File: NodeArc.H

package info (click to toggle)
pmccabe 2.2-3
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 452 kB
  • ctags: 447
  • sloc: ansic: 2,606; cpp: 1,080; sh: 343; makefile: 92
file content (539 lines) | stat: -rw-r--r-- 14,143 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539



/************************************************************************\
   LabelledNode declaration
\************************************************************************/

class Shaper;

#define LabelledNodeParent IlvListLabel
#define LabelledNodeParentPtr IlvListLabel*
class LabelledNode: public LabelledNodeParent {
private:
protected:
   char* label_;
   IlvColor* border_;
   IlvShort bwidth_;
   XeNodePtr xeNode_;
   ShapeType shapeType_;
   Shaper* shaper_;
   
   virtual void drawShape(IlvDisplay* dpy, IlvPort* dst,
			    IlvPalette* palette, IlvTransformer* t, IlvRect& r)
;

   virtual void baseBoundingBox(IlvRect& r, IlvTransformer* t=0);
public:
   LabelledNode(XeNodePtr xenode, IlvDisplay* dpy, const IlvPoint& p, char* lbl
,
	  IlvShort bwidth, IlvPalette* palette = nil);
   ~LabelledNode() { ; }
   void label(char*);
   char* label() { return (label_); }
   void borderColor(char*);
   
   void shape(ShapeType type);
   ShapeType shapeType() { return shapeType_; }
   
   IlvShort borderWidth() { return bwidth_; }
   void borderWidth(IlvShort w) { bwidth_ =  w; }
   
   XeNodePtr xeNode() { return xeNode_; }
   void xeNode(XeNodePtr n) { xeNode_ = n; }
   
   virtual void draw(IlvPort* dst, IlvTransformer* t, IlvRegion* rect=0);
   virtual void boundingBox(IlvRect& r, IlvTransformer* t=0);
   virtual IlvBoolean contains(const IlvPoint& p,
			       const IlvPoint& tp, IlvTransformer* t);
   virtual void computeRegion(IlvRegion& r, IlvTransformer* t=0);   

   static LabelledNode* makeShapedNode(XeNodePtr node,
				       IlvDisplay* dpy,
				       const ShapeType type,
				       const IlvPoint& p,
				       char* label,
				       IlvShort bwidth);
   
   DeclareTypeInfo();
};

typedef enum { FixedPosition = 0x0, RelativePosition = 0x1 } ArcEndType;

/************************************************************************\
   LabelledArc declaration and implementation
\************************************************************************/


typedef IlvLinkImage ArcRootClass;

class TextList;

#define RECURSIVE_BEZIER_ARCS 1
// IlvDisplay::drawArrow(dst, transform, start, end, atPos) requires
// atPos in the range [0.0,1.0].   0.0 means draw the arrow at the
// beginning of line, 1.0 means draw at end...

const float ArrowAtStart = 0.0;
const float ArrowAtEnd = 1.0;

const int NodeBorderAllowance = 4;

#define LabelledArcParent IlvLinkImage
#define LabelledArcParentPtr IlvLinkImage*
class LabelledArc: public LabelledArcParent {
protected:
   XeArcPtr arc;
   char* label;
   Boolean labelVisible;

   char* labelColorString;
   IlvColor* labelColor;
   
   TextList* tlist;
#if RECURSIVE_BEZIER_ARCS
   IlvPoint _points[7];
   IlvShort _nPoints;
   IlvPoint _labelOrigin;
#else
   IlvPoint _points[4];
   IlvInt _nPoints;
   IlvPoint _labelOrigin;
#endif
   
   IlvBoolean arrowContains(const IlvPoint& p,
			    const IlvPoint& tp, IlvTransformer*t=0);
   
   virtual IlvBoolean arcContains(const IlvPoint& p,
				  const IlvPoint& tp, IlvTransformer*t=0)
   {
      IlvBoolean isIn;
      isIn = IlvPointInLine(p, _points[0], _points[1]);
      if (!isIn) {
	 isIn = arrowContains(p, tp, t);
      }
      return isIn;
   }
   
   virtual IlvBoolean labelContains(const IlvPoint& p,
				    const IlvPoint& tp, IlvTransformer*t=0)
   {
      IlvRect r;
      labelBoundingBox(r, t);
      IlvBoolean isIn;
      if (t) {
	 isIn = r.contains(tp);
      } else {
	 isIn = r.contains(p);
      }
      return isIn;
   }
   
   // calculate the origination point for the label, using the
   // indicated transformation
   virtual void getLabelOrigin(IlvPoint& origin, IlvTransformer* t=0)
   {
      IlvRect r;
      arcBoundingBox(r, t);
      origin.move(r.centerx(), r.centery());
   }

   virtual void arrowPoints(IlvPoint* points, IlvTransformer* t=0)
   {
      // This should really calculate the points then apply the transformer...
      IlvPoint from = _points[0], to = _points[1];
      if (t) {
	 t->apply(from);
	 t->apply(to);
      }
      IlvComputeArrow(from, to, ArrowAtEnd, points);
   }
   
   virtual void arrowBoundingBox(IlvRect& r, IlvTransformer* t=0)
   {
      IlvPoint pts[3];
      arrowPoints(pts, t);
      r.resize(0,0);
      r.move(pts[0]);
      r.add(pts[1]);
      r.add(pts[2]);
   }
   
   virtual void arcBoundingBox(IlvRect& r, IlvTransformer* t=0)
   {
      r.move(_points[0]);
      r.resize(0,0);
      r.add(_points[1]);
      if (t) t->apply(r);
      IlvRect arrowBox;
      arrowBoundingBox(arrowBox, t);
      if (arrowBox.w() != 0 && arrowBox.h() != 0) {
	 r.add(arrowBox);
      }
   }
   // find the label's origin relative to the non-transformed bounding
   // box, then calculate the label's bounding box using the
   // indicated transformation...
   virtual void labelBoundingBox(IlvRect& r, IlvTransformer* t=0);

   virtual void drawArrow(IlvPort* dst, IlvTransformer* t=0, IlvRegion* = 0)
   {
      IlvPoint start = _points[0], end = _points[1];
      if (t) {
	 t->apply(start);
	 t->apply(end);
      }
      getDisplay()->drawArrow(dst, getPalette(), start, end, ArrowAtEnd);
   }
   
   virtual void drawArc(IlvPort* dst, IlvTransformer* t=0, IlvRegion* rect=0);
      
   virtual void drawLabel(IlvPort* dst, IlvTransformer* t, IlvRegion* clip=0);
   
   virtual void computePoints(IlvGraphic* f, IlvGraphic* t);
   
public:
   LabelledArc(XeArcPtr owner, IlvDisplay* dpy, char* lbl,
	       UIPtr tail, UIPtr head, Boolean showLabel = True);
   ~LabelledArc();

   XeArcPtr owner() { return arc; }
   
   char* getLabel() { return label; }
   void  setLabel(char* s);

   char* getLabelColor() { return labelColorString; }
   void setLabelColor(char* c);
   
   Boolean getLabelVisible() { return labelVisible; }
   void setLabelVisible(Boolean v);

   virtual IlvBoolean contains(const IlvPoint& p,
			       const IlvPoint& tp, IlvTransformer*t =0);
   virtual void draw(IlvPort* dst, IlvTransformer* t=0, IlvRegion* rect=0);
   virtual void boundingBox(IlvRect&, IlvTransformer*t =0);
   virtual void computeRegion(IlvRegion& r, IlvTransformer* t);
   
   DeclareTypeInfo();
   
};

/************************************************************************\
 sibling computation code -- perhaps this should be a nested class of arcs
\************************************************************************/

class SiblingList {
protected:
   XeArcPtr* arcs;
   int nSlots;
   int nArcs;

   void listAppend(XeArcPtr sib);
   void listRemove(XeArcPtr sib);
public:
   SiblingList() { nSlots = 0; nArcs = 0; arcs = nil; }
   ~SiblingList() { delete arcs; }
   
   int count() { return nArcs; }
   int max() { return nSlots; }
   
   void insert(XeArcPtr sib);
   void remove(XeArcPtr sib);
   int rank(XeArcPtr);

   IlvBoolean isSibling(XeArcPtr sib)
   {
      IlvBoolean isSib = IlvFalse;
      for(int i = 0; i < nArcs; i++) {
	 if (arcs[i] == sib) {
	    isSib = IlvTrue;
	    break;
	 }
      }
      return isSib;
   }
};


#if RECURSIVE_BEZIER_ARCS
const IlvFloat RankedArcArrowPosition = ArrowAtEnd;
#else
const IlvFloat RankedArcArrowPosition = 0.6;
#endif

#define RankedArcParent LabelledArc
#define RankedArcParentPtr LabelledArc*
class RankedArc: public RankedArcParent {
protected:
   
   IlvGraphic* _selfNode;
#if !RECURSIVE_BEZIER_ARCS
   EllipseInfo* _eInfo;
#endif
   int currentRank;

   // Compute the control points for our curve based on rank and
   // current position of head and tail of arc
   virtual void computePoints(IlvGraphic* f, IlvGraphic* t);
   
   virtual void arrowPoints(IlvPoint* points, IlvTransformer* t=0) {
      // This should really calculate the points then apply the transformer...
      IlvPoint from, to;
      IlvFloat arrowPos = ArrowAtEnd;
      if (currentRank == 0 && !selfish()) {
	 RankedArcParent::arrowPoints(points, t);
	 return;
      }
      if (selfish()) {
#if RECURSIVE_BEZIER_ARCS
	 arrowPos = RankedArcArrowPosition;
	 from = _points[5];
	 to = _points[6];
#else
	 arrowPos = RankedArcArrowPosition;
	 from = _eInfo->startArrow();
	 to = _eInfo->endArrow();
#endif
      } else {
	 from = _points[2];
	 to = _points[3];
      }
      if (t) {
	 t->apply(from);
	 t->apply(to);
      }
      IlvComputeArrow(from, to, arrowPos, points);
   }
   
   int computeRank() {
      return owner()->siblings() ? owner()->siblings()->rank(owner()): 0;
   }
   
   IlvBoolean selfish() { return _selfNode ? IlvTrue : IlvFalse; }
   
   virtual IlvBoolean arcContains(const IlvPoint& p,
				  const IlvPoint& tp, IlvTransformer*t=0)
   {
      IlvBoolean isIn = IlvFalse;
      currentRank = computeRank();
      IlvGraphic* tail = getFrom();
      IlvGraphic* head = getTo();
      computePoints(tail, head);
      if (currentRank == 0 && !selfish()) {
	 isIn = RankedArcParent::arcContains(p, tp, t);
      } else {
	 if (t) {
#if RECURSIVE_BEZIER_ARCS
	    IlvPoint points[8];
#else
	    IlvPoint points[4];
#endif
	    for (int i = 0; i < _nPoints; i++) {
	       points[i] = _points[i];
	       t->apply(points[i]);
	    }
	    // check the "transformed point" supplied by Views manager...
#if RECURSIVE_BEZIER_ARCS
	    isIn = IlvPointInSpline(tp, _nPoints, points);
#else
	    if (selfish()) {
	       IlvRect r = _eInfo->rect();
	       t->apply(r);
	       isIn = PointOnArc(tp, r, _eInfo->startAngle(),
				 _eInfo->deltaAngle(), /* tolerance */ 2);
	    } else {
	       isIn = IlvPointInSpline(tp, _nPoints, points);
	    }
#endif
	 } else {
#if RECURSIVE_BEZIER_ARCS
	    isIn = IlvPointInSpline(p, _nPoints, _points);
#else
	    if (selfish()) {
	       isIn = PointOnArc(p, _eInfo->rect(), _eInfo->startAngle(),
				 _eInfo->deltaAngle(), /* tolerance */ 2);
	    } else {
	       isIn = IlvPointInSpline(p, _nPoints, _points);
	    }
#endif
	 }
	 if (!isIn) {
	    isIn = arrowContains(p, tp, t);
	 }
      }
      return isIn;
   }
   
   // calculate the origination point for the label, using the
   // indicated transformation
   virtual void getLabelOrigin(IlvPoint& origin, IlvTransformer* t=0)
   {
      currentRank = computeRank();
      IlvGraphic* tail = getFrom();
      IlvGraphic* head = getTo();
      computePoints(tail, head);
      if (currentRank == 0 && !selfish()) {
	 RankedArcParent::getLabelOrigin(origin, t);
      } else {
	 origin = _labelOrigin;
	 if (t) {
	    t->apply(origin);
	 }
      }
   }

   virtual void arcBoundingBox(IlvRect& r, IlvTransformer* t=0)
   {
      currentRank = computeRank();
      IlvGraphic* tail = getFrom();
      IlvGraphic* head = getTo();
      computePoints(tail, head);
      if (currentRank == 0 && !selfish()) {
	 RankedArcParent::arcBoundingBox(r, t);
      } else {
#if RECURSIVE_BEZIER_ARCS
	 r.move(_points[0]);
	 r.resize(0,0);
	 r.add(_points[1]);
	 r.add(_points[2]);
	 r.add(_points[3]);
	 if (selfish()) { // only valid for self arcs...
	    r.add(_points[4]);
	    r.add(_points[5]);
	    r.add(_points[6]);
	 }
#else
	 if (selfish()) {
	    IlvComputeArcBBox(_eInfo->rect(),
			      _eInfo->startAngle(),
			      _eInfo->deltaAngle(),
			      r);
	 } else {
	    r.move(_points[0]);
	    r.resize(0,0);
	    r.add(_points[1]);
	    r.add(_points[2]);
	    r.add(_points[3]);
	 }
#endif
	 IlvRect arrowBox;
	 arrowBoundingBox(arrowBox, 0);
	 r.add(arrowBox);
	 if (t) t->apply(r);
      }
   }

   virtual void drawArc(IlvPort* dst, IlvTransformer* t=0, IlvRegion* rect=0)
   {
      currentRank = computeRank();
      IlvGraphic* tail = getFrom();
      IlvGraphic* head = getTo();
      computePoints(tail, head);
      if (currentRank == 0 && !selfish()) {
	 RankedArcParent::drawArc(dst, t, rect);
      } else {
	 // how do we draw the arrow???
	 drawArrow(dst, t, rect);
	 drawRankedArc(currentRank, dst, t, rect);
      }
   }

   virtual void drawRankedArc(int rank, IlvPort* dst, IlvTransformer* t=0, IlvR
egion* rect=0)
   {
#if RECURSIVE_BEZIER_ARCS
      if (selfish() || rank > 0) {
	 if (!t) {
	    getDisplay()->drawBezier(dst, getPalette(), _nPoints, _points);
	 } else {
	    IlvPoint points[8];
	    for (int i = 0; i < _nPoints; i++) {
	       points[i] = _points[i];
	       t->apply(points[i]);
	    }
	    getDisplay()->drawBezier(dst, getPalette(), _nPoints, points);
	 }
      } else {
	 // shouldn't reach this point...
	 RankedArcParent::drawArc(dst, t, rect);
      }
#else
      if (selfish()) {
	 IlvRect r = _eInfo->rect();
	 if (t) t->apply(r);
	 getDisplay()->drawArc(dst, getPalette(), r,
			       (IlvFloat) _eInfo->startAngle(),
			       (IlvFloat) _eInfo->deltaAngle());
      } else if (rank > 0) {
	 if (t) {
	    IlvPoint points[4];
	    for (int i = 0; i < _nPoints; i++) {
	       points[i] = _points[i];
	       t->apply(points[i]);
	    }
	    getDisplay()->drawBezier(dst, getPalette(), _nPoints, points);
	 } else {
	    getDisplay()->drawBezier(dst, getPalette(), _nPoints, _points);
	 }
      } else {
	 // shouldn't reach this point...
	 RankedArcParent::drawArc(dst, t, rect);
      }
#endif
   }
   
   virtual void drawArrow(IlvPort* dst, IlvTransformer* t=0, IlvRegion* r=0)
   {
      IlvBoolean selfArc = selfish();
      if (!selfArc && currentRank == 0) {
	 RankedArcParent::drawArrow(dst, t, r);
      } else {
	 IlvPoint start, end;
	 IlvFloat arrowPos = ArrowAtEnd;
#if RECURSIVE_BEZIER_ARCS
	 if (selfArc) {
	    start = _points[5];
	    end = _points[6];
	    arrowPos = RankedArcArrowPosition;
	 } else {
	    start = _points[2];
	    end = _points[3];
	 }
#else
	 if (selfArc) {
	    start = _eInfo->startArrow();
	    end = _eInfo->endArrow();
	    arrowPos = RankedArcArrowPosition;
	 } else {
	    // we use the control points of our spline to determine direction
	    // and "slope" of arrow's center...
	    start = _points[2];
	    end = _points[3];
	 }
#endif
	 if (t) {
	    t->apply(start);
	    t->apply(end);
	 }
	 getDisplay()->drawArrow(dst, getPalette(), start, end, arrowPos);
      }
   }
      
   
public:
   RankedArc(XeArcPtr owner, IlvDisplay* dpy, char* lbl,
	     UIPtr tail, UIPtr head, Boolean showLabel = True);
   ~RankedArc() {
      _nPoints = 0;
#if !RECURSIVE_BEZIER_ARCS
      if (_selfNode)
	 delete _eInfo;
#endif
   }
      
   DeclareTypeInfo();
   
};