File: ssats.cpp

package info (click to toggle)
pluto-lunar 0.0~git20180825.e34c1d1-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, buster, forky, sid, trixie
  • size: 1,584 kB
  • sloc: cpp: 18,100; makefile: 653; ansic: 368
file content (553 lines) | stat: -rw-r--r-- 25,088 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
/* ssats.cpp: functions for Saturnian satellite coordinates

Copyright (C) 2010, Project Pluto

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.    */

#include <math.h>
#include <string.h>
#include "watdefs.h"
#include "lunar.h"
#include "comets.h"
#include "afuncs.h"

/*
All references are from G. Dourneau unless otherwise noted.

The Phoebe orbital elements are from the _Explanatory Supplement to
the Astronomical Almanac_,  and should not be trusted very much;  they
are horribly outdated,  and don't match reality very well at all.
They are not actually used in any of my code.

There are a few places to look for alternative algorithms/code for the
satellites of Saturn.  Peter Duffett-Smith's book "Practical Astronomy
with your Calculator" provides a simpler theory,  with mostly circular
orbits,  and Dan Bruton has implemented this in BASIC code in his
SATSAT2 program.  At the other extreme,  the Bureau des Longitudes
(http://www.bdl.fr) provides Fortran code implementing the TASS 1.7
theory,  the successor to the Dourneau theory used in the following
code.  TASS probably supplies slightly better accuracy than the
Dourneau theory,  but you would have to be looking well below the
arcsecond level to see much difference.

None of these provides good data for Phoebe.  If you're really interested
in Phoebe,  let me know;  I can provide the source code used in Guide for
Phoebe (and the other irregular satellites of gas giants).  It uses
multipoint interpolation in precomputed ephemerides,  resulting in
wonderful accuracy.  (The precomputed ephemeris resulted from a
numerically integrated orbit.)

   'htc20.cpp' provides ephemerides for Helene,  Telesto,  and Calypso.
'rocks.cpp' provides ephemerides for many other faint inner satellites
of Saturn (and other planets).
*/

#define PI 3.1415926535897932384626433832795028841971693993751058209749445923
#define TWO_PI (2. * PI)
#define J2000 2451545.

#define OBLIQUITY_1950 (23.445792 * PI / 180.)
            /* Constants defining the angle of a 'fixed' Saturnian equator */
            /* relative to the B1950.0 ecliptic.  The inner four moons are */
            /* all computed relative to the plane of Saturn's equator; you */
            /* then rotate by these two angles, and you're in B1950.0      */
            /* ecliptic coordinates.  (The outer four moons are all in that */
            /* system to begin with.)        */
#define INCL0 (28.0817 * PI / 180.)
#define ASC_NODE0 (168.8112 * PI / 180.)

#define JAPETUS_i0         (18.4602 * PI / 180.)
#define JAPETUS_i0_dot     (-.9518 * PI / 180.)

#define IGNORED_DOUBLE     0.

#define MIMAS           0
#define ENCELADUS       1
#define TETHYS          2
#define DIONE           3
#define RHEA            4
#define TITAN           5
#define HYPERION        6
#define JAPETUS         7
#define PHOEBE          8

#define SECONDS_TO_AU (9.538937 * (PI / 180.) / 3600.)

#define SAT_ELEMS struct sat_elems

SAT_ELEMS
   {
   double jd, semimaj, ecc, gamma, lambda;
   double omega, Omega, epoch;
   double loc[4];
   int sat_no;
   };

void comet_posn_part_ii( const ELEMENTS DLLPTR *elem, const double t,
                                    double DLLPTR *loc, double DLLPTR *vel);
void setup_orbit_vectors( ELEMENTS DLLPTR *e);             /* astfuncs.cpp */

/* set_ssat_elems( ) is the core part of computing positions for the
satellites of Saturn,  and quite probably the only part of the code
you'll want to grab.  It is essentially just an implementation of
Gerard Dourneau's theory.  The only problem with this theory is that
each satellite has to be handled a little differently... thus the extensive
case statement in this function.  The result,  though,  is a set of
orbital elements for the object.  For the inner four moons,  this is
relative to the equator of Saturn,  and you have to do two rotations to
get a B1950.0 coordinate.  For the outer four moons,  you get B1950.0
elements right away. */

static int set_ssat_elems( SAT_ELEMS DLLPTR *elems, ELEMENTS DLLPTR *orbit)
{
   static const long semimaj[9] = { 268180L, 344301, 426393, 545876,
               762277, 1766041, 2140790, 5148431, 18720552 };
   static const short epoch[8] = { 11093, 11093, 11093, 11093, 11093, 11368,
                15020, 9786 };
   static const short ecc0[8] = { 19050, 4850, 0, 2157, 265, 29092, -1,
                                       28298   /*, 163260 */ };
   static const short i_gamma0[8] = { 15630, 262, 10976, 139,
                 3469, 2960, 6435, -1 };
   static const long lam0[9] = {1276400, 2003170, 2853060, 2547120, 3592440,
                  2611582, 1770470, 763852, 2778720 };
   static const double n[9] = { 381.994497, 262.7319002, 190.69791226,
                  131.53493193, 79.6900472, 22.57697855,
                  16.91993829, 4.53795125, -.6541068 };
   static const long big_N0[9] = { 54500, 348000, 111330, 232000, 345000,
                            42000, 94900, 143198, 245998 };
   static const long big_N0_dot[9] = { -36507200, -15195000, -7224410,
                          -3027000, -1005700, -51180, -229200, -3919, -41353 };
   static const long big_P0[9] = { 106100, 309107, 0, 174800, 276590, 276590,
                          69898, 352910, 280165 };
   static const long big_P0_dot[9] = { 36554900, 12344121, 0, 3082000,
                          51180, 51180, -1867088, 11710, -19586 };
   const double sin_gamma0_tan_half_incl = .00151337;
   const double sin_gamma0 = .0060545;
   const double sin_incl1 = .470730;
   int sat = elems->sat_no;
   double t, t_d, t_centuries, t_centuries_squared;

   if( sat == PHOEBE)
      {
      elems->epoch = 2433282.5;
      elems->ecc = .16326;
      }
   else
      {
      elems->epoch = 2400000. + (double)epoch[sat];
      elems->ecc = (double)ecc0[sat] * 1.e-6;
      elems->gamma = (double)i_gamma0[sat] * (PI / 180.) / 10000.;
      }
   t_d = elems->jd - elems->epoch;
   t = t_d / 365.25;
   t_centuries = t / 100.;
   t_centuries_squared = t_centuries * t_centuries;
   if( sat == PHOEBE)
      elems->gamma = (173.949 - .020 * t) * (PI / 180.);

   elems->semimaj = (double)semimaj[sat] * SECONDS_TO_AU / 10000.;
   elems->lambda = (double)lam0[sat] / 10000. + n[sat] * t_d;
   elems->lambda *= PI / 180;          /* cvt to radians */
   elems->Omega = (double)big_N0[sat] / 1000. +
                               t * (double)big_N0_dot[sat] / 100000.;
   elems->Omega *= PI / 180;          /* cvt to radians */
   elems->omega = (double)big_P0[sat] / 1000. +
                               t * (double)big_P0_dot[sat] / 100000.;
   elems->omega *= PI / 180;          /* cvt to radians */

   switch( sat)
      {
      case MIMAS:
      case TETHYS:
         {
         const double libration_coeffs[3] = {-43.57 * PI / 180.,
                  -.7209 * PI / 180., -.0205 * PI / 180. };
         const double mu0 = 5.095 * PI / 180.;
         const double t0_prime = 1866.39;
         const double mimas_over_tethys = -21.12;
         double mu_delta_tau = mu0 *
                        ((elems->jd-J2000) / 365.25 + 2000. - t0_prime);
         int i;
         double delta_lon = 0.;

         for( i = 0; i < 3; i++)
            delta_lon += libration_coeffs[i] *
                                     sin( (double)(i+i+1) * mu_delta_tau);
         if( sat == TETHYS)
            delta_lon /= mimas_over_tethys;
         elems->lambda += delta_lon;
         }
         break;

      case ENCELADUS:
      case DIONE:
         {
         const double p2 = 15.4 * (PI / 180.) / 60.;
         const double q2 = 12.59 * (PI / 180.) / 60.;
         const double mu = 74.4 * (PI / 180.);
         const double nu = 32.39 * (PI / 180.);
         const double mu_prime = 134.3 * (PI / 180.);
         const double nu_prime = 92.62 * (PI / 180.);
         const double enceladus_over_dione = -12.;
         double delta_lon;

         delta_lon = p2 * sin( mu + nu * t) +
                     q2 * sin( mu_prime + nu_prime * t);
         if( sat == DIONE)
            delta_lon /= enceladus_over_dione;
         elems->lambda += delta_lon;
         }
         break;
      case RHEA:
         {
         const double ef = .001;
         const double chi = .0193 * PI / 180.;
         const double pi0 = 342.7 * PI / 180.;
         const double pi_dot = 10.057 * PI / 180.;
         const double big_Nt0 = 42.02 * PI / 180.;
         const double big_Nt_dot = -.5118 * PI / 180.;
         const double Omega1_plus_dOmega = ASC_NODE0 - .0078 * PI / 180.;
         const double Incl1_plus_dIncl = INCL0 - .0455 * PI / 180.;
         const double e0 = .000265;

         const double pi = pi0 + pi_dot * t;
         const double big_N = elems->Omega;
         const double big_Nt = big_Nt0 + big_Nt_dot * t;
         const double e_sin_omega = e0 * sin( pi) + ef * sin( elems->omega);
         const double e_cos_omega = e0 * cos( pi) + ef * cos( elems->omega);
         double perturb_Omega, perturb_incl;

         perturb_incl = sin_gamma0 * cos( big_N) + chi * cos( big_Nt);
         elems->gamma = Incl1_plus_dIncl + perturb_incl;
         perturb_Omega = sin_gamma0 * sin( big_N) + chi * sin( big_Nt);
         elems->Omega = Omega1_plus_dOmega + perturb_Omega / sin_incl1;
         elems->lambda += sin_gamma0_tan_half_incl * sin( big_N);
         elems->omega = atan2( e_sin_omega, e_cos_omega);
         elems->ecc = sqrt( e_sin_omega*e_sin_omega +e_cos_omega*e_cos_omega);
         }
         break;
      case TITAN:
         {
         const double Omega1_plus_dOmega = ASC_NODE0 - .1420 * PI / 180.;
         const double Incl1_plus_dIncl = INCL0 - .6303 * PI / 180.;
         const double g0 = 103.199 * PI / 180.;
         const double beta = .3752 * PI / 180.;

         double big_N = elems->Omega, g;
         double perturb_Omega, perturb_incl;

         elems->lambda += sin_gamma0_tan_half_incl * sin( big_N);
         perturb_Omega = sin_gamma0 * sin( big_N);
         elems->Omega = Omega1_plus_dOmega + perturb_Omega / sin_incl1;
         perturb_incl = sin_gamma0 * cos( big_N);
         elems->gamma = Incl1_plus_dIncl + perturb_incl;
         g = elems->omega - elems->Omega - 4.6 * PI / 180.;
         elems->ecc += beta * elems->ecc * (cos( g + g) - cos( g0 + g0));
         elems->omega += beta * elems->ecc * (sin( g + g) - sin( g0 + g0));
         }
         break;
      case HYPERION:
         {
         const double tau0 =                   92.39 * PI / 180.;
         const double tau_dot =                  .5621071 * PI / 180.;
         const double zeta0 =                 148.19 * PI / 180.;
         const double zeta_dot =              -19.18 * PI / 180.;
         const double phi0 =                  -34.7 * PI / 180.;
         const double phi_dot =               -61.7840 * PI / 180.;
         const double theta0 =                184.8 * PI / 180.;
         const double theta_dot =             -35.41 * PI / 180.;
         const double theta0_prime =          177.3 * PI / 180.;
         const double theta_dot_prime =       -35.41 * PI / 180.;
         const double C_e_zeta =                 .02303;
         const double C_e_2zeta =               -.00212;
         const double C_lam_tau =               9.142 * PI / 180.;
         const double C_lam_zeta =              -.260 * PI / 180.;
         const double C_omega_zeta =          -12.872 * PI / 180.;
         const double C_omega_2zeta =           1.668 * PI / 180.;
         const double C_a_tau =                 -.00003509;
         const double C_a_zeta_plus_tau =       -.00000067;
         const double C_a_zeta_minus_tau =       .00000071;
         const double C_e_tau =                 -.004099;
         const double C_e_3zeta =                .000151;
         const double C_e_zeta_plus_tau =       -.000167;
         const double C_e_zeta_minus_tau =       .000235;
         const double C_lam_2zeta =             -.0098 * PI / 180.;
         const double C_lam_zeta_plus_tau =      .2275 * PI / 180.;
         const double C_lam_zeta_minus_tau =     .2112 * PI / 180.;
         const double C_lam_phi =               -.0303 * PI / 180.;
         const double C_omega_tau =             -.4457 * PI / 180.;
         const double C_omega_3zeta =           -.2419 * PI / 180.;
         const double C_omega_zeta_plus_tau =   -.2657 * PI / 180.;
         const double C_omega_zeta_minus_tau =  -.3573 * PI / 180.;
         const double C_incl_theta =             .0180 * PI / 180.;
         const double C_Omega_theta_prime =      .0168 * PI / 180.;
         const double big_Nt0 =                42.02 * PI / 180.;
         const double big_Nt_dot =              -.5118 * PI / 180.;
         const double hy_gamma0 =                .6435 * PI / 180.;
         const double sin_hy_gamma0 =             .011231;

                                       /* from (45), p 59 */
         const double Omega1_plus_dOmega =    ASC_NODE0 - .747 * PI / 180.;
         const double Incl1_plus_dIncl =          INCL0 - .13 * PI / 180.;
/*       const double Omega1_plus_dOmega =    ASC_NODE0 - .0078 * PI / 180.; */
/*       const double Incl1_plus_dIncl =          INCL0 - .0455 * PI / 180.; */
         const double sin_Incl1_plus_dIncl =        0.468727;
         const double tan_half_Incl1_plus_dIncl =   0.248880;

                                       /* from (44), p 59 */
         const double big_T = (elems->jd - 2442000.5) / 365.25;
         const double t_T = (elems->jd - 2411368.0) / 365.25;
         const double big_N = elems->Omega;
         const double big_Nt = big_Nt0 + big_Nt_dot * t_T;
         const double tau = tau0 + tau_dot * t_d;
         const double zeta = zeta0 + zeta_dot * t;
         const double phi = phi0 + phi_dot * t;
         const double lambda_s = (176. + 12.22 * t) * PI / 180.;
         const double b_s = (8. + 24.44 * t) * PI / 180.;
         const double d_s = b_s + 5. * PI / 180.;

         const double theta = theta0 + theta_dot * big_T;
         const double theta_prime = theta0_prime + theta_dot_prime * big_T;
         double arg;

         elems->ecc = .103458;

         elems->gamma = sin_hy_gamma0 * cos( big_N)
                           + .315 * (PI / 180.) * cos( big_Nt)
                           - .018 * (PI / 180.) * cos( d_s)
                           + C_incl_theta * cos( theta);
         elems->gamma += Incl1_plus_dIncl;

         arg = sin( big_N);
         elems->Omega = sin_hy_gamma0 * arg
                           + .315 * (PI / 180.) * sin( big_Nt)
                           - .018 * (PI / 180.) * sin( d_s)
                           + C_Omega_theta_prime * sin( theta_prime);
         elems->Omega = Omega1_plus_dOmega
                                 + elems->Omega / sin_Incl1_plus_dIncl;
         elems->lambda += hy_gamma0 * tan_half_Incl1_plus_dIncl * arg;
         elems->omega += hy_gamma0 * tan_half_Incl1_plus_dIncl * arg;
         arg = sin( tau);
         elems->lambda += C_lam_tau * arg
                         + .007 * (PI / 180.) * sin( tau + tau)
                         - .014 * (PI / 180.) * sin( 3. * tau)
                         - .013 * (PI / 180.) * sin( lambda_s)
                         + .017 * (PI / 180.) * sin( b_s)
                         + C_lam_phi * sin( phi);
         elems->omega += C_omega_tau * arg
                      + C_omega_3zeta * sin( 3. * zeta);
         arg = sin( zeta + tau);
         elems->lambda += C_lam_zeta_plus_tau * arg;
         elems->omega += C_omega_zeta_plus_tau * arg;
         arg = sin( zeta - tau);
         elems->lambda += C_lam_zeta_minus_tau * arg;
         elems->omega += C_omega_zeta_minus_tau * arg;
         arg = sin( zeta);
         elems->lambda += C_lam_zeta * arg;
         elems->omega += C_omega_zeta * arg;
         arg = sin( zeta + zeta);
         elems->lambda += C_lam_2zeta * arg;
         elems->omega += C_omega_2zeta * arg;

         arg = cos( tau);
         elems->semimaj += C_a_tau * arg * SECONDS_TO_AU;
         elems->ecc += C_e_tau * arg;
         arg = cos( zeta + tau);
         elems->semimaj += C_a_zeta_plus_tau * arg * SECONDS_TO_AU;
         elems->ecc += C_e_zeta_plus_tau * arg;
         arg = cos( zeta - tau);
         elems->semimaj += C_a_zeta_minus_tau * arg * SECONDS_TO_AU;
         elems->ecc += C_e_zeta_minus_tau * arg
                      + C_e_zeta * cos( zeta)
                      + C_e_2zeta * cos( zeta + zeta)
                      + C_e_3zeta * cos( 3. * zeta)
                      + .00013 * cos( phi);
         }
         break;
      case JAPETUS:
         elems->gamma = JAPETUS_i0 + JAPETUS_i0_dot * t_centuries;
         elems->gamma += (-.072 + .0054 * t_centuries) * t_centuries_squared
                                 * PI / 180.;
         elems->Omega += (.116 + .008 * t_centuries) * t_centuries_squared
                                 * PI / 180.;
         elems->ecc += .001156 * t_centuries;

                              /* The following corrections are from p. 61, */
                              /* G. Dourneau,  group 50: */
         {
         const double big_T = (elems->jd - 2415020.) / 36525.;
         const double t_diff = elems->jd - 2411368.;
         const double lam_s =         (267.263 + 1222.114 * big_T) * (PI / 180.);
         const double omega_s_tilde = ( 91.796 +     .562 * big_T) * (PI / 180.);
         const double psi =           (  4.367 -     .195 * big_T) * (PI / 180.);
         const double theta =         (146.819 -    3.918 * big_T) * (PI / 180.);
         const double lam_t =         (261.319 + 22.576974 * t_diff) * (PI / 180.);
         const double omega_t_tilde = (277.102 +   .001389 * t_diff) * (PI / 180.);
         const double phi =           ( 60.470 +    1.521 * big_T) * (PI / 180.);
         const double Phi =           (205.055 -    2.091 * big_T) * (PI / 180.);

                              /* group 49: */
         const double l = elems->lambda - elems->omega;
         const double g  = elems->omega - elems->Omega - psi;
         const double g1 = elems->omega - elems->Omega - phi;
         const double ls = lam_s - omega_s_tilde;
         const double gs = omega_s_tilde - theta;
         const double lt = lam_t - omega_t_tilde;
         const double gt = omega_t_tilde - Phi;
         const double ls_plus_gs_2 = 2. * (ls + gs);
         const double ls_gs_minus_g_2 = ls_plus_gs_2 - 2. * g;
         const double lt_plus_gt = lt + gt;
         const double lt_gt_minus_g1 = lt_plus_gt - g1;


                              /* group 48: */
         const double d_a = elems->semimaj * (7.87 * cos( 2. * l - ls_gs_minus_g_2)
                                   + 98.79 * cos( l - lt_gt_minus_g1));
         const double d_e = -140.97 * cos( g1 - gt)
                             + 37.33 * cos( ls_gs_minus_g_2)
                             + 11.80 * cos( l - ls_gs_minus_g_2)
                             + 24.08 * cos( l)
                             + 28.49 * cos( l + l - lt_gt_minus_g1)
                             + 61.90 * cos( lt_gt_minus_g1);
         const double d_omega = .08077 * sin( g1 - gt)
                                + .02139 * sin( ls_gs_minus_g_2)
                                - .00676 * sin( l - ls_gs_minus_g_2)
                                + .01380 * sin( l)
                                + .01632 * sin( l + l - lt_gt_minus_g1)
                                + .03547 * sin( lt_gt_minus_g1);
         const double d_lambda = -.04299 * sin( l - lt_gt_minus_g1)
                                  -.00789 * sin( 2. * l - ls_gs_minus_g_2)
                                  -.06312 * sin( ls)
                                  -.00295 * sin( ls + ls)
                                  -.02231 * sin( ls_plus_gs_2)
                                  +.00650 * sin( ls_plus_gs_2 + phi);
         const double d_incl = .04204 * cos( ls_plus_gs_2 + phi)
                               +.00235 * cos( l + g1 + lt_plus_gt + phi)
                               +.00360 * cos( l - lt_gt_minus_g1 + phi);
         const double d_Omega = .04204 * sin( ls_plus_gs_2 + phi)
                               +.00235 * sin( l + g1 + lt_plus_gt + phi)
                               +.00358 * sin( l - lt_gt_minus_g1 + phi);

         elems->semimaj += d_a * 1.e-5;
         elems->omega += d_omega * (PI / 180.) / elems->ecc;
         elems->Omega += d_Omega * (PI / 180.) / sin( elems->gamma);
         elems->ecc += d_e * 1.e-5;
         elems->lambda += d_lambda * (PI / 180.);
         elems->gamma += d_incl * (PI / 180.);
         }
         break;
      case PHOEBE:
                              /* The elements given for Phoebe in the     */
                              /* _Explanatory Suppl_ run the 'wrong way'. */
                              /* Either the retrograde orbit confused them,  */
                              /* or they chose to swap conventions. */
         elems->lambda = 2. * elems->Omega - elems->lambda;
         elems->omega  = 2. * elems->Omega - elems->omega;
         break;
      default:
         break;
      }

   if( sat < RHEA)
      {
      elems->Omega -= ASC_NODE0;
      elems->omega -= ASC_NODE0;
      elems->lambda -= ASC_NODE0;
      }

   orbit->mean_anomaly = elems->lambda - elems->omega;
   orbit->mean_anomaly = fmod( orbit->mean_anomaly, TWO_PI);
   if( orbit->mean_anomaly > PI)
      orbit->mean_anomaly -= TWO_PI;
   if( orbit->mean_anomaly <-PI)
      orbit->mean_anomaly += TWO_PI;

   orbit->major_axis = elems->semimaj;
   orbit->q = elems->semimaj * (1. - elems->ecc);
   orbit->ecc = elems->ecc;
   orbit->incl = elems->gamma;
   orbit->arg_per = elems->omega - elems->Omega;
   orbit->asc_node = elems->Omega;
   return( 0);
}

/*
   This is the function I use to get Cartesian coordinates of date,
Saturnicentric,  for a satellite of Saturn.  You'll probably have your
own functions to do most of this,  except for the above set_ssat_elems( )
function.  As I remarked for that function,  you get orbital elements
for a satellite through Dourneau's theory;  then you compute a Cartesian
coordinate;  and if it's one of the four inner satellites (Mimas,
Enceladus, Tethys,  or Rhea),  you have to rotate it from Saturn's
equator to B1950.

   At that point,  you've got B1950 ecliptic coordinates,  which are
then rotated to B1950 equatorial coordinates.  The default then is
to precess them to equatorial coordinates of date;  then rotate back
to ecliptic coordinates of date,  and you're all set.  That's just
because Meeus' formulae formulae are all in ecliptic coords of date,
and it was convenient to go for consistency with the rest of my
existing code.

   HOWEVER,  if you #define OUTPUT_IN_J2000,  then the vector will
instead get precessed to equatorial J2000,  then rotated to ecliptic
J2000.
*/

int DLL_FUNC calc_ssat_loc( const double t, double DLLPTR *ssat,
                                const int sat_wanted, const long precision)
{
   SAT_ELEMS elems;
   ELEMENTS orbit;
   double matrix[9];
   const double t_years = (t - J2000) / 365.25;

   if( precision == -1L)         /* just checking version # */
      return( 1);
   if( sat_wanted < 0 || sat_wanted > PHOEBE)
      return( -1);
   elems.jd = t;
   elems.sat_no = sat_wanted;
   set_ssat_elems( &elems, &orbit);

   setup_orbit_vectors( &orbit);
   comet_posn_part_ii( &orbit, IGNORED_DOUBLE, elems.loc, NULL);

   if( sat_wanted < RHEA)    /* inner 4 satellites are returned in Saturnic */
      {                            /*  coords so gotta rotate to B1950.0 */
      rotate_vector( elems.loc, INCL0, 0);
      rotate_vector( elems.loc, ASC_NODE0, 2);
      }
                        /* After above,  elems.loc is ecliptic 1950 coords */
   rotate_vector( elems.loc, OBLIQUITY_1950, 0);
                        /* Now,  elems.loc is equatorial 1950 coords */

#ifdef OUTPUT_IN_J2000
   setup_precession( matrix, 1950., 2000);
   precess_vector( matrix, elems.loc, ssat);
                        /* Now,  ssats is equatorial J2000... */
   rotate_vector( ssat, -OBLIQUITY_2000, 0);
                        /* And now,  ssats is ecliptical J2000 */
#else
   setup_precession( matrix, 1950., 2000. + t_years);
   precess_vector( matrix, elems.loc, ssat);
                        /* Now,  ssats is equatorial of epoch coords */
   rotate_vector( ssat, -mean_obliquity( t_years / 100.), 0);
                        /* And now,  ssats is ecliptical of epoch coords */
                        /* (which is what we really want anyway) */
#endif
   return( 0);
}