File: matrix.c

package info (click to toggle)
poc-streamer 0.4.2-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,000 kB
  • sloc: ansic: 8,782; makefile: 307; ruby: 152; perl: 135; yacc: 115; lex: 36; sh: 30
file content (370 lines) | stat: -rw-r--r-- 9,179 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
/*C
  (c) 2005 bl0rg.net
**/

#include "matrix.h"
#include <stdio.h>
#include <string.h>

/*M
  \emph{Print a $m \times n$ matrix.}
**/
void matrix_print(gf *a, int m, int n) {
  int row;
  for (row = 0; row < m; row++) {
    int col;
    for (col = 0; col < n; col++)
      fprintf(stderr, "%-3u ", a[row * n + col]);
    fprintf(stderr, "\n");
  }
}

/*M
  \emph{Matrix multiplication.}

  Computes $c = a * b$, with $a \in \gf{2^8}^{n \times k}, b \in
  \gf{2^8}^{k \times m}, c \in \gf{2^8}^{n \times m}$.
**/
void matrix_mul(gf *a, gf *b, gf *c, int n, int k, int m) {
  int row;

  for (row = 0; row < n; row++) {
    int col;
    for (col = 0; col < m; col++) {
      gf *pa = a + row * k;
      gf *pb = b + col;
      gf acc = 0;

      int i;
      for (i = 0; i < k; i++, pa++, pb += m)
        acc = GF_ADD(acc, GF_MUL(*pa, *pb));
      
      c[row * m + col] = acc;
    }
  }
}

/*M
  \emph{Computes the inverse of a matrix.}

  Computes the inverse of \verb|a| into \verb|a| using Gauss-Jordan
  elimination. Transform the matrix using pivoting and Gauss
  elimination to bring it into the form of the identity matrix, and
  apply the transformations to the identity matrix.
  
  Returns 0 on error, 1 on success
**/
int matrix_inv(gf *a, int k) {
  /*M
    Bookkeeping on the pivoting.
  **/
  int indxc[k];
  int indxr[k];

  /*M
    \verb|id_row| is used to compare the pivot row to the corresponding
    identity row in order to speed up computation.
  **/
  gf  id_row[k];
  
  /*M
    \verb|ipiv| marks elements already used as pivots.
  **/
  int ipiv[k];

  /*M
    Initialize \verb|id_row| and \verb|ipiv|.
  **/
  int i;
  for (i = 0; i < k; i++) {
    id_row[i] = 0;
    ipiv[i] = 0;
  }

  int col;
  for (col = 0; col < k; col++) {
    /*M
      Look for a non-zero element to use as pivot.
    **/
    int irow = -1, icol = -1;

    /*M
      First check the diagonal.
    **/
    if ((ipiv[col] != 1) &&
        (a[col * k + col] != 0)) {
      irow = col;
      icol = col;
    } else {
      /*M
        Then search the matrix.
      **/
      int row;
      for (row = 0; row < k; row++) {
        if (ipiv[row] != 1) {
          for (i = 0; i < k; i++) {
            if (ipiv[i] == 0) {
              if (a[row * k + i] != 0) {
                irow = row;
                icol = i;
                goto found_pivot;
              }
            } else if (ipiv[i] > 1) {
              fprintf(stderr, "Singular matrix\n");
              return 0;
            }
          }
        }
      }
      fprintf(stderr, "Pivot not found\n");
      return 0;
    }

  found_pivot:
    /*M
      Now we got a pivot element in \verb|icol| and \verb|irow|.
    **/
    ++(ipiv[icol]);
    
    /*M
      Swap rows so the pivot is on the diagonal.
    **/
    if (irow != icol) {
      gf tmp;
      for (i = 0; i < k; i++) {
        tmp = a[irow * k + i];
        a[irow * k + i] = a[icol * k + i];
        a[icol * k + i] = tmp;
      }
    }

    /*M
      Remember the pivot position.
    **/
    indxr[col] = irow;
    indxc[col] = icol;
    gf *pivot_row = a + icol * k;

    /*M
      Divide pivot row with the pivot element.
    **/
    gf c = pivot_row[icol];
    if (c == 0) {
      fprintf(stderr, "Singular matrix\n");
      return 0;
    } else if (c != 1) {
      c = GF_INV(c);
      pivot_row[icol] = 1;
      for (i = 0; i < k; i++)
        pivot_row[i] = GF_MUL(c, pivot_row[i]);
    }

    /*M
      Reduce rows.
      If the pivot row is the identity row, we don't need to
      substract the pivot row
    **/
    id_row[icol] = 1;
    if (bcmp(pivot_row, id_row, k * sizeof(gf)) != 0) {
      gf *p;
      for (p = a, i = 0; i < k; i++, p += k) {
        /*M
          Don't reduce the pivot row.
        **/
        if (i != icol) {
          gf c = p[icol];
          /*M
            Zero out the element corresponding to the pivot element
            and substract the pivot row multiplied by the zeroed out
            element.
          **/
          p[icol] = 0;
          gf_add_mul(p, pivot_row, c, k);
        }
      }
    }
    id_row[icol] = 0;
  }

  /*M
    Descramble the solution.
  **/
  for (col = k - 1; col >= 0; col--) {
    if (indxr[col] != indxc[col]) {
      int row;
      gf tmp;
      for (row = 0; row < k; row++) {
        tmp = a[row * k + indxr[col]];
        a[row * k + indxr[col]] = a[row * k + indxc[col]];
        a[row * k + indxc[col]] = tmp;
      }
    }
  }

  return 1;
}

/*M
  \emph{Computes the inverse of a Vandermonde matrix.}

  \begin{definition}
  A \emph{Vandermonde matrix} of size $N \times N$ is completely
  determined by $N$ arbitrary numbers $x_1, x_2, \dots, x_N$, in
  terms of which its $N^2$ components are the integer powers
  $x_i^{j-1}, i, j = 1, \dots, N$.
  \end{definition}

  % Write full matrix out 
  We use the $i$'s as rows, the $j$'s as columns. The linear system
  $A \cdot c = y$ solves for the coefficients $c$ which fit a
  polynomial to $(x_j, y_j), j = 1, \dots, N$.

  Let $P_j(x)$ be the Lagrange polynomial of degree $N-1$ defined by
  $x_1, \dots, x_N$. We know that \[P_j(x_i) = \delta_{ij} =
  \sum_{k=1}^NA_{jk}x_i^{k-1}\], therefore the solution of $A \cdot c
  = y$ is just $c_j = \sum_{k=1}^NA_{kj}y_k$. In our routine we are
  only interested by $A_{kj}$, the inverse of the Vandermonde matrix.

  Vandermonde systems are ill-conditioned, but this doesn't affect
  us, as we work in a finite field.

  First, we calculate $P(x) = \prod_{i=1}^k (x - x_i)$, which is then
  synthetically divided by $x_j$, to obtain $\prod_{i=1\\ i\neq j}^n
  (x - x_i)$, and then divided by $\prod_{i=1\\ i \neq j}^n (x_j -
  x_i)$ to obtain $P_j(x)$, which is the $j$-th row of the inverted matrix.

  Only uses the second row of the matrix \verb|a|, containing the
  $x_i$ coefficients.  Returns $1$ on success, $0$ on error.
**/
int matrix_inv_vandermonde(gf *a, int k) {
  /*M
    Check for a degenerate case.
  **/
  if (k == 1)
    return 0;

  /*M
    \verb|p| holds the matrix coefficients \verb|x_i|.
  **/
  gf p[k];
  /*M
    \verb|c| holds the coefficient of
    $P(x) = \prod_{i=0}^{k-1} (x - p_i)$
  **/
  gf c[k];
  int i, j;
  for (i = 0, j = 1; i < k; i++, j += k) {
    c[i] = 0;
    p[i] = a[j];
  }
  
  /*M
    Construct coefficients. We know \verb|c[k] = 1| implicitly.
    Start with $P_0 = x - x_0$. We are in $2^m$, so $x_0 = - x_0$.
  **/
  c[k-1] = p[0];
  for (i = 1; i < k; i++) {
    gf p_i = p[i];

    /*M
      At each step $P_i = x \cdot P_{i - 1} - p_i \cdot P_{i - 1}$,
       so \verb|c[j] = c[j] + p[i] * c[j+1]|,
          \verb|c[k] = 1| (implicit),
          and \verb|c[k-1] = c[k-1] + p_i|.
    **/
    for (j = k - 1 - i; j < k - 1; j++)
      c[j] = GF_ADD(c[j], GF_MUL(p_i, c[j+1]));
    c[k-1] = GF_ADD(c[k-1], p_i);
  }

  /*M
    \verb|b| holds the coefficient for the matrix inversion.
  **/
  gf b[k];

  /*M
    Do the synthetic division.
  **/
  int row;
  for (row = 0; row < k; row++) {
    gf x = p[row];
    gf t = 1;

    b[k-1] = 1; /* c[k] */
    for (i = k - 2; i >= 0; i--) {
      b[i] = GF_ADD(c[i+1], GF_MUL(x, b[i+1]));
      t = GF_ADD(GF_MUL(x, t), b[i]);
    }

    int col;
    for (col = 0; col < k; col++)
      a[col * k + row] = GF_MUL(GF_INV(t), b[col]);
  }

  return 1;
}

/*C
**/

#ifdef MATRIX_TEST

void testit(char *name, unsigned int result, unsigned int should) {
  if (result == should) {
    printf("Test %s was successful\n", name);
  } else {
    printf("Test %s was not successful, %u should have been %u\n",
           name, result, should);
  }
}

int main(void) {
  gf matrix1[4*4] = { 1, 0, 0, 0,
                      0, 1, 0, 0,
                      0, 0, 1, 0,
                      0, 0, 0, 1 };
  gf matrix2[4*4];
  gf matrix3[4*4] = { 1, 5, 3, 18,
                      5, 6, 19, 21,
                      9, 0, 0, 7,
                      4, 5, 4, 83 };
  /* from mathematica */
  gf matrix4[4*4] = { 148, 39, 173, 174,
                      55, 134, 87, 159,
                      170, 142, 46, 94,
                      161, 105, 80, 239 };
  gf matrix5[4*4] = {1, 0, 0, 0,
                     1, 0, 0, 0,
                     1, 0, 0, 0,
                     1, 0, 0, 0};

  gf_init();

  gf vand1[4*4] = { 1, 2, GF_MUL(2, 2), GF_MUL(2, GF_MUL(2, 2)),
                    1, 3, GF_MUL(3, 3), GF_MUL(3, GF_MUL(3, 3)),
                    1, 5, GF_MUL(5, 5), GF_MUL(5, GF_MUL(5, 5)),
                    1, 7, GF_MUL(7, 7), GF_MUL(7, GF_MUL(7, 7)) };
  gf vand2[4*4];
      
  testit("invert singular matrix", matrix_inv(matrix5, 4), 0);
  
  memcpy(matrix2, matrix1, sizeof(matrix1));
  testit("invert matrix", matrix_inv(matrix2, 4), 1);

  int i;
  for (i = 0; i < 16; i++)
    testit("invert matrix", matrix2[i], matrix1[i]);
  testit("invert matrix", matrix_inv(matrix3, 4), 1);
  for (i = 0; i < 16; i++)
    testit("invert matrix", matrix3[i], matrix4[i]);

  memcpy(vand2, vand1, sizeof(vand1));
  testit("vandermonde invert matrix", matrix_inv_vandermonde(vand1, 4), 1);
  testit("invert matrix", matrix_inv(vand2, 4), 1);
  for (i = 0; i < 16; i++)
    testit("vandermonde invert matrix", vand1[i], vand2[i]);

  return 0;
}

#endif /* MATRIX_TEST */