File: lunar2.cpp

package info (click to toggle)
pluto-lunar 0.0~git20180825.e34c1d1-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, buster, forky, sid, trixie
  • size: 1,584 kB
  • sloc: cpp: 18,100; makefile: 653; ansic: 368
file content (245 lines) | stat: -rw-r--r-- 7,862 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
/* lunar2.cpp: functions for modest-precision lunar coords

Copyright (C) 2010, Project Pluto

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.    */

/* Implements a simplified lunar ephemeris via the method described
in Meeus' _Astronomical Algorithms_.  The actual series coefficients
are stored in 'vsop.bin',  which must be read into a buffer before
you call these functions.  At the time I wrote all this -- early
1990s -- memory was a scarce resource,  so I packed bytes as much
as possible.  I suppose all this would still be a good idea on some
embedded systems.  It's probably not the way I would do things now.
The code is not easy to follow.  But it _does_ all work,  and runs
fast and has a small footprint.

NOTE that this will fail on big-Endian machines,  and on some
little-Endians that require byte alignment.  Let me know if you have
such a machine.  The fix is simple,  but I'm reluctant to try it
without a means of verifying that it works. */

#include <math.h>
#include <stdlib.h>
#include <stdint.h>
#include "watdefs.h"
#include "lunar.h"
#include "get_bin.h"

#define Lp  fund[0]
#define D   fund[1]
#define M   fund[2]
#define Mp  fund[3]
#define F   fund[4]
#define A1  fund[5]
#define A2  fund[6]
#define A3  fund[7]
#define T   fund[8]

#define N_TERM1 60
#define TERM1 struct term1

/* 28 Jul 2011:  modified these structures so they're packed (they
   are read from disk files) and that 32-bit ints are specified.
   Obviously,  they'll still break on non-Intel order hardware.  */

#pragma pack( 1)
TERM1
   {
   char d, m, mp, f;
   int32_t sl, sr;
   };
#pragma pack( )

#define N_TERM2 60
#define TERM2 struct term2

#pragma pack( 1)
TERM2
   {
   char d, m, mp, f;
   int32_t sb;
   };
#pragma pack( )

#define PI 3.1415926535897932384626433832795028841971693993751058209749445923
#define CVT (PI / 180.)

int DLL_FUNC lunar_fundamentals( const void FAR *data, const double t,
                                        double DLLPTR *fund)
{
   int i, j;
   const double FAR *tptr = (const double FAR *)((const char FAR *)data + 60554U);
   double tpow;

   for( i = 0; i < 5; i++)
      {
      fund[i] = get_double( tptr);
      tptr++;
      tpow = t;
      for( j = 4; j; j--, tpow *= t, tptr++)
         fund[i] += tpow * get_double( tptr);
      }

   A1 = 119.75 + 131.849 * t;
   A2 =  53.09 + 479264.290 * t;
   A3 = 313.45 + 481266.484 * t;
   T = t;
   for( i = 0; i < N_FUND - 1; i++)      /* convert to radians */
      {
      fund[i] = fmod( fund[i], 360.);
      if( fund[i] < 0.) fund[i] += 360.;
      fund[i] *= CVT;
      }
   return( 0);
}

int DLL_FUNC lunar_lon_and_dist( const void FAR *data, const double DLLPTR *fund,
                 double DLLPTR *lon, double DLLPTR *r, const long precision)
{
   int i, j;
   const TERM1 FAR *tptr = (const TERM1 FAR *)((const char FAR *)data + 59354U);
   double sl = 0., sr = 0., e;

   e = 1. - .002516 * T - .0000074 * T * T;
   for( i = N_TERM1; i; i--, tptr++)
      if( labs( tptr->sl) > precision || labs( tptr->sr) > precision)
         {
         double arg, term;

         switch( tptr->d)
            {
            case  1:   arg = D;     break;
            case -1:   arg =-D;     break;
            case  2:   arg = D+D;   break;
            case -2:   arg =-D-D;   break;
            case  0:   arg = 0.;    break;
            default:   arg = (double)tptr->d * D;  break;
            }
         switch( tptr->m)
            {
            case  1:   arg += M;     break;
            case -1:   arg -= M;     break;
            case  2:   arg += M+M;   break;
            case -2:   arg -= M+M;  break;
            case  0:           ;    break;
            default:   arg += (double)tptr->m * M;  break;
            }
         switch( tptr->mp)
            {
            case  1:   arg += Mp;      break;
            case -1:   arg -= Mp;      break;
            case  2:   arg += Mp+Mp;   break;
            case -2:   arg -= Mp+Mp;   break;
            case  0:           ;       break;
            default:   arg += (double)tptr->mp * Mp;  break;
            }
         switch( tptr->f)
            {
            case  1:   arg += F;     break;
            case -1:   arg -= F;     break;
            case  2:   arg += F+F;   break;
            case -2:   arg -= F+F;  break;
            case  0:           ;    break;
            default:   arg += (double)tptr->f * F;  break;
            }
         if( tptr->sl)
            {
            term = (double)tptr->sl * sin( arg);
            for( j = abs( tptr->m); j; j--)
               term *= e;
            sl += term;
            }
         if( tptr->sr)
            {
            term = (double)tptr->sr * cos( arg);
            for( j = abs( tptr->m); j; j--)
               term *= e;
            sr += term;
            }
         }
   if( precision < 3959L)
      sl += 3958. * sin( A1) + 1962. * sin( Lp - F) + 318. * sin( A2);
   *lon = (Lp * 180. / PI) + sl * 1.e-6;
   while( *lon < 0.)
      *lon += 360.;
   while( *lon > 360.)
      *lon -= 360.;
   *r = 385000.56 + sr / 1000.;
   return( 0);
}

double DLL_FUNC lunar_lat( const void FAR *data, const double DLLPTR *fund,
                                           const long precision)
{
   int i, j;
   const TERM2 FAR *tptr;
   const TERM2 FAR *term2 = (const TERM2 FAR *)((const char FAR *)data + 60074U);
   double rval = 0., e;

   tptr = term2;
   e = 1. - .002516 * T - .0000074 * T * T;
   for( i = N_TERM2; i; i--, tptr++)
      if( labs( tptr->sb) > precision)
         {
         double arg, term;

         switch( tptr->d)
            {
            case  1:   arg = D;     break;
            case -1:   arg =-D;     break;
            case  2:   arg = D+D;   break;
            case -2:   arg =-D-D;   break;
            case  0:   arg = 0.;    break;
            default:   arg = (double)tptr->d * D;  break;
            }
         switch( tptr->m)
            {
            case  1:   arg += M;     break;
            case -1:   arg -= M;     break;
            case  2:   arg += M+M;   break;
            case -2:   arg -= M+M;  break;
            case  0:           ;    break;
            default:   arg += (double)tptr->m * M;  break;
            }
         switch( tptr->mp)
            {
            case  1:   arg += Mp;      break;
            case -1:   arg -= Mp;      break;
            case  2:   arg += Mp+Mp;   break;
            case -2:   arg -= Mp+Mp;   break;
            case  0:           ;       break;
            default:   arg += (double)tptr->mp * Mp;  break;
            }
         switch( tptr->f)
            {
            case  1:   arg += F;     break;
            case -1:   arg -= F;     break;
            case  2:   arg += F+F;   break;
            case -2:   arg -= F+F;  break;
            case  0:           ;    break;
            default:   arg += (double)tptr->f * F;  break;
            }
         term = (double)tptr->sb * sin( arg);
         for( j = abs( tptr->m); j; j--)
            term *= e;
         rval += term;
         }
   if( precision < 2236L)
      rval += -2235. * sin( Lp) + 382. * sin( A3) + 175. * sin( A1 - F) +
               175. * sin( A1 + F) + 127. * sin(Lp - Mp) - 115. * sin(Lp+Mp);
   return( rval * 1.e-6);
}