1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
#include <math.h>
#include "norad.h"
#include "norad_in.h"
#define ao params[0]
#define qo params[1]
#define xlo params[2]
#define d1o params[3]
#define d2o params[4]
#define d3o params[5]
#define d4o params[6]
#define omgdt params[7]
#define xnodot params[8]
#define c5 params[9]
#define c6 params[10]
void DLL_FUNC SGP_init( double *params, const tle_t *tle)
{
double c1, c2, c3, c4, r1, cosio, sinio, a1, d1, po, po2no;
c1 = ck2*1.5;
c2 = ck2/4.;
c3 = ck2/2.;
r1 = ae;
c4 = xj3*(r1*(r1*r1))/(ck2*4.);
cosio = cos(tle->xincl);
sinio = sin(tle->xincl);
a1 = pow( xke / tle->xno, two_thirds);
d1 = c1/a1/a1*(cosio*3.*cosio-1.)/pow( 1.-tle->eo*tle->eo, 1.5);
ao = a1*(1.-d1*.33333333333333331-d1*d1-d1*
1.654320987654321*d1*d1);
po = ao*(1.-tle->eo*tle->eo);
qo = ao*(1.-tle->eo);
xlo = tle->xmo+tle->omegao+tle->xnodeo;
d1o = c3*sinio*sinio;
d2o = c2*(cosio*7.*cosio-1.);
d3o = c1*cosio;
d4o = d3o*sinio;
po2no = tle->xno/(po*po);
omgdt = c1*po2no*(cosio*5.*cosio-1.);
xnodot = d3o*-2.*po2no;
c5 = c4*.5*sinio*(cosio*5.+3.)/(cosio+1.);
c6 = c4*sinio;
}
int DLL_FUNC SGP( const double tsince, const tle_t *tle, const double *params,
double *pos, double *vel)
{
double
temp, rdot, cosu, sinu, cos2u, sin2u, a, e,
p, rr, u, ecose, esine, omgas, cosik, xinck,
sinik, axnsl, aynsl,
sinuk, rvdot, cosuk, coseo1, sineo1, pl,
rk, uk, xl, su, ux, uy, uz, vx, vy, vz, pl2,
xnodek, cosnok, xnodes, el2, eo1, r1, sinnok,
xls, xmx, xmy, tem2, tem5;
const double chicken_factor_on_eccentricity = 1.e-6;
int i, rval = 0;
/* Update for secular gravity and atmospheric drag */
a = tle->xno+(tle->xndt2o*2.+tle->xndd6o*3.*tsince)*tsince;
if( a < 0.)
rval = SXPX_ERR_NEGATIVE_MAJOR_AXIS;
e = e6a;
if( e > 1. - chicken_factor_on_eccentricity)
rval = SXPX_ERR_NEARLY_PARABOLIC;
if( rval)
{
for( i = 0; i < 3; i++)
{
pos[i] = 0.;
if( vel)
vel[i] = 0.;
}
return( rval);
}
a = ao * pow( tle->xno / a, two_thirds);
if( a * (1. - e) < 1. && a * (1. + e) < 1.) /* entirely within earth */
rval = SXPX_WARN_ORBIT_WITHIN_EARTH; /* remember, e can be negative */
if( a * (1. - e) < 1. || a * (1. + e) < 1.) /* perigee within earth */
rval = SXPX_WARN_PERIGEE_WITHIN_EARTH;
if (a > qo) e = 1.-qo/a;
p = a*(1.-e*e);
xnodes = tle->xnodeo+xnodot*tsince;
omgas = tle->omegao+omgdt*tsince;
r1 = xlo+(tle->xno+omgdt+xnodot+
(tle->xndt2o+tle->xndd6o*tsince)*tsince)*tsince;
xls = FMod2p(r1);
/* Long period periodics */
axnsl = e*cos(omgas);
aynsl = e*sin(omgas)-c6/p;
r1 = xls-c5/p*axnsl;
xl = FMod2p(r1);
/* Solve Kepler's equation */
r1 = xl-xnodes;
u = FMod2p(r1);
eo1 = u;
tem5 = 1.;
i = 0;
do
{
sineo1 = sin(eo1);
coseo1 = cos(eo1);
if (fabs(tem5) < e6a) break;
tem5 = 1.-coseo1*axnsl-sineo1*aynsl;
tem5 = (u-aynsl*coseo1+axnsl*sineo1-eo1)/tem5;
tem2 = fabs(tem5);
if (tem2 > 1.) tem5 = tem2/tem5;
eo1 += tem5;
}
while(i++ < 10);
/* Short period preliminary quantities */
ecose = axnsl*coseo1+aynsl*sineo1;
esine = axnsl*sineo1-aynsl*coseo1;
el2 = axnsl*axnsl+aynsl*aynsl;
pl = a*(1.-el2);
pl2 = pl*pl;
rr = a*(1.-ecose);
rdot = xke*sqrt(a)/rr*esine;
rvdot = xke*sqrt(pl)/rr;
temp = esine/(sqrt(1.-el2)+1.);
sinu = a/rr*(sineo1-aynsl-axnsl*temp);
cosu = a/rr*(coseo1-axnsl+aynsl*temp);
su = atan2(sinu, cosu);
/* Update for short periodics */
sin2u = (cosu+cosu)*sinu;
cos2u = 1.-2.*sinu*sinu;
rk = rr+d1o/pl*cos2u;
uk = su-d2o/pl2*sin2u;
xnodek = xnodes+d3o*sin2u/pl2;
xinck = tle->xincl+d4o/pl2*cos2u;
/* Orientation vectors */
sinuk = sin(uk);
cosuk = cos(uk);
sinnok = sin(xnodek);
cosnok = cos(xnodek);
sinik = sin(xinck);
cosik = cos(xinck);
xmx = -sinnok*cosik;
xmy = cosnok*cosik;
ux = xmx*sinuk+cosnok*cosuk;
uy = xmy*sinuk+sinnok*cosuk;
uz = sinik*sinuk;
vx = xmx*cosuk-cosnok*sinuk;
vy = xmy*cosuk-sinnok*sinuk;
vz = sinik*cosuk;
/* Position and velocity */
pos[0] = rk*ux*earth_radius_in_km;
pos[1] = rk*uy*earth_radius_in_km;
pos[2] = rk*uz*earth_radius_in_km;
if( vel)
{
vel[0] = (rdot*ux + rvdot * vx)*earth_radius_in_km;
vel[1] = (rdot*uy + rvdot * vy)*earth_radius_in_km;
vel[2] = (rdot*uz + rvdot * vz)*earth_radius_in_km;
}
return( rval);
} /* SGP */
|