1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
|
/*
* Copyright (c) 2014,2015 Advanced Micro Devices, Inc.
*
* Copyright (c) 2017 Michal Babej / Tampere University of Technology
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
_CL_OVERLOADABLE vtype atan2pi(vtype y, vtype x) {
const vtype pi = (vtype)3.1415926535897932e+00; /* 0x400921fb54442d18 */
const vtype pi_head = (vtype)3.1415926218032836e+00; /* 0x400921fb50000000 */
const vtype pi_tail = (vtype)3.1786509547056392e-08; /* 0x3e6110b4611a6263 */
const vtype piby2_head = (vtype)1.5707963267948965e+00; /* 0x3ff921fb54442d18 */
const vtype piby2_tail = (vtype)6.1232339957367660e-17; /* 0x3c91a62633145c07 */
vtype x2 = x;
itype xneg = (as_itype(x) & (itype)SIGNBIT_DP64);
itype xexp = ((as_itype(x) & (itype)EXPBITS_DP64) >> 52);
vtype y2 = y;
itype yneg = (as_itype(y) & (itype)SIGNBIT_DP64);
itype yexp = ((as_itype(y) & (itype)EXPBITS_DP64) >> 52);
itype diffexp = yexp - xexp;
// Scale up both x and y if they are both below 1/4
vtype x1 = ldexp(x, 1024);
itype xexp1 = ((as_itype(x1) & (itype)EXPBITS_DP64) >> 52);
vtype y1 = ldexp(y, 1024);
itype yexp1 = ((as_itype(y1) & (itype)EXPBITS_DP64) >> 52);
itype diffexp1 = yexp1 - xexp1;
itype cond2 = (xexp < 1021) & (yexp < 1021);
diffexp = cond2 ? diffexp1 : diffexp;
x = cond2 ? x1 : x;
y = cond2 ? y1 : y;
// General case: take absolute values of arguments
vtype u = fabs(x);
vtype v = fabs(y);
// Swap u and v if necessary to obtain 0 < v < u. Compute v/u.
itype swap_vu = u < v;
vtype uu = u;
u = swap_vu ? v : u;
v = swap_vu ? uu : v;
vtype vbyu = v / u;
vtype q1, q2;
// General values of v/u. Use a look-up table and series expansion.
{
vtype val = (vbyu > (vtype)0.0625) ? vbyu : (vtype)0.063;
itype index = convert_itype(pocl_fma((vtype)256.0, val, (vtype)0.5));
v2type tv = USE_VTABLE(atan_jby256_tbl, convert_uinttype(index - 16));
q1 = tv.lo; // s0
q2 = tv.hi; // s1
vtype c = convert_vtype(index) * 0x1.0p-8;
// We're going to scale u and v by 2^(-u_exponent) to bring them close to 1
// u_exponent could be EMAX so we have to do it in 2 steps
itype m = -(as_itype(as_utype(u) >> EXPSHIFTBITS_DP64) - (itype)EXPBIAS_DP64);
vtype um = ldexp(u, convert_inttype(m));
vtype vm = ldexp(v, convert_inttype(m));
// 26 leading bits of u
vtype u1 = as_vtype(as_utype(um) & (utype)0xfffffffff8000000UL);
vtype u2 = um - u1;
vtype r = MATH_DIVIDE(pocl_fma(-c, u2, pocl_fma(-c, u1, vm)), pocl_fma(c, vm, um));
// Polynomial approximation to atan(r)
vtype s = r * r;
q2 = q2 + pocl_fma((s * pocl_fma(-s, (vtype)0.19999918038989143496, (vtype)0.33333333333224095522)), -r, r);
}
vtype q3, q4;
{
q3 = 0.0;
q4 = vbyu;
}
vtype q5, q6;
{
vtype u1 = as_vtype(as_utype(u) & (utype)0xffffffff00000000UL);
vtype u2 = u - u1;
vtype vu1 = as_vtype(as_utype(vbyu) & (utype)0xffffffff00000000UL);
vtype vu2 = vbyu - vu1;
q5 = 0.0;
vtype s = vbyu * vbyu;
q6 = vbyu + pocl_fma(-vbyu * s,
pocl_fma(-s,
pocl_fma(-s,
pocl_fma(-s,
pocl_fma(-s, (vtype)0.90029810285449784439E-01,
(vtype)0.11110736283514525407),
(vtype)0.14285713561807169030),
(vtype)0.19999999999393223405),
(vtype)0.33333333333333170500),
MATH_DIVIDE(pocl_fma(-u, vu2, pocl_fma(-u2, vu1, pocl_fma(-u1, vu1, v))), u));
}
q3 = vbyu < (vtype)0x1.d12ed0af1a27fp-27 ? q3 : q5;
q4 = vbyu < (vtype)0x1.d12ed0af1a27fp-27 ? q4 : q6;
q1 = vbyu > (vtype)0.0625 ? q1 : q3;
q2 = vbyu > (vtype)0.0625 ? q2 : q4;
// Tidy-up according to which quadrant the arguments lie in
vtype res1, res2, res3, res4;
q1 = swap_vu ? piby2_head - q1 : q1;
q2 = swap_vu ? piby2_tail - q2 : q2;
q1 = xneg ? pi_head - q1 : q1;
q2 = xneg ? pi_tail - q2 : q2;
q1 = MATH_DIVIDE(q1 + q2, pi);
res4 = yneg ? -q1 : q1;
res1 = yneg ? (vtype)-0.75 : (vtype)0.75;
res2 = yneg ? (vtype)-0.25 : (vtype)0.25;
res3 = xneg ? res1 : res2;
res3 = isinf(y2) & isinf(x2) ? res3 : res4;
res1 = yneg ? (vtype)-1.0 : (vtype)1.0;
// abs(x)/abs(y) > 2^56 and x < 0
res3 = ((diffexp < (itype)-56) && xneg) ? res1 : res3;
res4 = MATH_DIVIDE(MATH_DIVIDE(y, x), pi);
// x positive and dominant over y by a factor of 2^28
itype xpos = xneg ^ (itype)SIGNBIT_DP64;
res3 = ((diffexp < (itype)-28) & xpos) ? res4 : res3;
// abs(y)/abs(x) > 2^56
res4 = yneg ? (vtype)-0.5 : (vtype)0.5; // atan(y/x) is insignificant compared to piby2
res3 = (diffexp > (itype)56) ? res4 : res3;
res3 = (x2 == (vtype)0.0) ? res4 : res3; // Zero x gives +- pi/2 depending on sign of y
res4 = xneg ? res1 : y2;
res3 = (y2 == (vtype)0.0) ? res4 : res3; // Zero y gives +-0 for positive x and +-pi for negative x
res3 = isnan(y2) ? y2 : res3;
res3 = isnan(x2) ? x2 : res3;
return res3;
}
|