1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
|
/* phases.cpp: creates tables of lunar phase dates/times
Copyright (C) 2010, Project Pluto
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
/* 2013 Jun 30: 'long' integers were being written to the binary
output file, which should be 32-bit ints. */
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <time.h>
#include "watdefs.h"
#include "date.h"
#include "lunar.h"
#include "afuncs.h"
#define PI 3.1415926535897932384626433832795028841971693993751058209749445923
#define VSOP_CHUNK 2767U
#define NEW_MOON 0
#define FIRST_QUARTER 1
#define FULL_MOON 2
#define LAST_QUARTER 3
const double days_per_julian_century = 36525.;
/* Some code to compute lunar phases and produce a table. It can also */
/* produce a list of the 'principal terms' used in the Chinese calendar, */
/* i.e., the times when the mean solar longitude passes a multiple of */
/* 30 degrees. When run with the '-c' (chinese calendar) switch, it */
/* produced a huge text file listing new moons and Principal Term dates; */
/* sorted and fed through the 'chinese' program, one could get the */
/* actual Chinese calendar data, which was then stored in 'chinese.dat' */
/* for use in the 'date.cpp' routines for the Chinese calendar. */
static double approx_solar_dist( double t)
{
double temp, r[3], rval;
t /= 10.; /* cvt to julian millennia */
temp = 6283.07585 * t;
r[0] = 100013989. +
1670700. * cos( 3.0984635 + temp) +
13956. * cos( 3.05525 + temp * 2) +
3084. * cos( 5.1985 + 77713.7715 * t);
r[1] = 103019. * cos( 1.107490 + temp) +
1721. * cos( 1.0644 + temp * 2.);
r[2] = 4359. * cos( 5.7846 + temp);
rval = r[0] + t * (r[1] + t * (r[2] + t));
rval *= 1.e-8;
rval *= AU_IN_KM; /* put return value into KILOMETERS */
return( rval);
}
int main( const int argc, const char **argv)
{
const double j2000 = 2451545.; /* 1.5 Jan 2000 = JD 2451545 */
int i, julian = 0, verbose = 0, chinese_calendar = 0;
double t, t0, utc_time;
double m, mp, f, e, max_date = 4000. * 365.25 + j2000;
double lunar, dist, fund[N_FUND], rate = 29.5306, t_final;
char buff[80];
double k;
FILE *log_file = NULL, *vsop_file, *data_file = NULL;
char *vsop_tbuff, FAR *vsop_data;
time_t curr_time = time( NULL);
vsop_file = fopen( "vsop.bin", "rb");
if( !vsop_file)
{
printf( "Couldn't open vsop.bin");
return( -1);
}
vsop_tbuff = (char *)malloc( VSOP_CHUNK);
vsop_data = (char *)malloc( VSOP_CHUNK * 22U);
for( i = 0; i < 22; i++)
{
if( !fread( vsop_tbuff, VSOP_CHUNK, 1, vsop_file))
{
printf( "Couldn't read VSOP data\n");
free( vsop_tbuff);
free( vsop_data);
return( -2);
}
FMEMCPY( vsop_data + (unsigned)i * VSOP_CHUNK, vsop_tbuff, VSOP_CHUNK);
}
fclose( vsop_file);
free( vsop_tbuff);
for( i = 1; i < argc; i++)
if( argv[i][0] == '-')
switch( argv[i][1])
{
case 'j': case 'J':
julian = 1;
break;
case 'c': case 'C':
chinese_calendar = 1;
break;
case 'v': case 'V':
verbose = 1;
break;
case 'l': case 'L':
log_file = fopen( argv[i] + 2, "wb");
break;
case 'd': case 'D':
data_file = fopen( argv[i] + 2, "wb");
break;
case 'm': case 'M':
max_date = (atof( argv[i] + 2) - 2000.) * 365.25 + j2000;
break;
default:
break;
}
t0 = t = j2000 + 365.25 * (atof( argv[1]) - 2000.);
k = floor( (atof( argv[1]) - 2000.) * 12.3685);
if( data_file)
{
const int32_t int32_t_to_write = (int32_t)k;
fwrite( &int32_t_to_write, 1, sizeof( int32_t), data_file);
}
t_final = max_date - 1.;
while( t_final < max_date)
for( i = 0; i < 4; i++)
{
double t2, dlon_1, dlon_2, phase_angle, solar_lon, time_lag;
static const char *phase_name[4] = {
"New moon ",
"1st qtr. ",
"Full moon",
"last qtr." };
double t_centuries, t_cen2, t_cen3, t_cen4;
t_centuries = k / 1236.85; /* first approx */
t = 2451550.09765 + 29.530588853 * k
+ (1.337e-4 - 1.5e-7 * t_centuries) * t_centuries * t_centuries;
t_centuries = (t - j2000) / 36525.;
t_cen2 = t_centuries * t_centuries;
t_cen3 = t_cen2 * t_centuries;
t_cen4 = t_cen3 * t_centuries;
m = 2.5534 + 29.10535669 * k
- 2.18e-5 * t_cen2
- 1.1e-7 * t_cen3;
mp = 201.5643 + 385.81693528 * k
+ .0107438 * t_cen2
+ 1.239e-5 * t_cen3
- 5.8e-8 * t_cen4;
f = 160.7108 + 390.67050274 * k
- 1.6541e-3 * t_cen2
- 2.27e-6 * t_cen3
+ 1.1e-8 * t_cen4;
m *= PI / 180.;
f *= PI / 180.;
mp *= PI / 180.;
e = 1. - .002516 * t_centuries - 7.4e-6 * t_cen2;
switch( i)
{
case NEW_MOON:
t += -.40720 * sin( mp)
+.17241 * sin( m) * e
+.01608 * sin( mp + mp)
+.01039 * sin( f + f)
+.00739 * sin( mp - m) * e
-.00514 * sin( mp + m) * e
+.00208 * sin( m + m) * e * e
-.00111 * sin( mp - f - f);
break;
case FIRST_QUARTER:
case LAST_QUARTER:
t += -.62801 * sin( mp)
+.17172 * sin( m) * e
-.01183 * sin( mp + m) * e
+.00862 * sin( mp + mp)
+.00804 * sin( f + f)
+.00454 * sin( mp - m) * e
+.00204 * sin( m + m) * e * e
-.00180 * sin( mp - f - f);
t += ((i == FIRST_QUARTER) ? .00306 : -.00306);
break;
case FULL_MOON:
t += -.40614 * sin( mp)
+.17302 * sin( m) * e
+.01614 * sin( mp + mp)
+.01043 * sin( f + f)
+.00734 * sin( mp - m) * e
-.00515 * sin( mp + m) * e
+.00209 * sin( m + m) * e * e
-.00111 * sin( mp - f - f);
break;
default:
break;
}
phase_angle = (double)i * 90.;
t_centuries = (t - j2000) / days_per_julian_century;
time_lag = approx_solar_dist( t_centuries) / SPEED_OF_LIGHT;
time_lag /= seconds_per_day * days_per_julian_century;
lunar_fundamentals( vsop_data, t_centuries, fund);
lunar_lon_and_dist( vsop_data, fund, &lunar, &dist, 0L);
solar_lon = calc_vsop_loc( vsop_data, 3, 0, t_centuries - time_lag, 0.);
solar_lon = solar_lon * 180. / PI - 180.;
dlon_1 = lunar - solar_lon - phase_angle;
while( dlon_1 < -180.) dlon_1 += 360.;
while( dlon_1 > 180.) dlon_1 -= 360.;
if( verbose)
{
full_ctime( buff, t, julian);
printf( " first time is %s; lon diff %f\n", buff, dlon_1);
}
t2 = t - rate * dlon_1 / 360.;
t_centuries = (t2 - j2000) / 36525.;
lunar_fundamentals( vsop_data, t_centuries, fund);
lunar_lon_and_dist( vsop_data, fund, &lunar, &dist, 0L);
solar_lon = calc_vsop_loc( vsop_data, 3, 0, t_centuries - time_lag, 0.);
solar_lon = solar_lon * 180. / PI - 180.;
dlon_2 = lunar - solar_lon - phase_angle;
while( dlon_2 < -180.) dlon_2 += 360.;
while( dlon_2 > 180.) dlon_2 -= 360.;
if( verbose)
{
full_ctime( buff, t2, julian);
printf( " second time is %s; lon diff %f\n", buff, dlon_2);
}
t_final = (t * dlon_2 - t2 * dlon_1) / (dlon_2 - dlon_1);
utc_time = t_final - td_minus_utc( t_final) / seconds_per_day;
full_ctime( buff, utc_time, julian);
if( log_file)
{
if( chinese_calendar)
fprintf( log_file, "%7ld %s\n",
(long)floor( utc_time - 1. / 6.), buff);
else
fprintf( log_file, "%s: %s\n", phase_name[i], buff);
}
buff[17] = '\0'; /* trim the seconds */
if( !chinese_calendar)
{
printf( "%s ", buff);
if( i == 3)
printf( "\n");
}
if( data_file)
{
double diff = t_final - ( 2451550.09765 + 29.530588853 * k);
int32_t int32_t_to_write;
diff *= seconds_per_day;
if( verbose)
printf( "Time diff %f\n", diff);
int32_t_to_write = (int32_t)diff;
fwrite( &int32_t_to_write, 1, sizeof( int32_t), data_file);
}
if( chinese_calendar)
{
k++;
i = 4;
}
else /* just moving to next _phase_ */
k += .25;
if( curr_time != time( NULL))
{
curr_time = time( NULL);
printf( "JD %.3f (%.3f)\r", t_final,
(t_final - j2000) / 365.25 + 2000.);
}
}
if( chinese_calendar)
while( t0 < max_date)
{
double t_centuries, time_lag, delta_t = 1.;
double solar_lon;
const double thirty_deg = PI / 6.;
long solar_month = 0L, year;
while( fabs( delta_t) > .00001) /* resolution a little better than 1s */
{
t_centuries = (t0 - j2000) / 36525.;
time_lag = approx_solar_dist( t_centuries) / SPEED_OF_LIGHT;
time_lag /= seconds_per_day * days_per_julian_century;
solar_lon = calc_vsop_loc( vsop_data, 3, 0, t_centuries - time_lag, 0.);
solar_month = (long)floor( solar_lon / thirty_deg + .5);
solar_lon -= (double)solar_month * thirty_deg;
delta_t = solar_lon * 365.25 / (2. * PI);
t0 -= delta_t;
if( verbose)
printf( "delta_t: %.5f JD %.5f\n", delta_t, t0);
}
solar_month = (solar_month + 7) % 12; /* flip around to winter sol */
year = (long)
floor( (t0 - (double)solar_month * 30.5 - 100.) / 365.25);
year -= 2074L;
utc_time = t0 - td_minus_utc( t0) / seconds_per_day;
full_ctime( buff, utc_time, julian);
if( log_file)
fprintf( log_file, "%7ld z %s %2ld %5ld\n",
(long)floor( utc_time - 1. / 6.),
buff, solar_month + 1, year);
if( chinese_calendar && curr_time != time( NULL))
{
curr_time = time( NULL);
printf( "%7ld z %s %2ld %5ld: %.3f\n",
(long)floor( utc_time - 1. / 6.),
buff, solar_month + 1, year,
(utc_time - j2000) / 365.25 + 2000.);
}
t0 += 365.25 / 12.;
}
if( data_file)
fclose( data_file);
if( log_file)
fclose( log_file);
return( 0);
}
|