1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
|
/* miscell.cpp: misc. astronomy-related functions
Copyright (C) 2010, Project Pluto
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
#define __USE_MINGW_ANSI_STDIO 1
/* above causes MinGW to use "real" long doubles */
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#include <ctype.h>
#include "watdefs.h"
#include "afuncs.h"
#include "date.h"
#ifdef __WATCOMC__
#define floorl floor
#define sinl sin
#endif
static const double pi = 3.1415926535897932384626433832795028841971693993751058209749445923;
static const long double j2000 = 2451545.0;
/* It's embarrassingly common to find out that, after roundoff errors,
you're attempting to take the arccosine or arcsine of +/- 1.0000001,
resulting in a math exception. Use of acose( ) and asine( ) lets you
slip around such difficulties.
There are two reasons to be careful about this. First, if a for-real
error results in arg=78, acose( ) (for example) will silently truncate it
to 1 and return 0. Second, if you're sometimes getting 1+(1e-14), you're
probably also sometimes getting 1-(1e-14). In this range, the precision
of the acos and asin functions is horrible, and deformed values will be
returned silently. It's better, in such cases, to give some thought as
to a better way to get the answer you want. Look, for example, in
'dist_pa.cpp' where asin is used in one domain and acos in the other,
avoiding areas where bad values would be generated.
*/
double DLL_FUNC acose( const double arg)
{
if( arg >= 1.)
return( 0.);
if( arg <= -1.)
return( pi);
return( acos( arg));
}
double DLL_FUNC asine( const double arg)
{
if( arg >= 1.)
return( pi / 2);
if( arg <= -1.)
return( -pi / 2.);
return( asin( arg));
}
void DLL_FUNC set_identity_matrix( double DLLPTR *matrix)
{
int i;
for( i = 0; i < 9; i++)
matrix[i] = ((i & 3) ? 0. : 1.);
}
/* Inverting an orthonormal matrix happens to be an unusually */
/* simple job: swap rows and columns, and you're in business. */
/* This really ought to be just called 'transpose_matrix'. */
#define SWAP( A, B, TEMP) { TEMP = A; A = B; B = TEMP; }
void DLL_FUNC invert_orthonormal_matrix( double DLLPTR *matrix)
{
double temp;
SWAP( matrix[1], matrix[3], temp);
SWAP( matrix[2], matrix[6], temp);
SWAP( matrix[5], matrix[7], temp);
}
/* Variable star designations follow a rather ugly scheme, for historical
reasons. The first 334 are labelled in the following order:
R S T U V W X Y Z RR RS RT RU RV RW RX RY RZ SS ST SU SV SW SX
SY SZ TT TU TV TW TX TY TZ UU UV UW UX UY UZ VV VW VX VY VZ WW WX WY WZ
XX XY XZ YY YZ ZZ AA AB AC AD AE AF AG AH AI AK AL AM AN AO AP AQ AR AS
AT AU AV AW AX AY AZ BB BC BD BE BF BG BH BI BK BL BM BN BO BP BQ BR BS
BT BU BV BW BX BY BZ CC CD CE CF CG CH CI CK CL CM CN CO CP CQ CR CS CT
CU CV CW CX CY CZ DD DE DF DG DH DI DK DL DM DN DO DP DQ DR DS DT DU DV
DW DX DY DZ EE EF EG EH EI EK EL EM EN EO EP EQ ER ES ET EU EV EW EX EY
EZ FF FG FH FI FK FL FM FN FO FP FQ FR FS FT FU FV FW FX FY FZ GG GH GI
GK GL GM GN GO GP GQ GR GS GT GU GV GW GX GY GZ HH HI HK HL HM HN HO HP
HQ HR HS HT HU HV HW HX HY HZ II IK IL IM IN IO IP IQ IR IS IT IU IV IW
IX IY IZ KK KL KM KN KO KP KQ KR KS KT KU KV KW KX KY KZ LL LM LN LO LP
LQ LR LS LT LU LV LW LX LY LZ MM MN MO MP MQ MR MS MT MU MV MW MX MY MZ
NN NO NP NQ NR NS NT NU NV NW NX NY NZ OO OP OQ OR OS OT OU OV OW OX OY
OZ PP PQ PR PS PT PU PV PW PX PY PZ QQ QR QS QT QU QV QW QX QY QZ
The first one found in a constellation is 'R (constellation name)';
followed by 'S', 'T', ... 'Z'. That allows up to nine variables per
constellation; the tenth gets labelled 'RR', followed by 'RS', 'RT',
'RU',... 'RZ'; then 'SS', 'ST', 'SU'... 'SZ', 'TT'... 'TZ', and so on,
up to 'ZZ'. This allows a further 9+8+7+6+5+4+3+2+1=45 stars to be
labelled. The letters are always 'R' through 'Z', and the second letter
is never alphabetically before the first.
Following this, we cycle the first letter back to 'A'. This
gives 'AA', 'AB', 'AC', ... 'AZ'; 'BB', 'BC', 'BD', ... 'BZ'; and,
eventually, 'QQ', 'QR', ... 'QZ'. For some reason, 'J' is always
skipped.
Following this lunacy for 334 variable stars, they are simply labelled
"V335", "V336", etc.
*/
void DLL_FUNC make_var_desig( char DLLPTR *buff, int var_no)
{
int i, curr_no = 10;
if( var_no < 10)
{
*buff++ = (char)('R' + var_no - 1);
*buff = '\0';
}
else if( var_no > 334)
{
*buff++ = 'V';
for( i = 1000; i; i /= 10)
if( var_no >= i)
*buff++ = (char)( (var_no / i) % 10 + '0');
*buff = '\0';
}
else /* two-letter abbr */
{
buff[2] = '\0';
for( i = 'R'; i <= 'Z' && curr_no + ('Z' - i) < var_no; i++)
curr_no += 'Z' - i + 1;
/* gotta get weird to allow for fact that J isn't used */
if( i > 'Z') /* in variable star designators */
for( i = 'A'; i < 'Q' && curr_no + ('Y' - i) < var_no; i++)
curr_no += 'Z' - i;
buff[0] = (char)i;
buff[1] = (char)(i + var_no - curr_no);
/* more weirdness due to missing J: bump up letters J-Q */
if( buff[0] < 'R' && buff[0] >= 'J')
buff[0]++;
if( buff[0] < 'R' && buff[1] >= 'J')
buff[1]++;
}
}
void DLL_FUNC rotate_vector( double DLLPTR *v, const double angle,
const int axis)
{
const double sin_ang = sin( angle), cos_ang = cos( angle);
const int a = (axis + 1) % 3, b = (axis + 2) % 3;
const double temp = v[a] * cos_ang - v[b] * sin_ang;
v[b] = v[b] * cos_ang + v[a] * sin_ang;
v[a] = temp;
}
void DLL_FUNC pre_spin_matrix( double *v1, double *v2, const double angle)
{
const double sin_ang = sin( angle);
const double cos_ang = cos( angle);
int i;
for( i = 3; i; i--)
{
const double tval = *v1 * cos_ang - *v2 * sin_ang;
*v2 = *v2 * cos_ang + *v1 * sin_ang;
*v1 = tval;
v1 += 3;
v2 += 3;
}
}
void DLL_FUNC spin_matrix( double *v1, double *v2, const double angle)
{
const double sin_ang = sin( angle);
const double cos_ang = cos( angle);
int i;
for( i = 3; i; i--)
{
const double tval = *v1 * cos_ang - *v2 * sin_ang;
*v2 = *v2 * cos_ang + *v1 * sin_ang;
*v1++ = tval;
v2++;
}
}
/* See above for a discussion of the variable star designation scheme. */
int DLL_FUNC decipher_var_desig( const char DLLPTR *desig)
{
int len, first, second, rval = -2;
first = toupper( desig[0]);
second = toupper( desig[1]);
for( len = 0; desig[len] && desig[len] != ' '; len++)
;
switch( len)
{
case 1:
if( first >= 'R' && first <= 'Z')
rval = first - 'R';
if( desig[0] >= 'A' && desig[0] <= 'Q')
rval = 9200 + desig[0] - 'A';
if( (desig[0] >= 'a' && desig[0] <= 'q') || desig[0] == 'u')
rval = 9100 + desig[0] - 'a';
break;
case 2:
if( second >= first && second <= 'Z')
{
if( first >= 'R') /* RR...ZZ */
{
first -= 'R';
second -= 'R';
rval = first * 8 - first * (first - 1) / 2 + 9 + second;
}
else if( first != 'J' && second != 'J' && first >= 'A')
{ /* AA...QQ */
first -= 'A';
if( first > 8) first--;
second -= 'A';
if( second > 8) second--;
rval = first * 24 - first * (first - 1) / 2 + 9 + 45 + second;
}
}
break;
default:
if( first == 'V')
rval = atoi( desig + 1) - 1;
break;
}
rval++;
return( rval);
}
/* Used in showing the decimal part of a time unit, in the following
full_ctimel( ) function. Just using sprintf and friends can lead to
problems with .999999... being rendered as 1. */
static void show_remainder( char *buff, long double remainder, unsigned precision)
{
*buff++ = '.';
assert( remainder >= 0. && remainder < 1.);
while( precision--)
{
unsigned digit;
remainder *= 10.;
digit = (unsigned)remainder;
*buff++ = (char)( '0' + digit);
assert( digit <= 9);
remainder -= (double)digit;
}
*buff++ = '\0';
}
static void remove_char( char *buff, const char removed)
{
size_t i, j;
for( i = j = 0; buff[i]; i++)
if( buff[i] != removed)
buff[j++] = buff[i];
buff[j] = '\0';
}
/* The following is analogous to the C ctime( ) function, except that it
handles dates previous to 1970 (at least back to -5.5 million years
and forward to 5.5 million years) and allows for other calendars
(Gregorian, Julian, Hebrew, etc.; see 'date.cpp' for details).
Also, greater control over the output format is provided. */
void DLL_FUNC full_ctimel( char *buff, long double t2k, const int format)
{
const int precision = (format >> 4) & 0xf, calendar = format & 0xf;
const int output_format = (format & FULL_CTIME_FORMAT_MASK);
char *ibuff = buff; /* keep track of the start of the output */
int day, month;
long units, i;
const int leading_zeroes = (format & FULL_CTIME_LEADING_ZEROES);
long year, int_t2k, day_of_week;
long double add_on = 1.;
long double remains;
if( output_format == FULL_CTIME_FORMAT_SECONDS)
units = seconds_per_day;
else if( output_format == FULL_CTIME_FORMAT_HH_MM)
units = minutes_per_day;
else if( output_format == FULL_CTIME_FORMAT_HH)
units = hours_per_day;
else /* output in days */
units = 1;
for( i = precision; i; i--)
add_on /= 10.;
if( format & FULL_CTIME_ROUNDING)
add_on *= 0.5 / (double)units;
else
add_on *= 0.05 / seconds_per_day;
t2k += add_on;
if( output_format == FULL_CTIME_FORMAT_YEAR)
{
char tbuff[40];
sprintf( tbuff, "%21.16Lf", t2k / 365.25 + 2000.);
tbuff[precision + 5] = '\0';
if( !precision)
tbuff[4] = '\0';
strcpy( buff, tbuff);
if( leading_zeroes)
while( *buff == ' ')
*buff++ = '0';
return;
}
if( output_format == FULL_CTIME_FORMAT_JD
|| output_format == FULL_CTIME_FORMAT_MJD)
{
char format_str[10];
sprintf( format_str, "JD %%.%dLf", precision);
if( output_format == FULL_CTIME_FORMAT_MJD)
{
*buff++ = 'M';
t2k += j2000 - 2400000.5;
}
else
t2k += j2000;
sprintf( buff, format_str, t2k);
if( leading_zeroes)
while( *buff == ' ')
*buff++ = '0';
return;
}
t2k += .5;
int_t2k = (long)floorl( t2k);
day_of_week = (int_t2k + 6) % 7;
if( day_of_week < 0) /* keep 0 <= day_of_week < 7: */
day_of_week += 7;
if( format & FULL_CTIME_DAY_OF_WEEK_FIRST)
buff += sprintf( buff, "%s ",
set_day_of_week_name( (int)day_of_week, NULL));
day_to_dmy( int_t2k + 2451545, &day, &month, &year, calendar);
remains = t2k - (long double)int_t2k;
/* i.e., fractional part of day */
if( !(format & FULL_CTIME_TIME_ONLY)) /* we want the date: */
{
char month_str[25];
char year_str[10];
char day_str[15];
if( format & FULL_CTIME_MONTHS_AS_DIGITS)
sprintf( month_str, (leading_zeroes ? "%02d" : "%2d"), month);
else
{
strcpy( month_str, set_month_name( month, NULL));
// strcat( month_str, " "); /* ensure three-digit abbr for */
// month_str[3] = '\0'; /* all months */
/* 2016 Feb 17: I don't think we need to ensure this. And it */
/* causes trouble with UTF-8 months in (e.g.) Russian, where */
/* three chars = six bytes. */
}
if( format & FULL_CTIME_TWO_DIGIT_YEAR)
sprintf( year_str, "%02d", abs( (int)year % 100));
else
sprintf( year_str, (leading_zeroes ? "%04ld" : "%4ld"), year);
if( format & FULL_CTIME_YEAR_FIRST)
if( !(format & FULL_CTIME_NO_YEAR))
buff += sprintf( buff, "%s ", year_str);
sprintf( day_str, (leading_zeroes ? "%02d" : "%2d"), day);
if( output_format == FULL_CTIME_FORMAT_DAY && precision)
show_remainder( day_str + 2, remains, (unsigned)precision);
if( format & FULL_CTIME_MONTH_DAY)
buff += sprintf( buff, "%s %s", month_str, day_str);
else
buff += sprintf( buff, "%s %s", day_str, month_str);
if( !(format & FULL_CTIME_YEAR_FIRST)) /* year comes at end */
if( !(format & FULL_CTIME_NO_YEAR))
buff += sprintf( buff, " %s", year_str);
if( output_format != FULL_CTIME_FORMAT_DAY)
*buff++ = ' ';
}
remains *= (double)units;
i = (long)remains;
if( i == units) /* keep things from rounding up incorrectly */
i--;
switch( output_format)
{
case FULL_CTIME_FORMAT_SECONDS:
sprintf( buff, "%2ld:%02ld:%02ld", i / 3600L, (i / 60) % 60L,
i % 60L);
break;
case FULL_CTIME_FORMAT_HH_MM:
sprintf( buff, "%2ld:%02ld", i / 60L, i % 60L);
break;
case FULL_CTIME_FORMAT_HH:
sprintf( buff, "%2ld", i);
break;
}
if( output_format != FULL_CTIME_FORMAT_DAY)
{
if( leading_zeroes && *buff == ' ')
*buff = '0';
if( precision)
show_remainder( buff + strlen( buff), remains - (double)i,
(unsigned)precision);
}
if( format & FULL_CTIME_DAY_OF_WEEK_LAST)
sprintf( buff + strlen( buff), " %s",
set_day_of_week_name( (int)day_of_week, NULL));
if( format & FULL_CTIME_NO_SPACES)
remove_char( ibuff, ' ');
if( format & FULL_CTIME_NO_COLONS)
remove_char( ibuff, ':');
}
void DLL_FUNC full_ctime( char *buff, double jd, const int format)
{
full_ctimel( buff, (long double)jd - j2000, format);
}
void DLL_FUNC polar3_to_cartesian( double *vect, const double lon, const double lat)
{
double clat = cos( lat);
*vect++ = cos( lon) * clat;
*vect++ = sin( lon) * clat;
*vect = sin( lat);
}
double DLL_FUNC vector3_length( const double *vect)
{
return( sqrt( vect[0] * vect[0] + vect[1] * vect[1] + vect[2] * vect[2]));
}
/* Greenwich sidereal time from UT. Based on Meeus' _Astronomical
Algorithms_, pp 87-88 (2nd edition). Note that UT0 should be
used, the version that reflects the earth's current rotational
state. (UTC comes close, but leap seconds are inserted so that
each second can be equal in length, rather than "stretching" each
second as the earth slows down. The difference is kept within one
second, and can be ignored for many purposes.) */
double DLL_FUNC green_sidereal_time( double jd_ut)
{
double t_cen, rval, base_t;
jd_ut -= 2451545.0; /* set relative to 2000.0 */
t_cen = jd_ut / 36525.; /* convert to julian centuries */
base_t = floor( jd_ut);
jd_ut -= base_t;
rval = 280.46061837 + 360.98564736629 * jd_ut + .98564736629 * base_t +
t_cen * t_cen * (3.87933e-4 - t_cen / 38710000.);
/* See p 84, in Meeus: the following should get apparent */
/* Greenwich sidereal time: */
return( rval * pi / 180.);
}
void DLL_FUNC vector_cross_product( double *xprod, const double *a, const double *b)
{
xprod[0] = a[1] * b[2] - a[2] * b[1];
xprod[1] = a[2] * b[0] - a[0] * b[2];
xprod[2] = a[0] * b[1] - a[1] * b[0];
}
|