1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
|
/* CYGNUS LOCAL mentoropt/law (entire file ) */
/* Reduce lifetimes of certain pseudos to avoid spills in reload.
Copyright (C) 1995 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
/* This module minimizes lifetimes of pseudo registers which must be
allocated to a register class which has only one entry by inserting
copies to/from new pseudo registers.
By minimizing such lifetimes it becomes much less likely that reload
will need a spill register from that register class which leads to
better overall code. */
#include "config.h"
#include "rtl.h"
#include "insn-config.h"
#include "hard-reg-set.h"
#include "regs.h"
#include "basic-block.h"
#include "obstack.h"
extern char *insn_operand_constraint[][MAX_RECOG_OPERANDS];
/* This obstack keeps track of the block number and loop depth
for insns we create. We use this information when updating
dataflow information. */
static struct obstack shorten_lifetimes_obstack;
static int *firstobj;
#define shorten_base \
((int *)obstack_base (&shorten_lifetimes_obstack))
#define shorten_next \
((int *)obstack_next_free (&shorten_lifetimes_obstack))
static void update_dataflow_information PROTO ((void));
void
shorten_lifetimes (f)
rtx f;
{
rtx insn, pattern, last;
int found, i, depth, b, update_dataflow = 0;
/* First see if there are any register classes with only one
member. If not, then quit now. */
found = 0;
for (i = 0; i < N_REG_CLASSES; i++)
if (reg_class_size[i] == 1)
{
found = 1;
break;
}
if (!found)
return;
gcc_obstack_init (&shorten_lifetimes_obstack);
firstobj = (int *) obstack_alloc (&shorten_lifetimes_obstack, 0);
/* We need to record both the loop depth and the basic block any
copy is made in. */
depth = 1;
last = NULL;
for (b = 0; b < n_basic_blocks; b++)
{
/* Handle notes where are not contained within any basic block. */
insn = basic_block_head[b];
while (PREV_INSN (insn) != last)
insn = PREV_INSN (insn);
/* Now go forward to the end of this block. */
for (; insn != NEXT_INSN (basic_block_end[b]); insn = NEXT_INSN (insn))
{
/* Keep track of the current loop depth. */
if (GET_CODE (insn) == NOTE)
{
if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
depth++;
else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
depth--;
continue;
}
/* Only INSNs are of interest. */
if (GET_CODE (insn) != INSN)
continue;
/* It's an INSN of some kind. See if it is a simple set of
a register. */
pattern = PATTERN (insn);
if (!single_set (insn)
|| GET_CODE (pattern) != SET
|| GET_CODE (SET_DEST (pattern)) != REG)
continue;
/* We know it's an INSN that sets a single register. Now see
if that register must be allocated to a register class that
has only one member. */
{
int insn_code_number;
char *p, c;
enum reg_class class;
rtx dest;
insn_code_number = recog_memoized (insn);
if (insn_code_number < 0)
continue;
dest = SET_DEST (pattern);
found = 1;
for (p = insn_operand_constraint[insn_code_number][0];
p && *p && found; )
{
while ((c = *p++) != '\0' && c != ',')
switch (c)
{
case '=': case '+': case '?':
case '#': case '&': case '!':
case '*': case '%':
continue;
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
case 'm': case '<': case '>': case 'V': case 'o':
case 'E': case 'F': case 'G': case 'H':
case 's': case 'i': case 'n':
case 'I': case 'J': case 'K': case 'L':
case 'M': case 'N': case 'O': case 'P':
#ifdef EXTRA_CONSTRAINT
case 'Q': case 'R': case 'S': case 'T': case 'U':
#endif
case 'p':
case 'X':
case 'g': case 'r':
/* I don't think any of these restrict the register
class of our output register. */
found = 0;
break;
default:
class = REG_CLASS_FROM_LETTER (c);
if (reg_class_size[(int) class] != 1)
found = 0;
break;
}
if (!*p)
break;
}
/* Did the output require a register class with only
one member? */
if (found)
{
rtx newreg;
rtx newinsn;
int regno;
/* At this time INSN and PATTERN refer to an instruction
which requires its output pseudo to be allocated to
a register class with a single register.
We will create a new pseudo and change this instruction
to use it as its output register. A copy from the new
pseudo to the original output pseudo will be emitted
immediately after this instruction.
This creates nonconflicting lifetimes for all pseudos
which must be allocated into this register class making
it much less likely we will need a spill register from
this class. If possible, global register allocation
will try to allocate both pseudos to the same register,
when that happens the copy is eliminated (but we still
have nonconflicting lifetimes and don't create spills).
We might want to consider register scavenging to avoid
having to update the basic_block_live_at_start arrays
if we don't create too many new registers. */
newreg = gen_reg_rtx (Pmode);
update_dataflow = 1;
/* Emit a copy from our new pseudo to the destination. */
newinsn = emit_insn_after (gen_rtx (SET, Pmode,
SET_DEST (pattern),
newreg),
insn);
/* Our new pseudo dies in the copy insn, make note of
that for later passes. */
REG_NOTES (newinsn)
= gen_rtx (EXPR_LIST, REG_DEAD, newreg, NULL);
/* Make our new pseudo the output of this insn. */
SET_DEST (pattern) = newreg;
/* Record our block number so that we can use it while
updating lifetime information later. */
obstack_int_grow (&shorten_lifetimes_obstack, depth);
obstack_int_grow (&shorten_lifetimes_obstack, b);
}
}
}
last = basic_block_end[b];
}
/* This pass runs after flow and is therefore responsible for
updating dataflow information if it creates any new pseudos. */
if (update_dataflow)
update_dataflow_information ();
obstack_free (&shorten_lifetimes_obstack, firstobj);
}
/* This pass creates new pseudos after flow has run; therefore it must
take care to insure dataflow information for the new pseudos is
provided for later passes.
This routine creates new arrays for the dataflow information, copies
the old data into the new arrays, then initializes entries in the
new arrays for the new pseudo registers. */
static void
update_dataflow_information ()
{
int i;
regset tem;
int nregset_bytes, nregset_size;
int *nreg_n_refs, *nreg_live_length, *nreg_n_calls_crossed;
int *nreg_basic_block;
short *nreg_n_sets, *nreg_n_deaths;
char *nreg_changes_size;
/* First allocate new arrays big enough to hold our new registers
and copy data from the old arrays into the new arrays. */
nregset_size = ((max_reg_num () + REGSET_ELT_BITS - 1) / REGSET_ELT_BITS);
nregset_bytes = nregset_size * sizeof (*(regset) 0);
nreg_n_refs = (int *) oballoc (max_reg_num () * sizeof (int));
bzero ((char *) nreg_n_refs, max_reg_num () * sizeof (int));
bcopy ((char *) reg_n_refs, (char *) nreg_n_refs, max_regno * sizeof (int));
reg_n_refs = nreg_n_refs;
nreg_n_sets = (short *) oballoc (max_reg_num () * sizeof (short));
bzero ((char *) nreg_n_sets, max_reg_num () * sizeof (short));
bcopy ((char *) reg_n_sets, (char *) nreg_n_sets, max_regno * sizeof (short));
reg_n_sets = nreg_n_sets;
nreg_n_deaths = (short *) oballoc (max_reg_num () * sizeof (short));
bzero ((char *) nreg_n_deaths, max_reg_num () * sizeof (short));
bcopy ((char *) reg_n_deaths,
(char *) nreg_n_deaths,
max_regno * sizeof (short));
reg_n_deaths = nreg_n_deaths;
nreg_changes_size = (char *) oballoc (max_reg_num () * sizeof (char));
bzero ((char *) nreg_changes_size, max_reg_num () * sizeof (char));
bcopy (reg_changes_size, nreg_changes_size, max_regno * sizeof (char));;
reg_changes_size = nreg_changes_size;
nreg_live_length = (int *) oballoc (max_reg_num () * sizeof (int));
bzero ((char *) nreg_live_length, max_reg_num () * sizeof (int));
bcopy ((char *) reg_live_length,
(char *) nreg_live_length,
max_regno * sizeof (int));
reg_live_length = nreg_live_length;
nreg_n_calls_crossed = (int *) oballoc (max_reg_num () * sizeof (int));
bzero ((char *) nreg_n_calls_crossed, max_reg_num () * sizeof (int));
bcopy ((char *) reg_n_calls_crossed,
(char *) nreg_n_calls_crossed,
max_regno * sizeof (int));
reg_n_calls_crossed = nreg_n_calls_crossed;
nreg_basic_block = (int *) oballoc (max_reg_num () * sizeof (int));
for (i = 0; i < max_reg_num (); i++)
nreg_basic_block[i] = REG_BLOCK_UNKNOWN;
bcopy ((char *) reg_basic_block,
(char *) nreg_basic_block,
max_regno * sizeof (int));
reg_basic_block = nreg_basic_block;
/* The size of a regset has probably changed. We need to copy
information from the old memory region pointed to by
basic_block_live_at_start[] into the new region, then point
basic_block_live_at_start[] to the new region. */
tem = (regset) oballoc (n_basic_blocks * nregset_bytes);
bzero ((char *) tem, n_basic_blocks * nregset_bytes);
for (i = 0; i < n_basic_blocks; i++)
{
/* Copy old info into the new regset vectors. */
bcopy ((char *) basic_block_live_at_start[i],
(char *) tem,
regset_bytes);
/* Point basic_block_live_at_start to the new regset vectors. */
basic_block_live_at_start[i] = tem;
/* Update our temporary pointer. */
tem += nregset_bytes / sizeof (*tem);
}
/* Update regset_size and regset_bytes for the following passes. */
regset_size = nregset_size;
regset_bytes = nregset_bytes;
/* Setjmp stuff is never used after we run, so don't bother
updating it. */
/* Now fill in information for our new registers; this is inexact
information, but is accurate enough for our needs. */
for (i = max_regno; i < max_reg_num (); i++)
{
/* We know there's two references for each new pseudo and
both references happen at the same loop depth. So
ref_n_refs is depth * 2. */
reg_n_refs[i] = shorten_base[2 * (i - max_regno)] * 50;
/* We know the new pseudos are set once, die once, never change
size, live for only 2 insns (or is it 1 insn?), and are
never live across calls. */
reg_n_sets[i] = 1;
reg_n_deaths[i] = 1;
reg_changes_size[i] = 0;
reg_live_length[i] = 2;
reg_n_calls_crossed[i] = 0;
/* Record the basic block in which this register's entire lifetime
is contained. */
reg_basic_block[i] = shorten_base[2 * (i - max_regno) + 1];
}
/* And let the world know that the information on the new registers
is valid. */
max_regno = max_reg_num ();
}
/* END CYGNUS LOCAL */
|