1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
#include <string.h>
#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#include "norad.h"
#define PI 3.141592653589793238462643383279502884197
#define TWOPI (2. * PI)
#define MINUTES_PER_DAY 1440.
#define MINUTES_PER_DAY_SQUARED (MINUTES_PER_DAY * MINUTES_PER_DAY)
#define MINUTES_PER_DAY_CUBED (MINUTES_PER_DAY * MINUTES_PER_DAY_SQUARED)
#define AE 1.0
/* distance units, earth radii */
/* TLEs have four angles on line 2, given in the form DDD.DDDD. This
can be parsed more quickly as an integer, then cast to double and
converted to radians, all in one step. */
static int get_angle( const char *buff)
{
int rval = 0;
while( *buff == ' ')
buff++;
while( *buff != ' ')
{
if( *buff != '.')
rval = rval * 10 + (int)( *buff - '0');
buff++;
}
return( rval);
}
/* Converts the quasi scientific notation of the "Motion Dot Dot/6" or
"BSTAR" field to double. The input will always be of the form
sdddddSe
....where s is blank or + or -; ddddd is a five-digit mantissa;
S is + or - or blank; and e is a single-digit exponent. A decimal
point is assumed before the five-digit mantissa. */
static double sci( const char *string)
{
double rval = 0.;
if( string[1] != ' ')
{
const int ival = atoi( string);
if( ival)
{
rval = (double)ival * 1.e-5;
if( string[7] != '0')
{
int exponent = string[7] - '0';
if( string[6] == '-')
while( exponent--)
rval *= .1;
else
while( exponent--)
rval *= 10.;
}
}
}
return( rval);
}
/* Does a checksum modulo 10 on the given line. Digits = their
value, '-' = 1, all other chars = 0. Returns 0 if ok, a negative
value if it's definitely not a TLE line, positive if it's all OK
except the checksum. This last was added because people sometimes
want to use TLEs without worrying about the checksum. */
int DLL_FUNC tle_checksum( const char *buff)
{
int rval = 0;
int count = 69;
if( (*buff != '1' && *buff != '2') || buff[1] != ' ')
return( -1);
while( --count)
{
if( *buff > '0' && *buff <= '9')
rval += *buff - '0';
else if( *buff == '-')
rval++;
if( *buff < ' ' || *buff > 'z') /* invalid character */
return( -2);
buff++;
}
rval -= *buff++ - '0';
if( *buff > ' ') /* line unterminated */
rval = -3;
else
{
rval %= 10;
if( rval < 0)
rval += 10;
}
return( rval % 10);
}
/* The "standard" SDP4 model fails badly for very high-flying satellites.
As a non-standard extension, I'm simply storing state vectors for them,
using the following somewhat odd scheme :
1 40391U 15007B 15091.99922241 sxxxxxxxx syyyyyyyy szzzzzzzzh 9997
2 49391 [valid range, accuracy] saaaaaaaa sbbbbbbbb scccccccc 0 8
Epoch, int'l & NORAD IDs are stored in the standard manner. The
'ephemeris type' is h (rather than the otherwise universal 0). The
xyz position and vx, vy, vz velocity are stored as 8-digit signed
hexadecimal values, hence a range of +/- 2^32.
x, y, z are in meters, and hence cover a range +/- 4.29 million km.
vx, vy, vz are in 10^-4 m/s, range +/- 429 km/s. I do have ideas in
mind if we have to go beyond that... but let's hope that doesn't happen. */
static double get_high_value( const char *iptr)
{
int bytes_scanned;
unsigned value = 0;
double rval = 0.;
if( *iptr == '+' || *iptr == '-')
if( sscanf( iptr + 1, "%x%n", &value, &bytes_scanned) == 1
&& bytes_scanned == 8)
rval = (*iptr == '-' ? -(double)value : (double)value);
return( rval);
}
static inline double get_eight_places( const char *ptr)
{
return( (double)atoi( ptr) + (double)atoi(ptr + 4) * 1e-8);
}
/* Meteor 2-08 */
/* 1 13113U 88245.60005115 0.00000076 63463-4 0 5998 */
/* 2 13113 82.5386 288.0994 0015973 147.1294 213.0868 13.83869004325321 */
#define J2000 2451545.5
#define J1900 (J2000 - 36525. - 1.)
/* parse_elements returns:
0 if the elements are parsed without error;
1 if they're OK except the first line has a checksum error;
2 if they're OK except the second line has a checksum error;
3 if they're OK except both lines have checksum errors;
a negative value if the lines aren't at all parseable */
int DLL_FUNC parse_elements( const char *line1, const char *line2, tle_t *sat)
{
int rval, checksum_problem = 0;
if( *line1 != '1' || *line2 != '2')
rval = -4;
else
{
rval = tle_checksum( line1);
if( rval > 0)
{
checksum_problem = 1; /* there's a checksum problem, but it's */
rval = 0; /* not fatal; continue processing the TLE */
}
}
if( rval)
rval -= 100;
else
{
rval = tle_checksum( line2);
if( rval > 0)
{
checksum_problem |= 2; /* there's a checksum problem, but it's */
rval = 0; /* not fatal; continue processing the TLE */
}
}
if( !rval)
{
char tbuff[13];
int year = line1[19] - '0';
if( line1[18] >= '0')
year += (line1[18] - '0') * 10;
if( year < 57) /* cycle around Y2K */
year += 100;
sat->epoch = get_eight_places( line1 + 20) + J1900
+ (double)( year * 365 + (year - 1) / 4);
sat->norad_number = atoi( line1 + 2);
memcpy( tbuff, line1 + 64, 4);
tbuff[4] = '\0';
sat->bulletin_number = atoi( tbuff);
sat->classification = line1[7]; /* almost always 'U' */
memcpy( sat->intl_desig, line1 + 9, 8);
sat->intl_desig[8] = '\0';
memcpy( tbuff, line2 + 63, 5);
tbuff[5] = '\0';
sat->revolution_number = atoi( tbuff);
sat->ephemeris_type = line1[62];
if( sat->ephemeris_type == 'H')
{
size_t i;
double *state_vect = &sat->xincl;
for( i = 0; i < 3; i++)
{
state_vect[i] = get_high_value( line1 + 33 + i * 10);
state_vect[i + 3] = get_high_value( line2 + 33 + i * 10) * 1e-4;
}
return( 0);
}
sat->xmo = (double)get_angle( line2 + 43) * (PI / 180e+4);
sat->xnodeo = (double)get_angle( line2 + 17) * (PI / 180e+4);
sat->omegao = (double)get_angle( line2 + 34) * (PI / 180e+4);
sat->xincl = (double)get_angle( line2 + 8) * (PI / 180e+4);
sat->eo = atoi( line2 + 26) * 1.e-7;
/* Make sure mean motion is null-terminated, since rev. no.
may immediately follow. */
memcpy( tbuff, line2 + 51, 12);
tbuff[12] = '\0';
/* Input mean motion, derivative of mean motion and second */
/* deriv of mean motion, are all in revolutions and days. */
/* Convert them here to radians and minutes: */
sat->xno = get_eight_places( tbuff) * TWOPI / MINUTES_PER_DAY;
sat->xndt2o = (double)atoi( line1 + 35)
* 1.e-8 * TWOPI / MINUTES_PER_DAY_SQUARED;
if( line1[33] == '-')
sat->xndt2o *= -1.;
sat->xndd6o = sci( line1 + 44) * TWOPI / MINUTES_PER_DAY_CUBED;
sat->bstar = sci( line1 + 53) * AE;
}
return( rval ? rval : checksum_problem);
}
|