1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
|
/* precess.cpp: functions for computing Earth precession
Copyright (C) 2010, Project Pluto
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
/* This implements the IAU1976 precession model, in two forms.
'setup_equatorial_precession_from_j2000()' sets up a precession matrix in
equatorial coordinates. It appears that this is the preferred method in
most cases, especially when doing full modelling of earth orientation
parameters (EOP) with observed offsets included.
setup_ecliptic_precession_from_j2000() sets up the same sort of matrix,
but in ecliptic coordinates. In the ecliptic reference frame, precession
is (almost entirely) just a rotation around the ecliptic pole; doing it
in equatorial coordinates is a poor fit to the actual physics.
That led me to examine the actual formulae, and sure enough, the cubic
terms for equatorial precession are 600 or more times larger in magnitude
than those for equatorial precession. Thus, those oversized cubic terms
become huge as one goes a hundred centuries or so into the past or future.
(If you animate the earth's polar motion using this method, you see the
earth's pole do most of a complete precession circle around the ecliptic
pole; then it just goes wandering off as the cubic term diverges.) In the
ecliptic frame, the same terms are almost negligible.
However, the two methods lead to slightly different results. The
discrepancy is zero at J2000 (where both methods provide identity matrices),
and of about a nanoradian every three years as one gets away for J2000.
(This corresponds to a difference in the earth's orientation of about
one centimeter every five years.) For long-term stability, I'd recommend
the ecliptic method. But for very precise earth orientation in the near
term, you're sort of stuck with having to use the equatorial method.
Which is why both are provided below.
As originally given, the formulae provide a way to create precession
matrices to go directly from any time t1 to another time t2. The problem
I saw with this was that if you then generated a matrix to go from t2
to t1, it wouldn't be the inverse of the first matrix. That seemed wrong.
(In practice, precessing and "de-precessing" a point got you very close
to your original point, but it wasn't a perfect recovery, and got worse
for longer time spans.)
Therefore, the following creates precession matrices from J2000 to
a given time, using the setup_ecliptic_precession_from_j2000( ) function.
If you want to go from a given time to J2000, the same function is
called and the result is inverted. If you want to go from a time t1
to a time t2, the code creates a J2000-to-t1 matrix and inverts it.
(Fortunately, we're talking about orthonormal matrices; inversion is
simply transposition.) Then it makes a J2000-to-t2 matrix, and
multiplies the two matrices. (With some logic to skip some steps if
t1=2000 or t2=2000, where you'd get identity matrices anyway.) Thus,
precession and inverse precession are exactly inverse operations. */
#include <math.h>
#include <string.h>
#include <stdio.h>
#include "watdefs.h"
#include "afuncs.h"
#include "lunar.h" /* for obliquity( ) prototype */
#define PI 3.1415926535897932384626433832795028841971693993751058209749445923078
#include <stdlib.h>
int DLL_FUNC setup_precession_with_nutation( double DLLPTR *matrix,
const double year); /* precess.c */
int DLL_FUNC setup_precession_with_nutation_delta( double DLLPTR *matrix,
const double year, /* precess.c */
const double delta_nutation_lon,
const double delta_nutation_obliq);
static int setup_ecliptic_precession_from_j2000( double DLLPTR *matrix, const double year)
{
const double t = (year - 2000.) / 100.;
const double S2R = (PI / 180.) / 3600.; /* converts arcSeconds to Radians */
const double eta = t * (47.0029 * S2R + (-.03302 * S2R + 6.e-5 * S2R * t) * t);
const double pie = 174.876384 * PI / 180. -
t * (869.8089 * S2R - .03536 * S2R * t);
const double p = t * (5029.0966 * S2R + (1.11113 * S2R - 6.e-5 * S2R * t) * t);
set_identity_matrix( matrix);
#ifdef UNNECESSARY_MATH
spin_matrix( matrix, matrix + 3, -pie);
#else /* can get the same result without as much math: */
matrix[0] = matrix[4] = cos( pie);
matrix[1] = sin( pie);
matrix[3] = -matrix[1];
#endif
spin_matrix( matrix + 3, matrix + 6, -eta);
spin_matrix( matrix + 3, matrix, -p);
spin_matrix( matrix, matrix + 3, pie);
return( 0);
}
int DLL_FUNC setup_equatorial_precession_from_j2000(
double DLLPTR *matrix, const double year)
{
const double t_cen = (year - 2000.) / 100.;
const double ka = 2306.2181;
const double kb = 2004.3109;
const double arcsec_to_radians = (PI / 180.) / 3600.;
double zeta, z, theta, czeta, cz, ctheta, szeta, sz, stheta;
zeta = t_cen * (ka + t_cen * ( .30188 + .017998 * t_cen)) * arcsec_to_radians;
z = t_cen * (ka + t_cen * (1.09468 + .018203 * t_cen)) * arcsec_to_radians;
theta = t_cen * (kb + t_cen * (-.42665 - .041833 * t_cen)) * arcsec_to_radians;
czeta = cos( zeta);
szeta = sin( zeta);
cz = cos( z);
sz = sin( z);
ctheta = cos( theta);
stheta = sin( theta);
*matrix++ = czeta * ctheta * cz - szeta * sz;
*matrix++ = -szeta * ctheta * cz - czeta * sz;
*matrix++ = -stheta * cz;
*matrix++ = czeta * ctheta * sz + szeta * cz;
*matrix++ = -szeta * ctheta * sz + czeta * cz;
*matrix++ = -stheta * sz;
*matrix++ = czeta * stheta;
*matrix++ = -szeta * stheta;
*matrix++ = ctheta;
return( 0);
}
#define SEMIRANDOM_GARBAGE1 314.8145501e+12
#define SEMIRANDOM_GARBAGE2 -9.19001473e-08
int DLL_FUNC setup_ecliptic_precession( double DLLPTR *matrix,
const double year_from, const double year_to)
{
int rval;
/* It's pretty common to precess a few zillion data points. So */
/* it helps to cache the most recently computed precession matrix */
/* so that repeated calls don't result in repeated computation. */
static double prev_year_from = SEMIRANDOM_GARBAGE1;
static double prev_year_to = SEMIRANDOM_GARBAGE2;
static double prev_matrix[9];
if( fabs( year_from - year_to) < 1.e-5) /* dates sensibly equal; */
{ /* avoid pointless math */
set_identity_matrix( matrix);
return( 0);
}
if( year_from == prev_year_from && year_to == prev_year_to)
{
memcpy( matrix, prev_matrix, 9 * sizeof( double));
return( 0);
}
/* Similarly, it's common to precess first */
/* in one direction, then the other: */
if( year_from == prev_year_to && year_to == prev_year_from)
{
memcpy( matrix, prev_matrix, 9 * sizeof( double));
invert_orthonormal_matrix( matrix);
return( 0);
}
/* OK, this is definitely something new: */
if( year_from == 2000.)
rval = setup_ecliptic_precession_from_j2000( matrix, year_to);
else
{
rval = setup_ecliptic_precession_from_j2000( matrix, year_from);
invert_orthonormal_matrix( matrix);
if( year_to != 2000.)
{
double product[9], tmatrix[9];
int i, j;
setup_ecliptic_precession_from_j2000( tmatrix, year_to);
for( i = 0; i < 3; i++)
for( j = 0; j < 3; j++)
product[j + i * 3] = matrix[i * 3 ] * tmatrix[j]
+ matrix[i * 3 + 1] * tmatrix[j + 3]
+ matrix[i * 3 + 2] * tmatrix[j + 6];
memcpy( matrix, product, 9 * sizeof( double));
}
}
/* Store matrix for likely subsequent use: */
memcpy( prev_matrix, matrix, 9 * sizeof( double));
prev_year_from = year_from;
prev_year_to = year_to;
return( rval);
}
int DLL_FUNC setup_precession( double DLLPTR *matrix, const double year_from, const double year_to)
{
const double obliquity1 = mean_obliquity( (year_from - 2000.) / 100.);
const double obliquity2 = mean_obliquity( (year_to - 2000.) / 100.);
setup_ecliptic_precession( matrix, year_from, year_to);
pre_spin_matrix( matrix + 1, matrix + 2, obliquity1);
spin_matrix( matrix + 3, matrix + 6, obliquity2);
return( 0);
}
/* For computing the orientation of the earth, we need something resembling
the above, but including the effects of nutation : */
int DLL_FUNC setup_precession_with_nutation_delta( double DLLPTR *matrix,
const double year,
const double delta_nutation_lon,
const double delta_nutation_obliq)
{
const double j2000_obliquity = 23.43929111111111 * PI / 180.;
const double t_cen = (year - 2000.) / 100.; /* Julian centuries */
double obliquity = mean_obliquity( t_cen); /* from J2000 */
double d_lon, d_obliq;
double equation_of_equinoxes;
nutation( t_cen, &d_lon, &d_obliq);
d_lon *= PI / (180. * 3600.); /* cvt arcsec to radians */
d_obliq *= PI / (180. * 3600.);
d_lon += delta_nutation_lon;
d_obliq += delta_nutation_obliq;
#ifdef OLD_VERSION
setup_ecliptic_precession_from_j2000( matrix, year);
#else
setup_equatorial_precession_from_j2000( matrix, year);
pre_spin_matrix( matrix + 1, matrix + 2, -j2000_obliquity);
spin_matrix( matrix + 3, matrix + 6, -obliquity);
#endif
spin_matrix( matrix, matrix + 3, d_lon);
pre_spin_matrix( matrix + 1, matrix + 2, j2000_obliquity);
spin_matrix( matrix + 3, matrix + 6, obliquity + d_obliq);
equation_of_equinoxes = d_lon * cos( obliquity);
spin_matrix( matrix + 3, matrix, equation_of_equinoxes);
return( 0);
}
int DLL_FUNC setup_precession_with_nutation( double DLLPTR *matrix,
const double year)
{
return( setup_precession_with_nutation_delta( matrix, year, 0., 0.));
}
static const double sin_obliq_2000 = 0.397777155931913701597179975942380896684;
static const double cos_obliq_2000 = 0.917482062069181825744000384639406458043;
void DLL_FUNC equatorial_to_ecliptic( double *vect)
{
double temp;
temp = vect[2] * cos_obliq_2000 - vect[1] * sin_obliq_2000;
vect[1] = vect[1] * cos_obliq_2000 + vect[2] * sin_obliq_2000;
vect[2] = temp;
}
void DLL_FUNC ecliptic_to_equatorial( double *vect)
{
double temp;
temp = vect[2] * cos_obliq_2000 + vect[1] * sin_obliq_2000;
vect[1] = vect[1] * cos_obliq_2000 - vect[2] * sin_obliq_2000;
vect[2] = temp;
}
int DLL_FUNC precess_vector( const double DLLPTR *matrix,
const double DLLPTR *v1,
double DLLPTR *v2)
{
int i = 3;
while( i--)
{
*v2++ = matrix[0] * v1[0] + matrix[1] * v1[1] + matrix[2] * v1[2];
matrix += 3;
}
return( 0);
}
int DLL_FUNC deprecess_vector( const double DLLPTR *matrix,
const double DLLPTR *v1,
double DLLPTR *v2)
{
int i = 3;
while( i--)
{
*v2++ = matrix[0] * v1[0] + matrix[3] * v1[1] + matrix[6] * v1[2];
matrix++;
}
return( 0);
}
int DLL_FUNC precess_ra_dec( const double DLLPTR *matrix,
double DLLPTR *p_out,
const double DLLPTR *p_in, int backward)
{
double v1[3], v2[3];
const double old_ra = p_in[0];
v1[0] = cos( p_in[0]) * cos( p_in[1]);
v1[1] = sin( p_in[0]) * cos( p_in[1]);
v1[2] = sin( p_in[1]);
if( backward)
deprecess_vector( matrix, v1, v2);
else
precess_vector( matrix, v1, v2);
if( v2[1] != 0. || v2[0] != 0.)
p_out[0] = atan2( v2[1], v2[0]);
else
p_out[0] = 0.;
p_out[1] = asine( v2[2]);
while( p_out[0] - old_ra > PI)
p_out[0] -= PI * 2.;
while( p_out[0] - old_ra <-PI)
p_out[0] += PI * 2.;
return( 0);
}
#ifdef TEST_PRECESS
#include <stdio.h>
#include <stdlib.h>
int main( const int argc, const char **argv)
{
const double year = atof( argv[1]);
double matrix[9];
int pass, i;
for( pass = 0; pass < 3; pass++)
{
const char *titles[3] = { "From ecliptic", "Equatorial 'straight'",
"Difference" };
printf( "%s\n", titles[pass]);
if( pass)
setup_precession( matrix, 2000., year);
else
setup_equatorial_precession_from_j2000( matrix, year);
if( pass == 2)
{
double mat2[9];
setup_equatorial_precession_from_j2000( mat2, year);
for( i = 0; i < 9; i++)
matrix[i] -= mat2[i];
}
for( i = 0; i < 9; i++)
printf( "%12.9f%s", matrix[i], i % 3 == 2 ? "\n" : " ");
}
return( 0);
}
#endif
|