1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
|
/* Copyright (C) 2018, Project Pluto
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <assert.h>
#include <stdio.h>
#include <ctype.h>
#include <time.h>
#include "watdefs.h"
#include "mpc_func.h"
#include "lunar.h"
#define SUN_RADIUS 696000e+3
#define MERCURY_RADIUS 2439700.
#define VENUS_RADIUS 6051800.
#define EARTH_MAJOR_AXIS 6378137.
#define EARTH_MINOR_AXIS 6356752.
#define MARS_MAJOR_AXIS 3396190.
#define MARS_MINOR_AXIS 3376200.
#define MOON_RADIUS 1737400.
#define JUPITER_MAJOR_AXIS 71492e+3
#define JUPITER_MINOR_AXIS 66854e+3
#define SATURN_MAJOR_AXIS 60268e+3
#define SATURN_MINOR_AXIS 54364e+3
#define URANUS_MAJOR_AXIS 25559e+3
#define URANUS_MINOR_AXIS 24973e+3
#define NEPTUNE_MAJOR_AXIS 24764e+3
#define NEPTUNE_MINOR_AXIS 24341e+3
#define PLUTO_RADIUS 1195e+3
#define IO_MEAN_RADIUS 1821.49e+3
#define EUROPA_MEAN_RADIUS 1560.8e+3
#define GANYMEDE_MEAN_RADIUS 2631.2e+3
#define CALLISTO_MEAN_RADIUS 2410.3e+3
/* Earth dimensions are WGS84 constants */
/* Other sizes are from http://adsabs.harvard.edu/abs/2011CeMDA.109..101A */
/* or http://astropedia.astrogeology.usgs.gov/alfresco/d/d/workspace/SpacesStore/28fd9e81-1964-44d6-a58b-fbbf61e64e15/WGCCRE2009reprint.pdf */
#define N_EQUATORIAL_RADII 15
static const double equatorial_radii[N_EQUATORIAL_RADII] = {
SUN_RADIUS, MERCURY_RADIUS, VENUS_RADIUS, EARTH_MAJOR_AXIS,
MARS_MAJOR_AXIS, JUPITER_MAJOR_AXIS, SATURN_MAJOR_AXIS,
URANUS_MAJOR_AXIS, NEPTUNE_MAJOR_AXIS, PLUTO_RADIUS,
MOON_RADIUS, IO_MEAN_RADIUS, EUROPA_MEAN_RADIUS,
GANYMEDE_MEAN_RADIUS, CALLISTO_MEAN_RADIUS };
double planet_radius_in_meters( const int planet_idx)
{
if( planet_idx >= 0 && planet_idx < N_EQUATORIAL_RADII)
return( equatorial_radii[planet_idx]);
else
return( 0.);
}
/* NOTE that for the Earth, I'm using the WGS84 ellipsoid. The
IAU1976 ellipsoid has a major axis of 6378.1377
with
major axis 6378.140 km (see above) and flattening 1/f = 298.257.
The GRS80 and WGS84 ellipsoids have a major axis of 6378.137 meters
(three meters less than the IAU1976 value) and 1/f = 298.257223563
and 298.257222101 respectively (making for semimajor axes also about
three meters less than the IAU1976 value). */
#define N_POLAR_RADII 9
const double polar_radii[N_POLAR_RADII] = {
SUN_RADIUS, MERCURY_RADIUS, VENUS_RADIUS, EARTH_MINOR_AXIS,
MARS_MINOR_AXIS, JUPITER_MINOR_AXIS, SATURN_MINOR_AXIS,
URANUS_MINOR_AXIS, NEPTUNE_MINOR_AXIS };
double planet_axis_ratio( const int planet_idx)
{
return( planet_idx >= N_POLAR_RADII ?
1 : polar_radii[planet_idx] / equatorial_radii[planet_idx]);
}
const double PI =
3.1415926535897932384626433832795028841971693993751058209749445923;
int lat_alt_to_parallax( const double lat, const double ht_in_meters,
double *rho_cos_phi, double *rho_sin_phi,
const double major_axis_in_meters,
const double minor_axis_in_meters)
{
const double axis_ratio = minor_axis_in_meters / major_axis_in_meters;
const double u = atan2( sin( lat) * axis_ratio, cos( lat));
*rho_sin_phi = axis_ratio * sin( u) +
(ht_in_meters / major_axis_in_meters) * sin( lat);
*rho_cos_phi = cos( u) + (ht_in_meters / major_axis_in_meters) * cos( lat);
return( 0);
}
/* MS only got around to adding cbrt in VS2013 : */
#if (defined( _MSC_VER) && (_MSC_VER < 1800)) || defined( __WATCOMC__)
static double cbrt( const double z)
{
double rval;
if( z > 0.)
rval = pow( z, 1. / 3.);
else if( z < 0.)
rval = -pow( -z, 1. / 3.);
else
rval = 0.;
return( rval);
}
#endif
/* Given an ellipse with semimajor axis a, semiminor axis b, centered
at the origin, and an arbitrary point (x, y), point_to_ellipse() will
compute the closest distance between that point and the ellipse, and
the angle to the ellipse.
This is an exact method from _Explanatory Supplement to the Astronomical
Almanac_, pgs 206-207, in turn from K. M. Borkowski (1989), "Accurate
Algorithms to Transform Geocentric to Geodetic Coordinates", _Bulletin
Geodesique_ 63, no. 1, 50-56, modified slightly to handle the possibilities
of negative x and/or y. It is also described at
http://www.astro.uni.torun.pl/~kb/Papers/ASS/Geod-ASS.htm
This reduces the problem to finding the roots of a quartic polynomial,
but does so in a form that is somewhat straightforward, with unit
leading and trailing coefficients and a zero quadratic coefficient.
References are to the _Explanatory Supplement_ and then the above URL.
For example, the equation for 'e' is given at 4.22-12 in the ES and
as equation (6) at the above URL. */
double point_to_ellipse( const double a, const double b,
const double x, const double y, double *dist)
{
const double fy = fabs( y), fx = fabs( x);
double lat;
if( x == 0.)
{
lat = PI / 2.;
if( dist)
*dist = fy - a;
}
else
{
const double c_squared = a * a - b * b;
const double e = (b * fy - c_squared) / (a * fx); /* 4.22-12/6 */
const double f = (b * fy + c_squared) / (a * fx); /* 4.22-13/7 */
const double p = (4. / 3.) * (e * f + 1.); /* 4.22-14/9 */
const double q = 2. * (e * e - f * f); /* 4.22-15/10 */
const double d = p * p * p + q * q; /* 4.22-16/12 */
double v, g, t;
if( d >= 0.)
{
const double sqrt_d = sqrt( d);
v = cbrt( sqrt_d - q) - cbrt( sqrt_d + q); /* 4.22-17/11a */
}
else
{
const double sqp = sqrt( -p);
const double temp_ang = acos( q / (sqp * p));
v = 2. * sqp * cos( temp_ang / 3.); /* 11b */
}
g = (sqrt( e * e + v) + e) * .5; /* 4.22-18/14 */
t = sqrt( g * g + (f - v * g) / (2. * g - e)) - g; /* 4.22-19/13 */
lat = atan2( a * (1. - t * t), 2. * b * t); /* 4.22-20/15a */
if( dist) /* 4.22-21/15b */
*dist = (fx - a * t) * cos( lat) + (fy - b) * sin( lat);
}
if( x < 0.)
lat = PI - lat;
if( y < 0.)
lat = -lat;
return( lat);
}
/* You can store locations in 'rovers.txt' in base-60 form, with the
degrees/minutes/seconds smashed together; e.g., 19 13' 33.1" would be
stored as 191333.1. The following code would take 191331.1 as input
and return 19 + 13/60 + 33.1/3600 = 19.22586111. */
static double convert_base_60_to_decimal( const double ival)
{
const int secs = (int)ival;
const double rval = (double)( secs / 10000)
+ (double)((secs / 100) % 100) / 60.
+ (double)( secs % 100) / 3600.
+ (ival - (double)secs) / 3600.;
return( rval);
}
int get_mpc_code_info( mpc_code_t *cinfo, const char *buff)
{
int i = 0, rval = -1;
while( buff[i] > ' ' && buff[i] <= '~' && buff[i] != '!')
i++;
memset( cinfo, 0, sizeof( mpc_code_t));
if( i >= 3 && i <= 4 && strlen( buff) >= 30)
{
rval = 3; /* assume earth */
while( buff[i] == ' ')
i++;
if( buff[4] == '!') /* rovers.txt format */
{
if( sscanf( buff + 5, "%lf%lf%lf", &cinfo->lon,
&cinfo->lat, &cinfo->alt) != 3)
rval = -1;
else
{
const char *tptr = strchr( buff + 4, '@');
if( fabs( cinfo->lon) > 361. || fabs( cinfo->lat) > 91.)
{
cinfo->lon = convert_base_60_to_decimal( cinfo->lon);
cinfo->lat = convert_base_60_to_decimal( cinfo->lat);
}
cinfo->lon *= PI / 180.;
cinfo->lat *= PI / 180.;
cinfo->name = buff + 47;
cinfo->format = MPC_CODE_LAT_LON_ALT;
if( tptr) /* non-earth location */
rval = atoi( tptr + 1);
if( cinfo->lat && cinfo->lon) /* i.e., topocentric */
{
const double major = planet_radius_in_meters( rval);
const double minor = major * planet_axis_ratio( rval);
lat_alt_to_parallax( cinfo->lat, cinfo->alt,
&cinfo->rho_cos_phi, &cinfo->rho_sin_phi,
major, minor);
}
}
}
else if( buff[7] == '.' && strchr( "+- ", buff[21])
&& buff[14] == '.' && buff[23] == '.' && buff[3] == ' ')
{ /* 'standard' MPC format */
cinfo->lon = atof( buff + 4);
cinfo->rho_cos_phi = atof( buff + 13);
cinfo->rho_sin_phi = atof( buff + 21);
cinfo->name = buff + 30;
cinfo->format = MPC_CODE_PARALLAXES;
cinfo->lon *= PI / 180.;
if( cinfo->rho_cos_phi || cinfo->rho_sin_phi)
cinfo->lat = point_to_ellipse( 1., EARTH_MINOR_AXIS / EARTH_MAJOR_AXIS,
cinfo->rho_cos_phi, cinfo->rho_sin_phi, &cinfo->alt);
else
cinfo->lat = cinfo->alt = 0.;
cinfo->alt *= EARTH_MAJOR_AXIS;
while( cinfo->prec1 < 5 && isdigit( buff[8 + cinfo->prec1]))
cinfo->prec1++; /* longitude precision, in digits */
while( cinfo->prec2 < 5 && isdigit( buff[15 + cinfo->prec2]))
cinfo->prec2++; /* parallax precision, in digits */
}
else if( i == 30)
{
cinfo->name = buff + 30;
cinfo->format = MPC_CODE_SATELLITE;
rval = -2;
}
else
rval = -1;
}
if( rval != -1)
{
cinfo->planet = rval;
memcpy( cinfo->code, buff, 4);
if( buff[3] == ' ') /* standard 3-character code */
cinfo->code[3] = '\0';
else /* 'extended' 4-character code */
cinfo->code[4] = '\0';
if( cinfo->lon < 0.)
cinfo->lon += PI + PI;
}
return( rval);
}
#ifdef TEST_CODE
static bool extract_region_data_for_mpc_station( char *buff,
const double lat, const double lon)
{
FILE *ifile = fopen( "geo_rect.txt", "rb");
const double lat_in_degrees = (180. / PI) * lat;
const double lon_in_degrees = (180. / PI) * lon;
*buff = '\0';
if( ifile)
{
char tbuff[90];
size_t i = 0;
while( !*buff && fgets( tbuff, sizeof( tbuff), ifile))
if( *tbuff != '#')
{
double d_lon1 = atof( tbuff) - lon_in_degrees;
double d_lon2 = atof( tbuff + 20) - lon_in_degrees;
const double d_lat1 = atof( tbuff + 10) - lat_in_degrees;
const double d_lat2 = atof( tbuff + 30) - lat_in_degrees;
while( d_lon1 > 180.)
d_lon1 -= 360.;
while( d_lon1 < -180.)
d_lon1 += 360.;
while( d_lon2 - d_lon1 > 180.)
d_lon2 -= 360.;
while( d_lon2 - d_lon1 < -180.)
d_lon2 += 360.;
if( d_lon1 * d_lon2 < 0. && d_lat1 * d_lat2 < 0.)
{
strcpy( buff, tbuff + 40);
while( buff[i] >= ' ')
i++;
buff[i] = '\0'; /* remove trailing CR/LF */
}
}
fclose( ifile);
}
return( *buff ? true : false);
}
const char *html_header_text =
"<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0//EN\">\n"
"<HTML>\n"
"<HEAD>\n"
" <TITLE> MPC station sites</TITLE>\n"
" <META http-equiv=Content-Type content=\"text/html; charset=utf-8\">\n"
"</HEAD>\n"
"<BODY> <pre>\n";
int main( const int argc, const char **argv)
{
FILE *ifile = fopen( (argc < 2 ? "ObsCodes.htm" : argv[1]), "rb");
char buff[200];
mpc_code_t code;
bool google_map_links = false, dump_comments = false;
int i;
size_t google_offset = 0;
const char *header =
"Pl Code Longitude Latitude Altitude rho_cos rho_sin_phi region";
if( !ifile)
ifile = fopen( "ObsCodes.html", "rb");
if( !ifile)
{
printf( "ObsCodes not opened\n");
return( -1);
}
for( i = 1; i < argc; i++)
if( argv[i][0] == '-')
switch( argv[i][1])
{
case 'v':
dump_comments = true;
break;
case 'g':
{
const time_t t0 = time( NULL);
google_map_links = true;
google_offset = 3;
printf( "%s", html_header_text);
printf( "Created %s\n", ctime( &t0));
}
break;
default:
printf( "Command line option '%s' unrecognized\n", argv[i]);
return( -1);
}
printf( "%s\n", header + google_offset);
i = 0;
while( fgets( buff, sizeof( buff), ifile))
if( get_mpc_code_info( &code, buff) != -1)
{
char region[100], obuff[200];
bool show_link_for_this_line;
if( code.planet == 3)
extract_region_data_for_mpc_station( region, code.lat, code.lon);
else
*region = '\0';
code.lat *= 180. / PI;
code.lon *= 180. / PI;
#ifdef BITS_32
sprintf( obuff,
#else
snprintf( obuff, sizeof( obuff),
#endif
"%2d %-4s %10.6f %+10.6f %10.3f %9.7f %+10.7f %-15.15s ",
code.planet,
code.code, code.lon, code.lat,
code.alt, code.rho_cos_phi, code.rho_sin_phi,
region);
if( code.prec1) /* long. precision: blank unused digits */
memset( obuff + 12 + code.prec1, ' ', 6 - code.prec1);
if( code.prec2) /* parallax data prec: blank unused */
{
memset( obuff + 43 + code.prec2, ' ', 7 - code.prec2);
memset( obuff + 54 + code.prec2, ' ', 7 - code.prec2);
}
if( code.lon > 180.)
code.lon -= 360.;
if( google_map_links) /* include HTML anchors */
printf( "<a name=\"L%04d\"></a>", i++);
show_link_for_this_line = (code.planet == 3 && google_map_links
&& (code.lat || code.lon));
if( show_link_for_this_line)
{
printf( "<a name=\"%s\"></a>", code.code);
printf( "<a href=\"http://maps.google.com/maps?q=%f,%f\">",
code.lat, code.lon);
}
printf( "%s %s", obuff + google_offset, code.name);
if( show_link_for_this_line)
printf( "</a>");
}
else if( dump_comments) /* dump everything, including */
printf( "%s", buff); /* comments from input file */
fclose( ifile);
printf( "%s\n", header + google_offset);
if( google_map_links)
printf( "</pre></body></html>\n");
return( 0);
}
#endif
|