1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
/* phase.c - routines to calculate the phase of the moon
**
** Adapted from "moontool.c" by John Walker, Release 2.0.
*/
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include "tws.h"
#include "phase.h"
/* Astronomical constants. */
#define epoch 2444238.5 /* 1980 January 0.0 */
/* Constants defining the Sun's apparent orbit. */
#define elonge 278.833540 /* ecliptic longitude of the Sun
at epoch 1980.0 */
#define elongp 282.596403 /* ecliptic longitude of the Sun at
perigee */
#define eccent 0.016718 /* eccentricity of Earth's orbit */
#define sunsmax 1.495985e8 /* semi-major axis of Earth's orbit, km */
#define sunangsiz 0.533128 /* sun's angular size, degrees, at
semi-major axis distance */
/* Elements of the Moon's orbit, epoch 1980.0. */
#define mmlong 64.975464 /* moon's mean lonigitude at the epoch */
#define mmlongp 349.383063 /* mean longitude of the perigee at the
epoch */
#define mlnode 151.950429 /* mean longitude of the node at the
epoch */
#define minc 5.145396 /* inclination of the Moon's orbit */
#define mecc 0.054900 /* eccentricity of the Moon's orbit */
#define mangsiz 0.5181 /* moon's angular size at distance a
from Earth */
#define msmax 384401.0 /* semi-major axis of Moon's orbit in km */
#define mparallax 0.9507 /* parallax at distance a from Earth */
#define synmonth 29.53058868 /* synodic month (new Moon to new Moon) */
#define lunatbase 2423436.0 /* base date for E. W. Brown's numbered
series of lunations (1923 January 16) */
/* Properties of the Earth. */
#define earthrad 6378.16 /* radius of Earth in kilometres */
#define PI 3.14159265358979323846 /* assume not near black hole nor in
Tennessee */
/* Handy mathematical functions. */
#define sgn(x) (((x) < 0) ? -1 : ((x) > 0 ? 1 : 0)) /* extract sign */
#define abs(x) ((x) < 0 ? (-(x)) : (x)) /* absolute val */
#define fixangle(a) ((a) - 360.0 * (floor((a) / 360.0))) /* fix angle */
#define torad(d) ((d) * (PI / 180.0)) /* deg->rad */
#define todeg(d) ((d) * (180.0 / PI)) /* rad->deg */
#define dsin(x) (sin(torad((x)))) /* sin from deg */
#define dcos(x) (cos(torad((x)))) /* cos from deg */
/* jdate - convert internal GMT date and time to Julian day and fraction */
static long jdate(struct tws *t)
{
long c, m, y;
y = t->tw_year + 1900;
m = t->tw_mon + 1;
if (m > 2)
{
m = m - 3;
}
else
{
m = m + 9;
--y;
}
c = y / 100L; /* compute century */
y -= 100L * c;
return t->tw_mday + (c * 146097L) / 4 + (y * 1461L) / 4 +
(m * 153L + 2) / 5 + 1721119L;
}
/* jtime - convert internal date and time to astronomical Julian
** time (i.e. Julian date plus day fraction, expressed as
** a double)
*/
double jtime(struct tws *t)
{
int c;
c = - t->tw_zone;
if ( t->tw_flags & TW_DST )
{
c += 60;
}
return (jdate(t) - 0.5) +
(t->tw_sec + 60 * (t->tw_min + c + 60 * t->tw_hour)) / 86400.0;
}
/* kepler - solve the equation of Kepler */
static double kepler(double m, double ecc)
{
double e, delta;
#define EPSILON 1E-6
e = m = torad(m);
do
{
delta = e - ecc * sin(e) - m;
e -= delta / (1 - ecc * cos(e));
} while (abs(delta) > EPSILON);
return e;
}
/* phase - calculate phase of moon as a fraction:
**
** The argument is the time for which the phase is requested,
** expressed as a Julian date and fraction. Returns the terminator
** phase angle as a percentage of a full circle (i.e., 0 to 1),
** and stores into pointer arguments the illuminated fraction of
** the Moon's disc, the Moon's age in days and fraction, the
** distance of the Moon from the centre of the Earth, and the
** angular diameter subtended by the Moon as seen by an observer
** at the centre of the Earth.
*/
double phase(double pdate, double *pphase, double *mage, double *dist,
double *angdia, double *sudist, double *suangdia)
/* pphase: illuminated fraction */
/* mage: age of moon in days */
/* dist: distance in kilometres */
/* angdia: angular diameter in degrees */
/* sudist: distance to Sun */
/* suangdia: sun's angular diameter */
{
double Day, N, M, Ec, Lambdasun, ml, MM, Ev, Ae, A3, MmP,
mEc, A4, lP, V, lPP,
MoonAge, MoonPhase,
MoonDist, MoonDFrac, MoonAng,
F, SunDist, SunAng;
/* Calculation of the Sun's position. */
Day = pdate - epoch; /* date within epoch */
N = fixangle((360 / 365.2422) * Day); /* mean anomaly of the Sun */
M = fixangle(N + elonge - elongp); /* convert from perigee
co-ordinates to epoch 1980.0 */
Ec = kepler(M, eccent); /* solve equation of Kepler */
Ec = sqrt((1 + eccent) / (1 - eccent)) * tan(Ec / 2);
Ec = 2 * todeg(atan(Ec)); /* true anomaly */
Lambdasun = fixangle(Ec + elongp); /* Sun's geocentric ecliptic
longitude */
/* Orbital distance factor. */
F = ((1 + eccent * cos(torad(Ec))) / (1 - eccent * eccent));
SunDist = sunsmax / F; /* distance to Sun in km */
SunAng = F * sunangsiz; /* Sun's angular size in degrees */
/* Calculation of the Moon's position. */
/* Moon's mean longitude. */
ml = fixangle(13.1763966 * Day + mmlong);
/* Moon's mean anomaly. */
MM = fixangle(ml - 0.1114041 * Day - mmlongp);
/* Evection. */
Ev = 1.2739 * sin(torad(2 * (ml - Lambdasun) - MM));
/* Annual equation. */
Ae = 0.1858 * sin(torad(M));
/* Correction term. */
A3 = 0.37 * sin(torad(M));
/* Corrected anomaly. */
MmP = MM + Ev - Ae - A3;
/* Correction for the equation of the centre. */
mEc = 6.2886 * sin(torad(MmP));
/* Another correction term. */
A4 = 0.214 * sin(torad(2 * MmP));
/* Corrected longitude. */
lP = ml + Ev + mEc - Ae + A4;
/* Variation. */
V = 0.6583 * sin(torad(2 * (lP - Lambdasun)));
/* True longitude. */
lPP = lP + V;
/* Calculation of the phase of the Moon. */
/* Age of the Moon in degrees. */
MoonAge = lPP - Lambdasun;
/* Phase of the Moon. */
MoonPhase = (1 - cos(torad(MoonAge))) / 2;
/* Calculate distance of moon from the centre of the Earth. */
MoonDist = (msmax * (1 - mecc * mecc)) /
(1 + mecc * cos(torad(MmP + mEc)));
/* Calculate Moon's angular diameter. */
MoonDFrac = MoonDist / msmax;
MoonAng = mangsiz / MoonDFrac;
*pphase = MoonPhase;
*mage = synmonth * (fixangle(MoonAge) / 360.0);
*dist = MoonDist;
*angdia = MoonAng;
*sudist = SunDist;
*suangdia = SunAng;
return torad(fixangle(MoonAge));
}
|