1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
|
#include <math.h>
#include <assert.h>
#include "norad.h"
#include "norad_in.h"
/* params[1] and [6]-[9] were used in earlier implementations, but are
now unused */
#define c2 params[0]
#define c1 params[2]
#define c4 params[3]
#define xnodcf params[4]
#define t2cof params[5]
void sxpall_common_init( const tle_t *tle, deep_arg_t *deep_arg)
{
const double a1 = pow(xke / tle->xno, two_thirds); /* in Earth radii */
double del1, ao, delo, tval;
/* Recover original mean motion (xnodp) and */
/* semimajor axis (aodp) from input elements. */
deep_arg->cosio = cos( tle->xincl);
deep_arg->cosio2 = deep_arg->cosio * deep_arg->cosio;
deep_arg->eosq = tle->eo*tle->eo;
deep_arg->betao2 = 1-deep_arg->eosq;
deep_arg->betao = sqrt(deep_arg->betao2);
tval = 1.5 * ck2 * (3. * deep_arg->cosio2 - 1.) / (deep_arg->betao * deep_arg->betao2);
del1 = tval / (a1 * a1);
ao = a1 * (1. - del1 * (1. / 3. + del1 * ( 1. + 134./81. * del1)));
delo = tval / (ao * ao);
deep_arg->xnodp = tle->xno / (1+delo); /* in radians/minute */
deep_arg->aodp = ao / (1-delo);
}
void sxpx_common_init( double *params, const tle_t *tle,
init_t *init, deep_arg_t *deep_arg)
{
double
eeta, etasq, perige, pinv, pinvsq,
psisq, qoms24, temp1, temp2, temp3,
cosio4, tsi_squared, x3thm1, xhdot1;
sxpall_common_init( tle, deep_arg);
x3thm1 = 3. * deep_arg->cosio2 - 1.;
/* For perigee below 156 km, the values */
/* of s and qoms2t are altered. */
init->s4 = s_const;
qoms24 = qoms2t;
perige = (deep_arg->aodp * (1-tle->eo) - ae) * earth_radius_in_km;
if( perige < 156.)
{
double temp_val, temp_val_squared;
if(perige <= 98.)
init->s4 = 20;
else
init->s4 = perige-78.;
temp_val = (120. - init->s4) * ae / earth_radius_in_km;
temp_val_squared = temp_val * temp_val;
qoms24 = temp_val_squared * temp_val_squared;
init->s4 = init->s4 / earth_radius_in_km + ae;
} /* End of if(perige <= 156) */
pinv = 1. / (deep_arg->aodp * deep_arg->betao2);
pinvsq = pinv * pinv;
init->tsi = 1. / (deep_arg->aodp - init->s4);
init->eta = deep_arg->aodp*tle->eo*init->tsi;
etasq = init->eta*init->eta;
eeta = tle->eo*init->eta;
psisq = fabs(1-etasq);
tsi_squared = init->tsi * init->tsi;
init->coef = qoms24 * tsi_squared * tsi_squared;
init->coef1 = init->coef / pow(psisq,3.5);
c2 = init->coef1 * deep_arg->xnodp * (deep_arg->aodp*(1+1.5*etasq+eeta*
(4+etasq))+0.75*ck2*init->tsi/psisq*x3thm1*(8+3*etasq*(8+etasq)));
c1 = tle->bstar*c2;
deep_arg->sinio = sin(tle->xincl);
c4 = 2*deep_arg->xnodp*init->coef1*deep_arg->aodp*deep_arg->betao2*
(init->eta*(2+0.5*etasq)+tle->eo*(0.5+2*etasq)-2*ck2*init->tsi/
(deep_arg->aodp*psisq)*(-3*x3thm1*(1-2*eeta+etasq*
(1.5-0.5*eeta))+0.75*(1. - deep_arg->cosio2) *(2*etasq-eeta*(1+etasq))*
cos(2*tle->omegao)));
cosio4 = deep_arg->cosio2 * deep_arg->cosio2;
temp1 = 3*ck2*pinvsq*deep_arg->xnodp;
temp2 = temp1 * ck2 * pinvsq;
temp3 = 1.25 * ck4 * pinvsq * pinvsq * deep_arg->xnodp;
deep_arg->xmdot = deep_arg->xnodp
+ temp1 * deep_arg->betao* x3thm1 / 2.
+ temp2 * deep_arg->betao*
(13-78*deep_arg->cosio2+137*cosio4) / 16.;
deep_arg->omgdot = -temp1 * (1. - 5 * deep_arg->cosio2) / 2.
+ temp2 * (7-114*deep_arg->cosio2+395*cosio4) / 16.
+ temp3 * (3-36*deep_arg->cosio2+49*cosio4);
xhdot1 = -temp1*deep_arg->cosio;
deep_arg->xnodot = xhdot1+(temp2*(4-19*deep_arg->cosio2) / 2.
+ 2*temp3*(3-7*deep_arg->cosio2))*deep_arg->cosio;
xnodcf = 3.5*deep_arg->betao2*xhdot1*c1;
t2cof = 1.5*c1;
}
inline double centralize_angle( const double ival)
{
double rval = fmod( ival, twopi);
if( rval > pi)
rval -= twopi;
else if( rval < - pi)
rval += twopi;
return( rval);
}
#define MAX_KEPLER_ITER 10
int sxpx_posn_vel( const double xnode, const double a, const double ecc,
const double cosio, const double sinio,
const double xincl, const double omega,
const double xl, double *pos, double *vel)
{
/* Long period periodics */
const double axn = ecc*cos(omega);
double temp = 1/(a*(1.-ecc*ecc));
const double xlcof = .125 * a3ovk2 * sinio * (3+5*cosio)/ (1. + cosio);
const double aycof = 0.25 * a3ovk2 * sinio;
const double xll = temp*xlcof*axn;
const double aynl = temp*aycof;
const double xlt = xl+xll;
const double ayn = ecc*sin(omega)+aynl;
const double elsq = axn*axn+ayn*ayn;
const double capu = centralize_angle( xlt - xnode);
const double chicken_factor_on_eccentricity = 1.e-6;
double epw = capu;
double temp1, temp2;
double ecosE, esinE, pl, r;
double betal;
double u, sinu, cosu, sin2u, cos2u;
double rk, uk, xnodek, xinck;
double sinuk, cosuk, sinik, cosik, sinnok, cosnok, xmx, xmy;
double sinEPW, cosEPW;
double ux, uy, uz;
int i, rval = 0;
/* Dundee changes: items dependent on cosio get recomputed: */
const double cosio_squared = cosio * cosio;
const double x3thm1 = 3.0 * cosio_squared - 1.0;
const double sinio2 = 1.0 - cosio_squared;
const double x7thm1 = 7.0 * cosio_squared - 1.0;
/* Added 29 Mar 2003, modified 26 Sep 2006: extremely */
/* decayed satellites can end up "orbiting" within the */
/* earth. Eventually, the semimajor axis becomes zero, */
/* then negative. In that case, or if the orbit is near */
/* to parabolic, we zero the posn/vel and quit. If the */
/* object has a perigee or apogee indicating a crash, we */
/* just flag it. Revised 28 Oct 2006. */
if( a < 0.)
rval = SXPX_ERR_NEGATIVE_MAJOR_AXIS;
if( elsq > 1. - chicken_factor_on_eccentricity)
rval = SXPX_ERR_NEARLY_PARABOLIC;
for( i = 0; i < 3; i++)
{
pos[i] = 0.;
if( vel)
vel[i] = 0.;
}
if( rval)
return( rval);
if( a * (1. - ecc) < 1. && a * (1. + ecc) < 1.) /* entirely within earth */
rval = SXPX_WARN_ORBIT_WITHIN_EARTH; /* remember, e can be negative */
if( a * (1. - ecc) < 1. || a * (1. + ecc) < 1.) /* perigee within earth */
rval = SXPX_WARN_PERIGEE_WITHIN_EARTH;
/* Solve Kepler's' Equation */
for( i = 0; i < MAX_KEPLER_ITER; i++)
{
const double newton_raphson_epsilon = 1e-12;
double f, fdot, delta_epw;
int do_second_order_newton_raphson = 1;
sinEPW = sin( epw);
cosEPW = cos( epw);
ecosE = axn * cosEPW + ayn * sinEPW;
esinE = axn * sinEPW - ayn * cosEPW;
f = capu - epw + esinE;
if (fabs(f) < newton_raphson_epsilon) break;
fdot = 1. - ecosE;
delta_epw = f / fdot;
if( !i)
{
const double max_newton_raphson = 1.25 * fabs( ecc);
do_second_order_newton_raphson = 0;
if( delta_epw > max_newton_raphson)
delta_epw = max_newton_raphson;
else if( delta_epw < -max_newton_raphson)
delta_epw = -max_newton_raphson;
else
do_second_order_newton_raphson = 1;
}
if( do_second_order_newton_raphson)
delta_epw = f / (fdot + 0.5*esinE*delta_epw);
/* f/(fdot - 0.5*fdotdot * f / fdot) */
epw += delta_epw;
}
if( i == MAX_KEPLER_ITER)
return( SXPX_ERR_CONVERGENCE_FAIL);
/* Short period preliminary quantities */
temp = 1-elsq;
pl = a*temp;
r = a*(1-ecosE);
temp2 = a / r;
betal = sqrt(temp);
temp = esinE/(1+betal);
cosu = temp2 * (cosEPW - axn + ayn * temp);
sinu = temp2 * (sinEPW - ayn - axn * temp);
u = atan2( sinu, cosu);
sin2u = 2*sinu*cosu;
cos2u = 2*cosu*cosu-1;
temp1 = ck2 / pl;
temp2 = temp1 / pl;
/* Update for short periodics */
rk = r*(1-1.5*temp2*betal*x3thm1)+0.5*temp1*sinio2*cos2u;
uk = u-0.25*temp2*x7thm1*sin2u;
xnodek = xnode+1.5*temp2*cosio*sin2u;
xinck = xincl+1.5*temp2*cosio*sinio*cos2u;
/* Orientation vectors */
sinuk = sin(uk);
cosuk = cos(uk);
sinik = sin(xinck);
cosik = cos(xinck);
sinnok = sin(xnodek);
cosnok = cos(xnodek);
xmx = -sinnok*cosik;
xmy = cosnok*cosik;
ux = xmx*sinuk+cosnok*cosuk;
uy = xmy*sinuk+sinnok*cosuk;
uz = sinik*sinuk;
/* Position and velocity */
pos[0] = rk * ux * earth_radius_in_km;
pos[1] = rk * uy * earth_radius_in_km;
pos[2] = rk * uz * earth_radius_in_km;
if( vel)
{
const double rdot = xke * sqrt(a) * esinE / r;
const double rfdot = xke * sqrt(pl) / r;
const double xn = xke / (a * sqrt(a));
const double rdotk = rdot - xn * temp1 * sinio2 * sin2u;
const double rfdotk = rfdot + xn * temp1 * (sinio2 * cos2u + 1.5 * x3thm1);
const double vx = xmx * cosuk - cosnok * sinuk;
const double vy = xmy * cosuk - sinnok * sinuk;
const double vz = sinik*cosuk;
vel[0] = (rdotk * ux + rfdotk * vx) * earth_radius_in_km;
vel[1] = (rdotk * uy + rfdotk * vy) * earth_radius_in_km;
vel[2] = (rdotk * uz + rfdotk * vz) * earth_radius_in_km;
}
return( rval);
} /*SGP4*/
|