_events = n_days * 10 + 50;
e = (EVENT *)calloc( max_events, sizeof( EVENT));
if( !e)
return( -1);
jd = dmy_to_day( 0, atoi( argv[2]), atol( argv[3]), (int)julian);
t1 = (double)jd - .5 + atof( argv[1]);
t2 = t1 + (double)n_days;
printf( "JD %f to %f\n", t1, t2);
for( i = 0; i < 4; i++)
if( sat_no & (1 << i))
{
printf( "Sat %u from sun\n", i + 1);
n_sun = find_events( i + 1, t1 - 1., t2 + 1., 0, e + n_events);
printf( "Sat %u from earth\n", i + 1);
n_earth = find_events( i + 1, t1 - 1., t2 + 1., 1, e + n_events + n_sun);
printf( "Finding hidden events\n");
k = n_events + n_sun;
for( j = n_events; j < n_events + n_sun; j++)
while( k < n_events + n_sun + n_earth && e[k].t < e[j].t)
{
if( e[k + 1].t > e[j].t)
if( !(e[j].event_type & IN_FRONT))
e[j].event_type |= EVENT_UNSEEN;
k += 2;
}
k = n_events;
for( j = n_events + n_sun; j < n_events + n_sun + n_earth; j++)
while( k < n_events + n_sun && e[k].t < e[j].t)
{
if( e[k + 1].t > e[j].t)
if( !(e[j].event_type & IN_FRONT))
e[j].event_type |= EVENT_UNSEEN;
k += 2;
}
n_events += n_earth + n_sun;
}
printf( "Sorting %u events\n", n_events);
for( gap = 1; gap < n_events / 3; gap = gap * 3 + 1)
;
while( gap)
{
for( i = 0; i < gap; i++)
for( j = i; j + gap < n_events; j += gap)
if( e[j].t > e[j + gap].t)
{
EVENT temp;
memcpy( &temp, e + j + gap, sizeof( EVENT));
memcpy( e + j + gap, e + j, sizeof( EVENT));
memcpy( e + j, &temp, sizeof( EVENT));
if( j >= gap)
j -= gap + gap;
}
gap /= 3;
}
if( !quiet)
{
printf( "Final results:\n");
for( i = 0; i < n_events; i++)
if( e[i].t > t1 && e[i].t < t2)
show_event( stdout, e + i);
}
if( ofile)
{
for( i = 0; i < n_events; i++)
if( e[i].t > t1 && e[i].t < t2)
show_event( ofile, e + i);
fclose( ofile);
}
if( data_file)
{
for( i = 0; i < n_events; i++)
if( e[i].t > t1 && e[i].t < t2)
if( !( e[i].event_type & EVENT_UNSEEN))
{
char buff[5];
int32_t tval;
/* store minutes from 2000.0 */
tval = (int32_t)( (e[i].t - 2451545.0) * 1440.);
memcpy( buff, &tval, sizeof( int32_t));
buff[4] = (char)( (e[i].event_type & 7) | (e[i].sat << 3));
fwrite( buff, 1, 5, data_file);
}
fclose( data_file);
}
return( 0);
}
|