1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
|
/*
* Copyright (c) 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
_CL_OVERLOADABLE double log1p(double x)
{
// Computes natural log(1+x). Algorithm based on:
// Ping-Tak Peter Tang
// "Table-driven implementation of the logarithm function in IEEE
// floating-point arithmetic"
// ACM Transactions on Mathematical Software (TOMS)
// Volume 16, Issue 4 (December 1990)
// Note that we use a lookup table of size 64 rather than 128,
// and compensate by having extra terms in the minimax polynomial
// for the kernel approximation.
// Process Inside the threshold now
ulong ux = as_utype(1.0 + x);
int xexp = ((as_int2(ux).hi >> 20) & 0x7ff) - EXPBIAS_DP64;
double f = as_double(ONEEXPBITS_DP64 | (ux & MANTBITS_DP64));
int j = as_int2(ux).hi >> 13;
j = ((0x80 | (j & 0x7e)) >> 1) + (j & 0x1);
double f1 = (double)j * 0x1.0p-6;
j -= 64;
double f2temp = f - f1;
double m2 = as_double(convert_ulong(0x3ff - xexp) << EXPSHIFTBITS_DP64);
double f2l = pocl_fma(m2, x, m2 - f1);
double f2g = pocl_fma(m2, x, -f1) + m2;
double f2 = xexp <= MANTLENGTH_DP64-1 ? f2l : f2g;
f2 = (xexp <= -2) | (xexp >= MANTLENGTH_DP64+8) ? f2temp : f2;
double2 tv = USE_TABLE(ln_tbl, j);
double z1 = tv.s0;
double q = tv.s1;
double u = MATH_DIVIDE(f2, pocl_fma(0.5, f2, f1));
double v = u * u;
double poly = v * pocl_fma(v,
pocl_fma(v, 2.23219810758559851206e-03, 1.24999999978138668903e-02),
8.33333333333333593622e-02);
// log2_lead and log2_tail sum to an extra-precise version of log(2)
const double log2_lead = 6.93147122859954833984e-01; /* 0x3fe62e42e0000000 */
const double log2_tail = 5.76999904754328540596e-08; /* 0x3e6efa39ef35793c */
double z2 = q + pocl_fma(u, poly, u);
double dxexp = (double)xexp;
double r1 = pocl_fma(dxexp, log2_lead, z1);
double r2 = pocl_fma(dxexp, log2_tail, z2);
double result1 = r1 + r2;
// Process Outside the threshold now
double r = x;
u = r / (2.0 + r);
double correction = r * u;
u = u + u;
v = u * u;
r1 = r;
poly = pocl_fma(v,
pocl_fma(v,
pocl_fma(v, 4.34887777707614552256e-04, 2.23213998791944806202e-03),
1.25000000037717509602e-02),
8.33333333333317923934e-02);
r2 = pocl_fma(u*v, poly, -correction);
// The values exp(-1/16)-1 and exp(1/16)-1
const double log1p_thresh1 = -0x1.f0540438fd5c3p-5;
const double log1p_thresh2 = 0x1.082b577d34ed8p-4;
double result2 = r1 + r2;
result2 = x < log1p_thresh1 | x > log1p_thresh2 ? result1 : result2;
result2 = isinf(x) ? x : result2;
result2 = x < -1.0 ? as_double(QNANBITPATT_DP64) : result2;
result2 = x == -1.0 ? as_double(NINFBITPATT_DP64) : result2;
return result2;
}
|