File: sat_id.cpp

package info (click to toggle)
pluto-sat-code 0.0~git20180301-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 500 kB
  • sloc: cpp: 4,609; ansic: 297; makefile: 173
file content (820 lines) | stat: -rw-r--r-- 29,276 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
/*
    sat_id.cpp     8 March 2003,  with updates as listed below

   An example 'main' function illustrating how to find which satellite(s)
are within a given radius of a given RA/dec,  as seen from a given
point.  The code reads in a file of observations in MPC format (name
provided as the first command-line argument).  For example:

sat_id mpc_obs.txt

   would hunt through the file 'mpc_obs.txt' for MPC-formatted
observations.  It would then read the file 'alldat.tle',  looking
for corresponding satellites within .2 degrees of said observations.
It then spits out the original file,  with satellite IDs added
(when found) after each observation line.  For each IDed satellite,
the international and NORAD designations are given,  along with
its angular distance from the search point,  position angle of
motion,  and apparent angular rate of motion in arcminutes/second
(or,  equivalently,  degrees/minute). */

/* 2 July 2003:  fixed the day/month/year to JD part of 'get_mpc_data()'
so it will work for all years >= 0 (previously,  it worked for years
2000 to 2099... plenty for the practical purpose of ID'ing recently-found
satellites,  but this is also an 'example' program.) */

/* 3 July 2005:  revised the check on the return value for parse_elements().
Now elements with bad checksums won't be rejected. */

/* 23 June 2006:  after comment from Eric Christensen,  revised to use
names 'ObsCodes.html' or 'ObsCodes.htm',  with 'stations.txt' being a
third choice.  Also added the '-a' command line switch to cause the program
to show all lines from input (default is now that only MPC astrometric
input gets echoed.)   */

/* 30 June 2006:  further comment from Eric Christensen:  when computing
object motion from two consecutive observations,  if the second one has
a date/time preceding the first,  you get a negative rate of motion that's
off by 180 degrees.  Fixed this. */

/* 17 Nov 2006:  artificial satellite data is now being provided in a
file named 'ALL_TLE.TXT'.  I've modified the default TLE to match. */

/* 22 Oct 2012:  minor cosmetic changes,  such as making constant variables
of type 'const',  updating URL for the MPC station code file,  adding a
comment or two. */

/* 7 Jan 2013:  revised output to show satellite name if available,  plus
the eccentricity,  orbital period,  and inclination. */

/* 2013 Dec 8:  revised to pay attention to "# MJD" and "#Ephem start"
lines,  for files that contain many TLEs covering different time spans
for the same object.  I sometimes create such files;  when that happens,
for each observation,  only the TLE(s) covering that observation's time
should be used,  and the others are suppressed.       */

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <time.h>
#include <stdlib.h>
#include <assert.h>
#if defined( _WIN32) || defined( __WATCOMC__)
   #include <malloc.h>     /* for alloca() prototype */
#endif
#include "norad.h"
#include "observe.h"

#ifdef FRENCH_REPUBLICAN_CLOCK
   #define  hours_per_day      10
   #define minutes_per_hour   100
   #define seconds_per_minute 100
#else
   #define hours_per_day       24
   #define minutes_per_hour    60
   #define seconds_per_minute  60
#endif

#define seconds_per_hour   (seconds_per_minute * minutes_per_hour)
#define seconds_per_day    (seconds_per_hour * hours_per_day)
#define minutes_per_day    (minutes_per_hour * hours_per_day)

#define OBSERVATION struct observation

OBSERVATION
   {
   char text[81];
   double jd, ra, dec;
   double lon, rho_cos_phi, rho_sin_phi;
   };

#define PI 3.1415926535897932384626433832795028841971693993751058209749445923
#define TIME_EPSILON (1./86400.)

static char *fgets_trimmed( char *buff, const int buffsize, FILE *ifile)
{
   char *rval = fgets( buff, buffsize, ifile);

   if( rval)
      {
      size_t i = 0;

      while( rval[i] != 10 && rval[i] != 13 && rval[i])
         i++;
      rval[i] = '\0';
      }
   return( rval);
}

static double dmy_to_jd( const int year, const int month, const double day)
{
   double rval = 1721059.5
         + (double)( year * 365 + year / 4 - year / 100 + year / 400) + day;
   int i;
   static const char month_len[12] = { 31, 28, 31, 30, 31, 30,
                                       31, 31, 30, 31, 30, 31 };

   assert( month >= 1 && month <= 12);
   assert( day >= 1. && day < 32.);
   assert( year > 1956 && year < 2050);
   for( i = 0; i < month - 1; i++)
      rval += (double)month_len[i];
   if( month < 3 && !(year % 4))    /* leap years,  January and February */
      if( !(year % 400) || (year % 100))
         rval--;
   return( rval);
}

static int get_mpc_data( OBSERVATION *obs, const char *buff)
{
   int i1, i2, year, month;
   double tval, day;

   if( strlen( buff) != 80)
      return( -1);
   if( sscanf( buff + 32, "%d %d %lf", &i1, &i2, &tval) != 3)
      return( -2);
   obs->ra = ((double)i1 + (double)i2 / 60. + tval / 3600.) * (PI / 12.);

   if( sscanf( buff + 45, "%d %d %lf", &i1, &i2, &tval) != 3)
      return( -3);
   obs->dec = ((double)i1 + (double)i2 / 60. + tval / 3600.) * (PI / 180.);
   if( buff[44] == '-')
      obs->dec = -obs->dec;
   else if( buff[44] != '+')
      return( -4);

               /* Read in the day/month/year from the record... */
   if( sscanf( buff + 15, "%d %d %lf", &year, &month, &day) != 3)
      return( -5);
   if( year < 1957)
      return( -6);
   obs->jd = dmy_to_jd( year, month, day);
   strcpy( obs->text, buff);
   return( 0);
}

void make_config_dir_name( char *oname, const char *iname)
{
   strcpy( oname, getenv( "HOME"));
   strcat( oname, "/.find_orb/");
   strcat( oname, iname);
}

/* This loads up the file 'ObsCodes.html' into memory on its first call.
Then,  given an MPC code,  it finds the corresponding line and copies
it into 'station_code_data'.  It looks in several places for the file;
if you've installed Find_Orb,  it should be able to get it from the
~/.find_orb directory.  It also checks for the truncated 'ObsCodes.htm'
version of the file.      */

int verbose = 0;

static int get_station_code_data( char *station_code_data,
                  const char *mpc_code)
{
   static char *cached_data, *cached_ptr;

   if( !mpc_code)       /* freeing memory */
      {
      if( cached_data)
         free( cached_data);
      cached_data = cached_ptr = NULL;
      return( 0);
      }
   *station_code_data = '\0';
   if( !cached_data)
      {
      const char *filenames[2] = { "ObsCodes.html", "ObsCodes.htm" };
      FILE *ifile = NULL;
      size_t size;
      int i;

      for( i = 0; !ifile && i < 2; i++)
         ifile = fopen( filenames[i], "rb");
      for( i = 0; !ifile && i < 2; i++)
         {
         char filename[255];

         make_config_dir_name( filename, filenames[i]);
         ifile = fopen( filename, "rb");
         }

      if( !ifile)
         {
         printf( "Failed to find MPC station list 'ObsCodes.html'\n");
         printf( "This can be downloaded at:\n\n");
         printf( "http://www.minorplanetcenter.org/iau/lists/ObsCodes.html\n");
         exit( -3);
         }
      fseek( ifile, 0L, SEEK_END);
      size = (size_t)ftell( ifile);
      fseek( ifile, 0L, SEEK_SET);
      cached_data = (char *)malloc( size + 1);
      if( fread( cached_data, 1, size, ifile) != size)
         {
         printf( "Failed to read station file\n");
         exit( -4);
         }
      fclose( ifile);
      cached_data[size] = '\0';
      if( verbose)
         printf( "Station codes: %u bytes read\n", (unsigned)size);
      }
   if( !cached_ptr || memcmp( cached_ptr, mpc_code, 3))
      {
      char search_buff[5];

      sprintf( search_buff, "\n%.3s", mpc_code);
      cached_ptr = strstr( cached_data, search_buff);
      if( cached_ptr)
         cached_ptr++;
      }
   if( cached_ptr)
      {
      size_t i;

      for( i = 0; cached_ptr[i] >= ' '; i++)
         station_code_data[i] = cached_ptr[i];
      station_code_data[i] = '\0';
      }
   else
      {
      printf( "Station code '%s' not found.\n", mpc_code);
#ifdef ON_LINE_VERSION
      printf( "If this is a new MPC code,  it could be that this service needs to be\n");
      printf( "updated to know about it.  Please contact pluto at projectpluto.com so\n");
      printf( "I can fix this.\n");
#else
      printf( "If this is a new MPC code,  you may need to get this file:\n");
      printf( "http://www.minorplanetcenter.org/iau/lists/ObsCodes.html\n");
      printf( "and replace the existing ObsCodes.html.\n");
#endif
      }
   return( cached_ptr ? 0 : -1);
}

/* Loads up MPC-formatted 80-column observations from a file.  Makes
a pass to find out how many observations there are,  allocates space
for them,  then reads them again to actually load the observations. */

static OBSERVATION *get_observations_from_file( FILE *ifile, size_t *n_found,
         const double t_low, const double t_high)
{
   int pass;
   OBSERVATION *rval = NULL, obs;

   memset( &obs, 0, sizeof( OBSERVATION));
   for( pass = 0; pass < 2; pass++)
      {
      char buff[100];
      size_t count = 0;

      fseek( ifile, 0L, SEEK_SET);
      while( fgets_trimmed( buff, sizeof( buff), ifile))
         if( !get_mpc_data( &obs, buff) && obs.jd > t_low
                                        && obs.jd < t_high)
            {
            if( rval)
               {
               char station_data[100];

               j2000_to_epoch_of_date( obs.jd, &obs.ra, &obs.dec);
               if( get_station_code_data( station_data, obs.text + 77))
                  printf( "FAILED to find MPC code %s\n", obs.text + 77);
               sscanf( station_data + 3, "%lf %lf %lf", &obs.lon,
                                        &obs.rho_cos_phi, &obs.rho_sin_phi);
               obs.lon *= PI / 180.;
               rval[count] = obs;
               }
            count++;
            }
      if( !pass && count)
         rval = (OBSERVATION *)calloc( count, sizeof( OBSERVATION));
      *n_found = count;
      }
   return( rval);
}

static int id_compare( const OBSERVATION *a, const OBSERVATION *b)
{
   return( memcmp( a->text, b->text, 12));
}

static int compare_obs( const void *a, const void *b, void *context)
{
   const OBSERVATION *aptr = (const OBSERVATION *)a;
   const OBSERVATION *bptr = (const OBSERVATION *)b;
   int rval = id_compare( aptr, bptr);

   if( !rval)        /* same IDs?  Then sort by JD of observation */
      rval = (aptr->jd > bptr->jd ? 1 : -1);
   return( rval);
}

/* Copied straight from 'mpc_obs.cpp' in Find_Orb.  See comments there. */

void shellsort_r( void *base, const size_t n_elements, const size_t esize,
         int (*compare)(const void *, const void *, void *), void *context)
{
#if (defined _GNU_SOURCE || defined __GNU__ || defined __linux)
   qsort_r( base, n_elements, esize, compare, context);
#else
   size_t gap = 1;
   char *data = (char *)base;
   char *pivot = (char *)alloca( esize);

   while( gap < n_elements)
      gap = gap * 3 + 1;
   while( gap /= 3)
      {
      size_t j;
      const size_t spacing = esize * gap;

      for( j = gap; j < n_elements; j++)
         {
         char *tptr = data + j * esize;
         char *tptr2 = tptr - spacing;

         if( (compare)( tptr2, tptr, context) > 0)
            {
            memcpy( pivot, tptr, esize);
            memcpy( tptr, tptr2, esize);
            tptr = tptr2;
            tptr2 -= spacing;
            while( tptr2 >= base && (compare)( tptr2, pivot, context) > 0)
               {
               memcpy( tptr, tptr2, esize);
               tptr = tptr2;
               tptr2 -= spacing;
               }
            memcpy( tptr, pivot, esize);
            }
         }
      }
#endif
}

static void compute_offsets( double *dx, double *dy,
                double delta_ra, const double dec1, const double dec2)
{
   while( delta_ra > PI)
      delta_ra -= PI + PI;
   while( delta_ra < -PI)
      delta_ra += PI + PI;
   *dy = dec2 - dec1;
   *dx = delta_ra * cos( (dec2 + dec1) / 2.);
}

static double angular_sep( const double delta_ra, const double dec1,
            const double dec2)
{
   double dx, dy;

   compute_offsets( &dx, &dy, delta_ra, dec1, dec2);
   return( sqrt( dx * dx + dy * dy));
}

/* Out of all observations for a given object,  this function will pick
two that "best" describe the object's motion.  For that purpose,  we look
for a pair closest to 'optimal_dist' apart.  We also limit the separation
in time to 'max_time_sep';  that's to avoid a situation where the observations
are really close to the optimal distance apart,  but are actually from
different orbits.

This code thinks in terms of pairs of observations.  If somebody insists
on providing a single observation,  we duplicate it.

We also drop objects if they're moving slower than 'speed_cutoff',
set to help us ignore the slow guys that are almost certainly rocks. */

static size_t drop_extra_obs( OBSERVATION *obs, const size_t n_obs,
                  const double speed_cutoff)
{
   size_t i = 0, rval = 0;

   while( i < n_obs)
      {
      size_t j = 0;
      OBSERVATION *optr = obs + i;

      while( j < n_obs - i && !id_compare( optr, optr + j))
         j++;
      if( j == 1)    /* singleton observation */
         {
         obs[rval++] = *optr;
         obs[rval++] = *optr;
         }
      else        /* two or more obs:  pick two best */
         {
         size_t a, b, best_a = 1, best_b = 0;
         double speed = 0.;
         double best_score = 1e+30;

         for( a = 1; a < j; a++)
            for( b = 0; b < a; b++)
               {
               const double max_time_sep = 0.1;  /* .1 day = 2.4 hr */
               const double optimal_dist = PI / 180.;   /* one degree */
               const double dist = angular_sep( optr[b].ra - optr[a].ra,
                                 optr[b].dec, optr[a].dec);
               const double score = fabs( dist - optimal_dist);
               const double dt = optr[a].jd - optr[b].jd;

               assert( dt >= .0);
               if( best_score > score
                        && dt < max_time_sep && dt > 0.
                        && !memcmp( &optr[a].text[77], &optr[b].text[77], 3))
                  {
                  best_score = score;
                  best_a = a;
                  best_b = b;
                  speed = dist / dt;
                  }
               }
         speed *= 180. / PI;    /* cvt speed from radians/day to deg/day */
         speed /= minutes_per_day;    /* ...then to deg/hour = arcmin/minute */
         if( speed > speed_cutoff)    /* omit slow objects */
            {
            obs[rval++] = optr[best_b];
            obs[rval++] = optr[best_a];
            }
         }
      i += j;
      }
   return( rval);
}

static void error_exit( const int exit_code)
{
   printf(
"sat_id takes the name of an input file of MPC-formatted (80-column)\n\
astrometry as a command-line argument.  It searches for matches between\n\
the observation data and satellites in 'ALL_TLE.TXT'.  By default,  matches\n\
within .2 degrees are shown.\n\n\
Additional command-line arguments are:\n\
   -a YYYYMMDD  Only use observations after this time\n\
   -b YYYYMMDD  Only use observations before this time\n\
   -m (nrevs)   Only consider objects with fewer # revs/day (default=6)\n\
   -n (NORAD)   Only consider objects with this NORAD identifier\n\
   -r (radius)  Only show matches within this radius in degrees (default=4)\n\
   -t (fname)   Get TLEs from this filename\n\
   -v           Verbose output. '-v2' gets still more verboseness.\n\
   -z (rate)    Only consider observations above 'rate' deg/hr (default=.001)\n");
   exit( exit_code);
}

static int compute_artsat_ra_dec( double *ra, double *dec, double *dist,
         const OBSERVATION *optr, tle_t *tle,
         const double *sat_params)
{
   double observer_loc[3];
   double pos[3]; /* Satellite position vector */
   double t_since = (optr->jd - tle->epoch) * minutes_per_day;
   int sxpx_rval;

   observer_cartesian_coords( optr->jd, optr->lon,
           optr->rho_cos_phi, optr->rho_sin_phi, observer_loc);
   if( select_ephemeris( tle))
      sxpx_rval = SDP4( t_since, tle, sat_params, pos, NULL);
   else
      sxpx_rval = SGP4( t_since, tle, sat_params, pos, NULL);
   if( verbose > 2 && sxpx_rval)
      printf( "TLE failed: %d\n", sxpx_rval);
   get_satellite_ra_dec_delta( observer_loc, pos, ra, dec, dist);
   return( sxpx_rval);
}

static bool is_in_range( const double jd, const double tle_start,
                                             const double tle_range)
{
   return( !tle_range || !tle_start ||
            (jd >= tle_start && jd <= tle_start + tle_range));
}

static bool got_obs_in_range( const OBSERVATION *obs, size_t n_obs,
               const double jd_start, const double jd_end)
{
// if( obs[0].jd < jd_end && obs[n_obs - 1].jd > jd_start)
      while( n_obs--)
         {
         if( obs->jd > jd_start && obs->jd < jd_end)
            return( true);
         obs++;
         }
   return( false);
}

          /* The computed and observed motions should match,  but (obviously)
          only to some tolerance.  A tolerance of 0.001'/s seems to work. */
double motion_mismatch_limit = .001;

/* Given a set of MPC observations and a TLE file,  this function looks at
each TLE in the file and checks to see if that satellite came close to any
of the observations.  The function is called for each TLE file.
*/

int norad_id = 0;

double tle_start = 0., tle_range = 1e+9;

static int add_tle_to_obs( OBSERVATION *obs, const size_t n_obs,
             const char *tle_file_name, const double search_radius,
             const double max_revs_per_day)
{
   char line0[100], line1[100], line2[100];
   FILE *tle_file = fopen( tle_file_name, "rb");
   int rval = 0, n_tles_found = 0;
   bool check_updates = true;

   if( !tle_file)
      {
      printf( "Couldn't open TLE file %s\n", tle_file_name);
      return( -1);
      }
   if( verbose)
      printf( "Looking through TLE file '%s', %u obs, radius %f, max %f revs/day\n",
                 tle_file_name, (unsigned)n_obs, search_radius, max_revs_per_day);
   *line0 = *line1 = '\0';
   while( fgets_trimmed( line2, sizeof( line2), tle_file))
      {
      tle_t tle;  /* Structure for two-line elements set for satellite */
      const double mins_per_day = 24. * 60.;

      if( got_obs_in_range( obs, n_obs, tle_start, tle_start + tle_range)
                 && parse_elements( line1, line2, &tle) >= 0
                 && (tle.ephemeris_type == 'H'
                 || tle.xno < 2. * PI * max_revs_per_day / mins_per_day)
                 && (!norad_id || norad_id == tle.norad_number))
         {                           /* hey! we got a TLE! */
         double sat_params[N_SAT_PARAMS];

         if( verbose > 1)
            printf( "TLE found:\n%s\n%s\n", line1, line2);
         n_tles_found++;
         if( select_ephemeris( &tle))
            SDP4_init( sat_params, &tle);
         else
            SGP4_init( sat_params, &tle);
         for( size_t idx = 0; idx < n_obs; idx += 2)
            if( is_in_range( obs[idx].jd, tle_start, tle_range))
               {
               OBSERVATION *optr = obs + idx;
               double dx, dy;
               double radius;
               double ra, dec, dist_to_satellite;
               int sxpx_rval;

               sxpx_rval = compute_artsat_ra_dec( &ra, &dec, &dist_to_satellite,
                              optr, &tle, sat_params);
               compute_offsets( &dx, &dy, ra - optr->ra, dec, optr->dec);
               radius = sqrt( dx * dx + dy * dy) * 180. / PI;
               if( !sxpx_rval && radius < search_radius)      /* good enough for us! */
                  {
                  double dx1, dy1;
                  const double dt = optr[1].jd - optr[0].jd;
                  double motion_diff;

                  compute_artsat_ra_dec( &ra, &dec, &dist_to_satellite,
                              optr + 1, &tle, sat_params);
                  compute_offsets( &dx1, &dy1, ra - optr[1].ra, dec, optr[1].dec);
                  dx1 -= dx;
                  dy1 -= dy;
                  motion_diff = sqrt( dx1 * dx1 + dy1 * dy1);
                  if( dt)           /* convert separations/dist into speeds */
                     {
                     dx /= dt;
                     dy /= dt;
                     motion_diff /= dt;
                     }
                  assert( dt >= 0.);
                  motion_diff *= 180. / PI;  /* now in degrees/day */
                  motion_diff /= minutes_per_day;   /* now in arcmin/second */
                  if( motion_diff < motion_mismatch_limit)
                     {
                     char obuff[200];
                     char full_intl_desig[20];
                     double xvel, yvel;
                     double motion_rate = 0., motion_pa = 0.;

                     compute_offsets( &xvel, &yvel, optr[1].ra - optr[0].ra,
                                                    optr[1].dec, optr[0].dec);
                     if( dt)
                        {
                        motion_pa = atan2( yvel, xvel) * 180. / PI + 90.;
                        if( motion_pa < 0.)
                           motion_pa += 180.;
                        motion_rate = sqrt( xvel * xvel + yvel * yvel);
                        motion_rate /= dt;
                        motion_rate *= 180. / PI;        /* now in degrees/day */
                        motion_rate /= 24.;              /* now in degrees/hr = arcsec/second */
                        }
                     line1[8] = line1[16] = '\0';
                     memcpy( line1 + 30, line1 + 11, 6);
                     line1[11] = '\0';
                     sprintf( full_intl_desig, "%s%.2s-%s",
                              (tle.intl_desig[0] < '5' ? "20" : "19"),
                              tle.intl_desig, tle.intl_desig + 2);
                     sprintf( obuff, "      %5dU = %-9s",
                           tle.norad_number, full_intl_desig);
                     sprintf( obuff + strlen( obuff),
                               "e=%.2f; P=%.1f min; i=%.1f",
                               tle.eo, 2. * PI / tle.xno,
                               tle.xincl * 180. / PI);
                     if( tle_checksum( line0))         /* object name given... */
                        sprintf( obuff + strlen( obuff), ": %s", line0);
                     obuff[79] = '\0';    /* avoid buffer overrun */
//                   sprintf( obuff + strlen( obuff), " motion %f", motion_diff);
                     strcat( obuff, "\n");
                     sprintf( obuff + strlen( obuff),
                        "             motion %5.2f\"/sec at PA %.1f; dist=%8.1f km; offset=%5.2f deg\n",
                            motion_rate, motion_pa,
                            dist_to_satellite, radius);
                              /* "Speed" is displayed in arcminutes/second,
                                  or in degrees/minute */
                     printf( "%s\n", obs[idx].text);
                     printf( "%s\n", obuff);
                     }
                  }
               }
         }
      else if( !memcmp( line2, "# No updates", 12))
         check_updates = false;
      else if( !memcmp( line2, "# Ephem range:", 14))
         {
         const double mjd_1970 = 40587.;     /* MJD for 1970 Jan 1 */
         double mjd_start, mjd_end;
         double curr_mjd = mjd_1970 + (double)time( NULL) / 86400.;

         sscanf( line2 + 14, "%lf %lf %lf\n", &mjd_start, &mjd_end, &tle_range);
         if( check_updates && mjd_end < curr_mjd + 7.)
            printf( "WARNING:  Update TLEs in '%s'\n", tle_file_name);
         if( !got_obs_in_range( obs, n_obs, mjd_start + 2400000.5,
                                            mjd_end + 2400000.5))
            {
            if( verbose)
               printf( "'%s' contains no TLEs for our time range\n", tle_file_name);
            fclose( tle_file);
            return( 0);
            }
         }
      else if( !memcmp( line2, "# Range: ", 9))
         {
         int year1, year2, month1, month2;
         double day1, day2;
         int n_read;

         n_read = sscanf( line2 + 9, "%d-%d-%lf %d-%d-%lf",
                     &year1, &month1, &day1,
                     &year2, &month2, &day2);
         assert( n_read == 6);
         tle_start = dmy_to_jd( year1, month1, day1);
         tle_range = dmy_to_jd( year2, month2, day2) - tle_start;
         }
      else if( !memcmp( line2, "# MJD ", 6))
         tle_start = atof( line2 + 6) + 2400000.5;
      else if( !memcmp( line2, "# Include ", 10))
         {
         if( got_obs_in_range( obs, n_obs, tle_start, tle_start + tle_range))
            {
            char iname[255];
            size_t i = strlen( tle_file_name);

            while( i && tle_file_name[i - 1] != '/')
               i--;
            memcpy( iname, tle_file_name, i);
            strcpy( iname + i, line2 + 10);
            rval = add_tle_to_obs( obs, n_obs, iname, search_radius,
                                    max_revs_per_day);
            }
         tle_start = 0.;
         tle_range = 1e+9;
         }
      strcpy( line0, line1);
      strcpy( line1, line2);
      }
   if( verbose)
      printf( "%d TLEs read from '%s'\n", n_tles_found, tle_file_name);
   fclose( tle_file);
   return( rval);
}

/* The "on-line version",  sat_id2,  gathers data from a CGI multipart form,
   puts it into a file,  possibly adds in some options,  puts together the
 command-line arguments,  and then calls sat_id_main.  See 'sat_id2.cpp'. */

static double get_time( const char *buff)
{
   long year = atol( buff) / 10000L;
   const long month = (atol( buff) / 100L) % 100L;
   const int day = atol( buff) % 100L;

   if( year < 40)       /* before 2040 */
      year += 2000;
   if( year < 100)       /* 1940-1999 */
      year += 1900;
   return( dmy_to_jd( (int)year, (int)month, (double)day));
}

#ifdef ON_LINE_VERSION
int sat_id_main( const int argc, const char **argv)
#else
int main( const int argc, const char **argv)
#endif
{
   const char *tle_file_name = "tle_list.txt";
   FILE *ifile = fopen( argv[1], "rb");
   OBSERVATION *obs;
   size_t n_obs;
   double search_radius = 4;     /* default to 4-degree search */
            /* Asteroid searchers _sometimes_ report Molniyas to me,
            which make two revolutions a day.  This limit could safely
            be set to three,  but few artsats are between 6 and 3 revs/day
            (i.e.,  in four to eight-hour orbits).  So this doesn't result
            in much extra checking. */
   double max_revs_per_day = 6.;
            /* Anything slower than 0.001'/sec is almost certainly not an
            artsat.  We don't even bother to check those (unless the -z
            option is used to reset this limit).  */
   double speed_cutoff = 0.001;
   double t_low = 2435839.5;  /* no satellites before 1957 Jan 1 */
   double t_high = 3000000.5;
   int rval;

   if( argc == 1)
      {
      printf( "No input file of astrometry specified on command line\n\n");
      error_exit( -2);
      }

   for( int i = 1; i < argc; i++)
      if( argv[i][0] == '-')
         {
         const char *param = argv[i] + 2;

         if( !*param && i < argc - 1)
            param = argv[i + 1];
         switch( argv[i][1])
            {
            case 'a':
               t_low = get_time( param);
               break;
            case 'b':
               t_high = get_time( param);
               break;
            case 'r':
               search_radius = atof( param);
               break;
            case 'y':
               motion_mismatch_limit = atof( param);
               break;
            case 'm':
               max_revs_per_day = atof( param);
               break;
            case 'n':
               norad_id = atoi( param);
               break;
            case 't':
               tle_file_name = param;
               break;
            case 'v':
               verbose = atoi( param) + 1;
               break;
//          case 'd':
//             debug_level = atoi( param);
//             break;
            case 'z':
               speed_cutoff = atof( param);
               break;
            default:
               printf( "Unrecognized command-line option '%s'\n", argv[i]);
               error_exit( -3);
               break;
            }
         }
   if( verbose)
      for( int i = 0; i < argc; i++)
         printf( "Arg %d: '%s'\n", i, argv[i]);

   if( !ifile)
      {
      printf( "Couldn't open input file %s\n", argv[1]);
      return( -1);
      }
   obs = get_observations_from_file( ifile, &n_obs, t_low, t_high);
   fclose( ifile);
   printf( "%d observations found\n", (int)n_obs);
   shellsort_r( obs, n_obs, sizeof( obs[0]), compare_obs, NULL);
   n_obs = drop_extra_obs( obs, n_obs, speed_cutoff);
   printf( "%d observations left after dropping extras\n", (int)n_obs);
   if( !obs || !n_obs)
      return( -2);

   rval = add_tle_to_obs( obs, n_obs, tle_file_name, search_radius,
                                    max_revs_per_day);
   free( obs);
   get_station_code_data( NULL, NULL);
   printf( "%.1f seconds elapsed\n", (double)clock( ) / (double)CLOCKS_PER_SEC);
   return( rval);
}     /* End of main() */