1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
|
/* precess2.cpp: (deprecated version of) functions for computing
Earth precession; see precess.cpp for current version, and
'changes.txt' for info on why this is deprecated
Copyright (C) 2010, Project Pluto
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
#include <math.h>
#include <string.h>
#include <stdio.h>
#include "watdefs.h"
#include "afuncs.h"
#include "lunar.h" /* for obliquity( ) prototype */
#define PI 3.1415926535897932384626433832795028841971693993751058209749445923
/* setup_precession fills a 3x3 orthonormal matrix for precessing positions FROM */
/* year t1 TO year t2, where t1 and t2 are Julian YEARS. */
int DLL_FUNC setup_precession( double DLLPTR *matrix, double t1,
double t2)
{
double zeta, z, theta, czeta, cz, ctheta, szeta, sz, stheta;
double ka, kb;
static double t1_old = -PI, t2_old;
static double curr_matrix[9];
int going_backward = 0;
if( fabs( t1 - t2) < 1.e-5) /* dates sensibly equal; spare the tedium */
{ /* of doing pointless math */
set_identity_matrix( matrix);
return( 0);
}
/* Ideally, precessing from t1 to t2 back to t1 should get your */
/* original point. To ensure that this happens, we handle only */
/* the case t2 > t1; otherwise, we swap the times and invert */
/* the resulting matrix. */
/* The reason is that the following precession formula uses */
/* cubic polynomials to approximate zeta, theta, and z. If */
/* you feed it (t2, t1), it does _not_ create a matrix that is */
/* the exact inverse of (t1, t2); there is some accumulated */
/* error. Doing it this way avoids having that show. Also, */
/* there is a performance advantage: if you _do_ call (t1, t2), */
/* then (t2, t1), it's faster to invert the previous result */
/* than it would be to do all the math. */
if( t1 < t2)
{
double temp = t1;
t1 = t2;
t2 = temp;
going_backward = 1;
}
/* It's pretty common to precess a few zillion data points. So */
/* it helps to cache the most recently computed precession matrix */
/* so that repeated calls don't result in repeated computation. */
if( t1 == t1_old && t2 == t2_old)
{
FMEMCPY( matrix, curr_matrix, 9 * sizeof( double));
if( going_backward)
invert_orthonormal_matrix( matrix);
return( 0);
}
t1_old = t1;
t2_old = t2;
t2 = (t2 - t1) / 100.;
t1 = (t1 - 2000.) / 100.;
ka = 2306.2181 + 1.39656 * t1 - .000139 * t1 * t1;
kb = 2004.3109 - 0.85330 * t1 - .000217 * t1 * t1;
zeta = t2 * (ka + t2 * ( .30188 - .000345 * t1 + .017998 * t2));
z = t2 * (ka + t2 * (1.09468 + .000066 * t1 + .018203 * t2));
theta = t2 * (kb + t2 * (-.42665 - .000217 * t1 - .041833 * t2));
theta *= (PI / 180.) / 3600.;
z *= (PI / 180.) / 3600.;
zeta *= (PI / 180.) / 3600.;
czeta = cos( zeta);
szeta = sin( zeta);
cz = cos( z);
sz = sin( z);
ctheta = cos( theta);
stheta = sin( theta);
*matrix++ = czeta * ctheta * cz - szeta * sz;
*matrix++ = -szeta * ctheta * cz - czeta * sz;
*matrix++ = -stheta * cz;
*matrix++ = czeta * ctheta * sz + szeta * cz;
*matrix++ = -szeta * ctheta * sz + czeta * cz;
*matrix++ = -stheta * sz;
*matrix++ = czeta * stheta;
*matrix++ = -szeta * stheta;
*matrix++ = ctheta;
matrix -= 9;
FMEMCPY( curr_matrix, matrix, 9 * sizeof( double));
if( going_backward)
invert_orthonormal_matrix( matrix);
return( 0);
}
static const double sin_obliq_2000 = 0.397777155931913701597179975942380896684;
static const double cos_obliq_2000 = 0.917482062069181825744000384639406458043;
void DLL_FUNC equatorial_to_ecliptic( double *vect)
{
double temp;
temp = vect[2] * cos_obliq_2000 - vect[1] * sin_obliq_2000;
vect[1] = vect[1] * cos_obliq_2000 + vect[2] * sin_obliq_2000;
vect[2] = temp;
}
void DLL_FUNC ecliptic_to_equatorial( double *vect)
{
double temp;
temp = vect[2] * cos_obliq_2000 + vect[1] * sin_obliq_2000;
vect[1] = vect[1] * cos_obliq_2000 - vect[2] * sin_obliq_2000;
vect[2] = temp;
}
int DLL_FUNC precess_vector( const double DLLPTR *matrix,
const double DLLPTR *v1,
double DLLPTR *v2)
{
int i = 3;
while( i--)
{
*v2++ = matrix[0] * v1[0] + matrix[1] * v1[1] + matrix[2] * v1[2];
matrix += 3;
}
return( 0);
}
int DLL_FUNC deprecess_vector( const double DLLPTR *matrix,
const double DLLPTR *v1,
double DLLPTR *v2)
{
int i = 3;
while( i--)
{
*v2++ = matrix[0] * v1[0] + matrix[3] * v1[1] + matrix[6] * v1[2];
matrix++;
}
return( 0);
}
int DLL_FUNC precess_ra_dec( const double DLLPTR *matrix,
double DLLPTR *p_out,
const double DLLPTR *p_in, int backward)
{
double v1[3], v2[3];
const double old_ra = p_in[0];
v1[0] = cos( p_in[0]) * cos( p_in[1]);
v1[1] = sin( p_in[0]) * cos( p_in[1]);
v1[2] = sin( p_in[1]);
if( backward)
deprecess_vector( matrix, v1, v2);
else
precess_vector( matrix, v1, v2);
if( v2[1] || v2[0])
p_out[0] = atan2( v2[1], v2[0]);
else
p_out[0] = 0.;
p_out[1] = asine( v2[2]);
while( p_out[0] - old_ra > PI)
p_out[0] -= PI * 2.;
while( p_out[0] - old_ra <-PI)
p_out[0] += PI * 2.;
return( 0);
}
/* setup_ecliptic_precession fills a 3x3 orthonormal matrix for precessing */
/* positions _in ecliptic coordinates_ FROM year t1 TO year t2, where t1 */
/* and t2 are Julian YEARS... much as setup_precession( ) does for RA/dec */
/* 30 May 2002: change 'obliquity#' to '-obliquity#' to fix a bug reported */
/* by Jordi Mas, probably in place since the code was written. */
int DLL_FUNC setup_ecliptic_precession( double DLLPTR *matrix, const double t1,
const double t2)
{
const double obliquity1 = mean_obliquity( (t1 - 2000.) / 100.);
const double obliquity2 = mean_obliquity( (t2 - 2000.) / 100.);
setup_precession( matrix, t1, t2);
pre_spin_matrix( matrix + 1, matrix + 2, -obliquity1);
spin_matrix( matrix + 3, matrix + 6, -obliquity2);
return( 0);
}
#ifdef TEST_MAIN
#include <stdio.h>
#include <stdlib.h>
int main( const int argc, const char **argv)
{
double t1, t2, matrix[9];
double p[2];
int i;
t1 = atof( argv[1]);
t2 = atof( argv[2]);
if( argc > 3)
{
p[0] = atof( argv[3]) * PI / 180.;
p[1] = atof( argv[4]) * PI / 180.;
}
if( argc < 6)
setup_precession( matrix, t1, t2);
else
setup_ecliptic_precession( matrix, t1, t2);
for( i = 0; i < 9; i++)
printf( "%15.11lf%s", matrix[i], (i % 3 == 2) ? "\n" : " ");
if( argc > 3)
{
precess_ra_dec( matrix, p, p, 0);
printf( "%lf %lf\n", p[0] * 180. / PI, p[1] * 180. / PI);
precess_ra_dec( matrix, p, p, 1);
printf( "%lf %lf\n", p[0] * 180. / PI, p[1] * 180. / PI);
}
}
#endif
|