1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
|
/* ssats.cpp: functions for Saturnian satellite coordinates
Copyright (C) 2010, Project Pluto
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
#include <math.h>
#include <string.h>
#include "watdefs.h"
#include "lunar.h"
#include "comets.h"
#include "afuncs.h"
/*
All references are from G. Dourneau unless otherwise noted.
The Phoebe orbital elements are from the _Explanatory Supplement to
the Astronomical Almanac_, and should not be trusted very much; they
are horribly outdated, and don't match reality very well at all.
They are not actually used in any of my code.
There are a few places to look for alternative algorithms/code for the
satellites of Saturn. Peter Duffett-Smith's book "Practical Astronomy
with your Calculator" provides a simpler theory, with mostly circular
orbits, and Dan Bruton has implemented this in BASIC code in his
SATSAT2 program. At the other extreme, the Bureau des Longitudes
(http://www.bdl.fr) provides Fortran code implementing the TASS 1.7
theory, the successor to the Dourneau theory used in the following
code. TASS probably supplies slightly better accuracy than the
Dourneau theory, but you would have to be looking well below the
arcsecond level to see much difference.
None of these provides good data for Phoebe. If you're really interested
in Phoebe, let me know; I can provide the source code used in Guide for
Phoebe (and the other irregular satellites of gas giants). It uses
multipoint interpolation in precomputed ephemerides, resulting in
wonderful accuracy. (The precomputed ephemeris resulted from a
numerically integrated orbit.)
'htc20.cpp' provides ephemerides for Helene, Telesto, and Calypso.
'rocks.cpp' provides ephemerides for many other faint inner satellites
of Saturn (and other planets).
*/
#define PI 3.1415926535897932384626433832795028841971693993751058209749445923
#define TWO_PI (2. * PI)
#define J2000 2451545.
#define OBLIQUITY_1950 (23.445792 * PI / 180.)
/* Constants defining the angle of a 'fixed' Saturnian equator */
/* relative to the B1950.0 ecliptic. The inner four moons are */
/* all computed relative to the plane of Saturn's equator; you */
/* then rotate by these two angles, and you're in B1950.0 */
/* ecliptic coordinates. (The outer four moons are all in that */
/* system to begin with.) */
#define INCL0 (28.0817 * PI / 180.)
#define ASC_NODE0 (168.8112 * PI / 180.)
#define JAPETUS_i0 (18.4602 * PI / 180.)
#define JAPETUS_i0_dot (-.9518 * PI / 180.)
#define IGNORED_DOUBLE 0.
#define MIMAS 0
#define ENCELADUS 1
#define TETHYS 2
#define DIONE 3
#define RHEA 4
#define TITAN 5
#define HYPERION 6
#define JAPETUS 7
#define PHOEBE 8
#define SECONDS_TO_AU (9.538937 * (PI / 180.) / 3600.)
#define SAT_ELEMS struct sat_elems
SAT_ELEMS
{
double jd, semimaj, ecc, gamma, lambda;
double omega, Omega, epoch;
double loc[4];
int sat_no;
};
void comet_posn_part_ii( const ELEMENTS DLLPTR *elem, const double t,
double DLLPTR *loc, double DLLPTR *vel);
void setup_orbit_vectors( ELEMENTS DLLPTR *e); /* astfuncs.cpp */
/* set_ssat_elems( ) is the core part of computing positions for the
satellites of Saturn, and quite probably the only part of the code
you'll want to grab. It is essentially just an implementation of
Gerard Dourneau's theory. The only problem with this theory is that
each satellite has to be handled a little differently... thus the extensive
case statement in this function. The result, though, is a set of
orbital elements for the object. For the inner four moons, this is
relative to the equator of Saturn, and you have to do two rotations to
get a B1950.0 coordinate. For the outer four moons, you get B1950.0
elements right away. */
static int set_ssat_elems( SAT_ELEMS DLLPTR *elems, ELEMENTS DLLPTR *orbit)
{
static const long semimaj[9] = { 268180L, 344301, 426393, 545876,
762277, 1766041, 2140790, 5148431, 18720552 };
static const short epoch[8] = { 11093, 11093, 11093, 11093, 11093, 11368,
15020, 9786 };
static const short ecc0[8] = { 19050, 4850, 0, 2157, 265, 29092, -1,
28298 /*, 163260 */ };
static const short i_gamma0[8] = { 15630, 262, 10976, 139,
3469, 2960, 6435, -1 };
static const long lam0[9] = {1276400, 2003170, 2853060, 2547120, 3592440,
2611582, 1770470, 763852, 2778720 };
static const double n[9] = { 381.994497, 262.7319002, 190.69791226,
131.53493193, 79.6900472, 22.57697855,
16.91993829, 4.53795125, -.6541068 };
static const long big_N0[9] = { 54500, 348000, 111330, 232000, 345000,
42000, 94900, 143198, 245998 };
static const long big_N0_dot[9] = { -36507200, -15195000, -7224410,
-3027000, -1005700, -51180, -229200, -3919, -41353 };
static const long big_P0[9] = { 106100, 309107, 0, 174800, 276590, 276590,
69898, 352910, 280165 };
static const long big_P0_dot[9] = { 36554900, 12344121, 0, 3082000,
51180, 51180, -1867088, 11710, -19586 };
const double sin_gamma0_tan_half_incl = .00151337;
const double sin_gamma0 = .0060545;
const double sin_incl1 = .470730;
int sat = elems->sat_no;
double t, t_d, t_centuries, t_centuries_squared;
if( sat == PHOEBE)
{
elems->epoch = 2433282.5;
elems->ecc = .16326;
}
else
{
elems->epoch = 2400000. + (double)epoch[sat];
elems->ecc = (double)ecc0[sat] * 1.e-6;
elems->gamma = (double)i_gamma0[sat] * (PI / 180.) / 10000.;
}
t_d = elems->jd - elems->epoch;
t = t_d / 365.25;
t_centuries = t / 100.;
t_centuries_squared = t_centuries * t_centuries;
if( sat == PHOEBE)
elems->gamma = (173.949 - .020 * t) * (PI / 180.);
elems->semimaj = (double)semimaj[sat] * SECONDS_TO_AU / 10000.;
elems->lambda = (double)lam0[sat] / 10000. + n[sat] * t_d;
elems->lambda *= PI / 180; /* cvt to radians */
elems->Omega = (double)big_N0[sat] / 1000. +
t * (double)big_N0_dot[sat] / 100000.;
elems->Omega *= PI / 180; /* cvt to radians */
elems->omega = (double)big_P0[sat] / 1000. +
t * (double)big_P0_dot[sat] / 100000.;
elems->omega *= PI / 180; /* cvt to radians */
switch( sat)
{
case MIMAS:
case TETHYS:
{
const double libration_coeffs[3] = {-43.57 * PI / 180.,
-.7209 * PI / 180., -.0205 * PI / 180. };
const double mu0 = 5.095 * PI / 180.;
const double t0_prime = 1866.39;
const double mimas_over_tethys = -21.12;
double mu_delta_tau = mu0 *
((elems->jd-J2000) / 365.25 + 2000. - t0_prime);
int i;
double delta_lon = 0.;
for( i = 0; i < 3; i++)
delta_lon += libration_coeffs[i] *
sin( (double)(i+i+1) * mu_delta_tau);
if( sat == TETHYS)
delta_lon /= mimas_over_tethys;
elems->lambda += delta_lon;
}
break;
case ENCELADUS:
case DIONE:
{
const double p2 = 15.4 * (PI / 180.) / 60.;
const double q2 = 12.59 * (PI / 180.) / 60.;
const double mu = 74.4 * (PI / 180.);
const double nu = 32.39 * (PI / 180.);
const double mu_prime = 134.3 * (PI / 180.);
const double nu_prime = 92.62 * (PI / 180.);
const double enceladus_over_dione = -12.;
double delta_lon;
delta_lon = p2 * sin( mu + nu * t) +
q2 * sin( mu_prime + nu_prime * t);
if( sat == DIONE)
delta_lon /= enceladus_over_dione;
elems->lambda += delta_lon;
}
break;
case RHEA:
{
const double ef = .001;
const double chi = .0193 * PI / 180.;
const double pi0 = 342.7 * PI / 180.;
const double pi_dot = 10.057 * PI / 180.;
const double big_Nt0 = 42.02 * PI / 180.;
const double big_Nt_dot = -.5118 * PI / 180.;
const double Omega1_plus_dOmega = ASC_NODE0 - .0078 * PI / 180.;
const double Incl1_plus_dIncl = INCL0 - .0455 * PI / 180.;
const double e0 = .000265;
const double pi = pi0 + pi_dot * t;
const double big_N = elems->Omega;
const double big_Nt = big_Nt0 + big_Nt_dot * t;
const double e_sin_omega = e0 * sin( pi) + ef * sin( elems->omega);
const double e_cos_omega = e0 * cos( pi) + ef * cos( elems->omega);
double perturb_Omega, perturb_incl;
perturb_incl = sin_gamma0 * cos( big_N) + chi * cos( big_Nt);
elems->gamma = Incl1_plus_dIncl + perturb_incl;
perturb_Omega = sin_gamma0 * sin( big_N) + chi * sin( big_Nt);
elems->Omega = Omega1_plus_dOmega + perturb_Omega / sin_incl1;
elems->lambda += sin_gamma0_tan_half_incl * sin( big_N);
elems->omega = atan2( e_sin_omega, e_cos_omega);
elems->ecc = sqrt( e_sin_omega*e_sin_omega +e_cos_omega*e_cos_omega);
}
break;
case TITAN:
{
const double Omega1_plus_dOmega = ASC_NODE0 - .1420 * PI / 180.;
const double Incl1_plus_dIncl = INCL0 - .6303 * PI / 180.;
const double g0 = 103.199 * PI / 180.;
const double beta = .3752 * PI / 180.;
double big_N = elems->Omega, g;
double perturb_Omega, perturb_incl;
elems->lambda += sin_gamma0_tan_half_incl * sin( big_N);
perturb_Omega = sin_gamma0 * sin( big_N);
elems->Omega = Omega1_plus_dOmega + perturb_Omega / sin_incl1;
perturb_incl = sin_gamma0 * cos( big_N);
elems->gamma = Incl1_plus_dIncl + perturb_incl;
g = elems->omega - elems->Omega - 4.6 * PI / 180.;
elems->ecc += beta * elems->ecc * (cos( g + g) - cos( g0 + g0));
elems->omega += beta * elems->ecc * (sin( g + g) - sin( g0 + g0));
}
break;
case HYPERION:
{
const double tau0 = 92.39 * PI / 180.;
const double tau_dot = .5621071 * PI / 180.;
const double zeta0 = 148.19 * PI / 180.;
const double zeta_dot = -19.18 * PI / 180.;
const double phi0 = -34.7 * PI / 180.;
const double phi_dot = -61.7840 * PI / 180.;
const double theta0 = 184.8 * PI / 180.;
const double theta_dot = -35.41 * PI / 180.;
const double theta0_prime = 177.3 * PI / 180.;
const double theta_dot_prime = -35.41 * PI / 180.;
const double C_e_zeta = .02303;
const double C_e_2zeta = -.00212;
const double C_lam_tau = 9.142 * PI / 180.;
const double C_lam_zeta = -.260 * PI / 180.;
const double C_omega_zeta = -12.872 * PI / 180.;
const double C_omega_2zeta = 1.668 * PI / 180.;
const double C_a_tau = -.00003509;
const double C_a_zeta_plus_tau = -.00000067;
const double C_a_zeta_minus_tau = .00000071;
const double C_e_tau = -.004099;
const double C_e_3zeta = .000151;
const double C_e_zeta_plus_tau = -.000167;
const double C_e_zeta_minus_tau = .000235;
const double C_lam_2zeta = -.0098 * PI / 180.;
const double C_lam_zeta_plus_tau = .2275 * PI / 180.;
const double C_lam_zeta_minus_tau = .2112 * PI / 180.;
const double C_lam_phi = -.0303 * PI / 180.;
const double C_omega_tau = -.4457 * PI / 180.;
const double C_omega_3zeta = -.2419 * PI / 180.;
const double C_omega_zeta_plus_tau = -.2657 * PI / 180.;
const double C_omega_zeta_minus_tau = -.3573 * PI / 180.;
const double C_incl_theta = .0180 * PI / 180.;
const double C_Omega_theta_prime = .0168 * PI / 180.;
const double big_Nt0 = 42.02 * PI / 180.;
const double big_Nt_dot = -.5118 * PI / 180.;
const double hy_gamma0 = .6435 * PI / 180.;
const double sin_hy_gamma0 = .011231;
/* from (45), p 59 */
const double Omega1_plus_dOmega = ASC_NODE0 - .747 * PI / 180.;
const double Incl1_plus_dIncl = INCL0 - .13 * PI / 180.;
/* const double Omega1_plus_dOmega = ASC_NODE0 - .0078 * PI / 180.; */
/* const double Incl1_plus_dIncl = INCL0 - .0455 * PI / 180.; */
const double sin_Incl1_plus_dIncl = 0.468727;
const double tan_half_Incl1_plus_dIncl = 0.248880;
/* from (44), p 59 */
const double big_T = (elems->jd - 2442000.5) / 365.25;
const double t_T = (elems->jd - 2411368.0) / 365.25;
const double big_N = elems->Omega;
const double big_Nt = big_Nt0 + big_Nt_dot * t_T;
const double tau = tau0 + tau_dot * t_d;
const double zeta = zeta0 + zeta_dot * t;
const double phi = phi0 + phi_dot * t;
const double lambda_s = (176. + 12.22 * t) * PI / 180.;
const double b_s = (8. + 24.44 * t) * PI / 180.;
const double d_s = b_s + 5. * PI / 180.;
const double theta = theta0 + theta_dot * big_T;
const double theta_prime = theta0_prime + theta_dot_prime * big_T;
double arg;
elems->ecc = .103458;
elems->gamma = sin_hy_gamma0 * cos( big_N)
+ .315 * (PI / 180.) * cos( big_Nt)
- .018 * (PI / 180.) * cos( d_s)
+ C_incl_theta * cos( theta);
elems->gamma += Incl1_plus_dIncl;
arg = sin( big_N);
elems->Omega = sin_hy_gamma0 * arg
+ .315 * (PI / 180.) * sin( big_Nt)
- .018 * (PI / 180.) * sin( d_s)
+ C_Omega_theta_prime * sin( theta_prime);
elems->Omega = Omega1_plus_dOmega
+ elems->Omega / sin_Incl1_plus_dIncl;
elems->lambda += hy_gamma0 * tan_half_Incl1_plus_dIncl * arg;
elems->omega += hy_gamma0 * tan_half_Incl1_plus_dIncl * arg;
arg = sin( tau);
elems->lambda += C_lam_tau * arg
+ .007 * (PI / 180.) * sin( tau + tau)
- .014 * (PI / 180.) * sin( 3. * tau)
- .013 * (PI / 180.) * sin( lambda_s)
+ .017 * (PI / 180.) * sin( b_s)
+ C_lam_phi * sin( phi);
elems->omega += C_omega_tau * arg
+ C_omega_3zeta * sin( 3. * zeta);
arg = sin( zeta + tau);
elems->lambda += C_lam_zeta_plus_tau * arg;
elems->omega += C_omega_zeta_plus_tau * arg;
arg = sin( zeta - tau);
elems->lambda += C_lam_zeta_minus_tau * arg;
elems->omega += C_omega_zeta_minus_tau * arg;
arg = sin( zeta);
elems->lambda += C_lam_zeta * arg;
elems->omega += C_omega_zeta * arg;
arg = sin( zeta + zeta);
elems->lambda += C_lam_2zeta * arg;
elems->omega += C_omega_2zeta * arg;
arg = cos( tau);
elems->semimaj += C_a_tau * arg * SECONDS_TO_AU;
elems->ecc += C_e_tau * arg;
arg = cos( zeta + tau);
elems->semimaj += C_a_zeta_plus_tau * arg * SECONDS_TO_AU;
elems->ecc += C_e_zeta_plus_tau * arg;
arg = cos( zeta - tau);
elems->semimaj += C_a_zeta_minus_tau * arg * SECONDS_TO_AU;
elems->ecc += C_e_zeta_minus_tau * arg
+ C_e_zeta * cos( zeta)
+ C_e_2zeta * cos( zeta + zeta)
+ C_e_3zeta * cos( 3. * zeta)
+ .00013 * cos( phi);
}
break;
case JAPETUS:
elems->gamma = JAPETUS_i0 + JAPETUS_i0_dot * t_centuries;
elems->gamma += (-.072 + .0054 * t_centuries) * t_centuries_squared
* PI / 180.;
elems->Omega += (.116 + .008 * t_centuries) * t_centuries_squared
* PI / 180.;
elems->ecc += .001156 * t_centuries;
/* The following corrections are from p. 61, */
/* G. Dourneau, group 50: */
{
const double big_T = (elems->jd - 2415020.) / 36525.;
const double t_diff = elems->jd - 2411368.;
const double lam_s = (267.263 + 1222.114 * big_T) * (PI / 180.);
const double omega_s_tilde = ( 91.796 + .562 * big_T) * (PI / 180.);
const double psi = ( 4.367 - .195 * big_T) * (PI / 180.);
const double theta = (146.819 - 3.918 * big_T) * (PI / 180.);
const double lam_t = (261.319 + 22.576974 * t_diff) * (PI / 180.);
const double omega_t_tilde = (277.102 + .001389 * t_diff) * (PI / 180.);
const double phi = ( 60.470 + 1.521 * big_T) * (PI / 180.);
const double Phi = (205.055 - 2.091 * big_T) * (PI / 180.);
/* group 49: */
const double l = elems->lambda - elems->omega;
const double g = elems->omega - elems->Omega - psi;
const double g1 = elems->omega - elems->Omega - phi;
const double ls = lam_s - omega_s_tilde;
const double gs = omega_s_tilde - theta;
const double lt = lam_t - omega_t_tilde;
const double gt = omega_t_tilde - Phi;
const double ls_plus_gs_2 = 2. * (ls + gs);
const double ls_gs_minus_g_2 = ls_plus_gs_2 - 2. * g;
const double lt_plus_gt = lt + gt;
const double lt_gt_minus_g1 = lt_plus_gt - g1;
/* group 48: */
const double d_a = elems->semimaj * (7.87 * cos( 2. * l - ls_gs_minus_g_2)
+ 98.79 * cos( l - lt_gt_minus_g1));
const double d_e = -140.97 * cos( g1 - gt)
+ 37.33 * cos( ls_gs_minus_g_2)
+ 11.80 * cos( l - ls_gs_minus_g_2)
+ 24.08 * cos( l)
+ 28.49 * cos( l + l - lt_gt_minus_g1)
+ 61.90 * cos( lt_gt_minus_g1);
const double d_omega = .08077 * sin( g1 - gt)
+ .02139 * sin( ls_gs_minus_g_2)
- .00676 * sin( l - ls_gs_minus_g_2)
+ .01380 * sin( l)
+ .01632 * sin( l + l - lt_gt_minus_g1)
+ .03547 * sin( lt_gt_minus_g1);
const double d_lambda = -.04299 * sin( l - lt_gt_minus_g1)
-.00789 * sin( 2. * l - ls_gs_minus_g_2)
-.06312 * sin( ls)
-.00295 * sin( ls + ls)
-.02231 * sin( ls_plus_gs_2)
+.00650 * sin( ls_plus_gs_2 + phi);
const double d_incl = .04204 * cos( ls_plus_gs_2 + phi)
+.00235 * cos( l + g1 + lt_plus_gt + phi)
+.00360 * cos( l - lt_gt_minus_g1 + phi);
const double d_Omega = .04204 * sin( ls_plus_gs_2 + phi)
+.00235 * sin( l + g1 + lt_plus_gt + phi)
+.00358 * sin( l - lt_gt_minus_g1 + phi);
elems->semimaj += d_a * 1.e-5;
elems->omega += d_omega * (PI / 180.) / elems->ecc;
elems->Omega += d_Omega * (PI / 180.) / sin( elems->gamma);
elems->ecc += d_e * 1.e-5;
elems->lambda += d_lambda * (PI / 180.);
elems->gamma += d_incl * (PI / 180.);
}
break;
case PHOEBE:
/* The elements given for Phoebe in the */
/* _Explanatory Suppl_ run the 'wrong way'. */
/* Either the retrograde orbit confused them, */
/* or they chose to swap conventions. */
elems->lambda = 2. * elems->Omega - elems->lambda;
elems->omega = 2. * elems->Omega - elems->omega;
break;
default:
break;
}
if( sat < RHEA)
{
elems->Omega -= ASC_NODE0;
elems->omega -= ASC_NODE0;
elems->lambda -= ASC_NODE0;
}
orbit->mean_anomaly = elems->lambda - elems->omega;
orbit->mean_anomaly = fmod( orbit->mean_anomaly, TWO_PI);
if( orbit->mean_anomaly > PI)
orbit->mean_anomaly -= TWO_PI;
if( orbit->mean_anomaly <-PI)
orbit->mean_anomaly += TWO_PI;
orbit->major_axis = elems->semimaj;
orbit->q = elems->semimaj * (1. - elems->ecc);
orbit->ecc = elems->ecc;
orbit->incl = elems->gamma;
orbit->arg_per = elems->omega - elems->Omega;
orbit->asc_node = elems->Omega;
return( 0);
}
/*
This is the function I use to get Cartesian coordinates of date,
Saturnicentric, for a satellite of Saturn. You'll probably have your
own functions to do most of this, except for the above set_ssat_elems( )
function. As I remarked for that function, you get orbital elements
for a satellite through Dourneau's theory; then you compute a Cartesian
coordinate; and if it's one of the four inner satellites (Mimas,
Enceladus, Tethys, or Rhea), you have to rotate it from Saturn's
equator to B1950.
At that point, you've got B1950 ecliptic coordinates, which are
then rotated to B1950 equatorial coordinates. The default then is
to precess them to equatorial coordinates of date; then rotate back
to ecliptic coordinates of date, and you're all set. That's just
because Meeus' formulae formulae are all in ecliptic coords of date,
and it was convenient to go for consistency with the rest of my
existing code.
HOWEVER, if you #define OUTPUT_IN_J2000, then the vector will
instead get precessed to equatorial J2000, then rotated to ecliptic
J2000.
*/
int DLL_FUNC calc_ssat_loc( const double t, double DLLPTR *ssat,
const int sat_wanted, const long precision)
{
SAT_ELEMS elems;
ELEMENTS orbit;
double matrix[9];
const double t_years = (t - J2000) / 365.25;
if( precision == -1L) /* just checking version # */
return( 1);
if( sat_wanted < 0 || sat_wanted > PHOEBE)
return( -1);
elems.jd = t;
elems.sat_no = sat_wanted;
set_ssat_elems( &elems, &orbit);
setup_orbit_vectors( &orbit);
comet_posn_part_ii( &orbit, IGNORED_DOUBLE, elems.loc, NULL);
if( sat_wanted < RHEA) /* inner 4 satellites are returned in Saturnic */
{ /* coords so gotta rotate to B1950.0 */
rotate_vector( elems.loc, INCL0, 0);
rotate_vector( elems.loc, ASC_NODE0, 2);
}
/* After above, elems.loc is ecliptic 1950 coords */
rotate_vector( elems.loc, OBLIQUITY_1950, 0);
/* Now, elems.loc is equatorial 1950 coords */
#ifdef OUTPUT_IN_J2000
setup_precession( matrix, 1950., 2000);
precess_vector( matrix, elems.loc, ssat);
/* Now, ssats is equatorial J2000... */
rotate_vector( ssat, -OBLIQUITY_2000, 0);
/* And now, ssats is ecliptical J2000 */
#else
setup_precession( matrix, 1950., 2000. + t_years);
precess_vector( matrix, elems.loc, ssat);
/* Now, ssats is equatorial of epoch coords */
rotate_vector( ssat, -mean_obliquity( t_years / 100.), 0);
/* And now, ssats is ecliptical of epoch coords */
/* (which is what we really want anyway) */
#endif
return( 0);
}
|