File: sincos_helpers_fp32.cl

package info (click to toggle)
pocl 1.6-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 17,816 kB
  • sloc: lisp: 135,476; ansic: 64,403; cpp: 32,196; vhdl: 1,040; sh: 382; python: 336; makefile: 151; pascal: 140; java: 72; xml: 49
file content (380 lines) | stat: -rw-r--r-- 12,447 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
/*
 * Copyright (c) 2014 Advanced Micro Devices, Inc.
 *
 * Copyright (c) 2017 Michal Babej / Tampere University of Technology
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#define bitalign(hi, lo, shift) \
  ((hi) << ((itype)32 - (shift))) | ((lo) >> (shift));

_CL_OVERLOADABLE void __pocl_fullMulS(vtype *hi, vtype *lo, vtype a, vtype b, vtype bh, vtype bt)
{
    if (HAVE_FMA32) {
        vtype ph = a * b;
        *hi = ph;
        *lo = fma(a, b, -ph);
    } else {
        vtype ah = as_vtype(as_utype(a) & (utype)0xfffff000U);
        vtype at = a - ah;
        vtype ph = a * b;
        vtype pt = pocl_fma(at, bt, pocl_fma(at, bh, pocl_fma(ah, bt, pocl_fma(ah, bh, -ph))));
        *hi = ph;
        *lo = pt;
    }
}

_CL_OVERLOADABLE vtype __pocl_removePi2S(vtype *hi, vtype *lo, vtype x)
{
    // 72 bits of pi/2
    const vtype fpiby2_1 = (vtype)( 0xC90FDA / 0x1.0p+23f);
    const vtype fpiby2_1_h = (vtype)( 0xC90 / 0x1.0p+11f);
    const vtype fpiby2_1_t = (vtype)( 0xFDA / 0x1.0p+23f);

    const vtype fpiby2_2 = (vtype)( 0xA22168 / 0x1.0p+47f);
    const vtype fpiby2_2_h = (vtype)( 0xA22 / 0x1.0p+35f);
    const vtype fpiby2_2_t = (vtype)( 0x168 / 0x1.0p+47f);

    const vtype fpiby2_3 = (vtype)( 0xC234C4 / 0x1.0p+71f);
    const vtype fpiby2_3_h = (vtype)( 0xC23 / 0x1.0p+59f);
    const vtype fpiby2_3_t = (vtype)( 0x4C4 / 0x1.0p+71f);

    const vtype twobypi = (vtype)0x1.45f306p-1f;

    vtype fnpi2 = trunc(pocl_fma(x, twobypi, (vtype)0.5f));

    // subtract n * pi/2 from x
    vtype rhead, rtail;
    __pocl_fullMulS(&rhead, &rtail, fnpi2, fpiby2_1, fpiby2_1_h, fpiby2_1_t);
    vtype v = x - rhead;
    vtype rem = v + (((x - v) - rhead) - rtail);

    vtype rhead2, rtail2;
    __pocl_fullMulS(&rhead2, &rtail2, fnpi2, fpiby2_2, fpiby2_2_h, fpiby2_2_t);
    v = rem - rhead2;
    rem = v + (((rem - v) - rhead2) - rtail2);

    vtype rhead3, rtail3;
    __pocl_fullMulS(&rhead3, &rtail3, fnpi2, fpiby2_3, fpiby2_3_h, fpiby2_3_t);
    v = rem - rhead3;

    *hi = v + ((rem - v) - rhead3);
    *lo = -rtail3;
    return fnpi2;
}

_CL_OVERLOADABLE itype __pocl_argReductionSmallS(vtype *r, vtype *rr, vtype x)
{
    vtype fnpi2 = __pocl_removePi2S(r, rr, x);
    return convert_itype(fnpi2) & (itype)0x3;
}

#define FULL_MUL(A, B, HI, LO) \
    LO = A * B; \
    HI = mul_hi(A, B)

#define FULL_MAD(A, B, C, HI, LO) \
    LO = ((A) * (B) + (C)); \
    HI = mul_hi(A, B); \
    HI += ((LO < C) ? (utype)1 : (utype)0)

#ifdef SINGLEVEC
#define SHIFT_MINUS_32 shift -= c << 5
#else
#define SHIFT_MINUS_32 shift -= c & (itype)32
#endif

_CL_OVERLOADABLE itype __pocl_argReductionLargeS(vtype *r, vtype *rr, vtype x)
{
    itype xe = (itype)(as_itype(x) >> 23) - (itype)127;
    utype xm = (utype)0x00800000U | (as_utype(x) & (utype)0x7fffffU);

    // 224 bits of 2/PI: . A2F9836E 4E441529 FC2757D1 F534DDC0 DB629599 3C439041 FE5163AB
    const utype b6 = (utype)0xA2F9836EU;
    const utype b5 = (utype)0x4E441529U;
    const utype b4 = (utype)0xFC2757D1U;
    const utype b3 = (utype)0xF534DDC0U;
    const utype b2 = (utype)0xDB629599U;
    const utype b1 = (utype)0x3C439041U;
    const utype b0 = (utype)0xFE5163ABU;

    utype p0, p1, p2, p3, p4, p5, p6, p7, c0, c1;

    FULL_MUL(xm, b0, c0, p0);
    FULL_MAD(xm, b1, c0, c1, p1);
    FULL_MAD(xm, b2, c1, c0, p2);
    FULL_MAD(xm, b3, c0, c1, p3);
    FULL_MAD(xm, b4, c1, c0, p4);
    FULL_MAD(xm, b5, c0, c1, p5);
    FULL_MAD(xm, b6, c1, p7, p6);

    itype fbits = (itype)224 + (itype)23 - xe;

    // shift amount to get 2 lsb of integer part at top 2 bits
    //   min: 25 (xe=18) max: 134 (xe=127)
    itype shift = (itype)254 - fbits;

    // Shift by up to 134/32 = 4 words
    itype c = (shift > 31);
    p7 = c ? p6 : p7;
    p6 = c ? p5 : p6;
    p5 = c ? p4 : p5;
    p4 = c ? p3 : p4;
    p3 = c ? p2 : p3;
    p2 = c ? p1 : p2;
    p1 = c ? p0 : p1;
    SHIFT_MINUS_32;

    c = (shift > 31);
    p7 = c ? p6 : p7;
    p6 = c ? p5 : p6;
    p5 = c ? p4 : p5;
    p4 = c ? p3 : p4;
    p3 = c ? p2 : p3;
    p2 = c ? p1 : p2;
    SHIFT_MINUS_32;

    c = (shift > 31);
    p7 = c ? p6 : p7;
    p6 = c ? p5 : p6;
    p5 = c ? p4 : p5;
    p4 = c ? p3 : p4;
    p3 = c ? p2 : p3;
    SHIFT_MINUS_32;

    c = (shift > 31);
    p7 = c ? p6 : p7;
    p6 = c ? p5 : p6;
    p5 = c ? p4 : p5;
    p4 = c ? p3 : p4;
    SHIFT_MINUS_32;

    // bitalign cannot handle a shift of 32
    c = (shift > 0);
    shift = (itype)32 - shift;
    utype t7 = bitalign(p7, p6, shift);
    utype t6 = bitalign(p6, p5, shift);
    utype t5 = bitalign(p5, p4, shift);
    p7 = c ? t7 : p7;
    p6 = c ? t6 : p6;
    p5 = c ? t5 : p5;

    // Get 2 lsb of itype part and msb of fraction
    itype i = as_itype(p7 >> 29);

    // Scoot up 2 more bits so only fraction remains
    p7 = bitalign(p7, p6, 30);
    p6 = bitalign(p6, p5, 30);
    p5 = bitalign(p5, p4, 30);

    // Subtract 1 if msb of fraction is 1, i.e. fraction >= 0.5
    utype flip = (i << 31) ? (utype)0xffffffffU : (utype)0U;
    utype sign = (i << 31) ? (utype)0x80000000U : (utype)0U;
    p7 = p7 ^ flip;
    p6 = p6 ^ flip;
    p5 = p5 ^ flip;

    // Find exponent and shift away leading zeroes and hidden bit
    xe = as_itype(clz(p7)) + (itype)1;
    shift = (itype)32 - xe;
    p7 = bitalign(p7, p6, shift);
    p6 = bitalign(p6, p5, shift);

    // Most significant part of fraction
    vtype q1 = as_vtype(as_itype(sign) | (((itype)127 - xe) << 23) | as_itype(p7 >> 9));

    // Shift out bits we captured on q1
    p7 = bitalign(p7, p6, 32-23);

    // Get 24 more bits of fraction in another vtype, there are not long strings of zeroes here
    itype xxe = as_itype(clz(p7)) + (itype)1;
    p7 = bitalign(p7, p6, (itype)32 - xxe);
    vtype q0 = as_vtype(as_itype(sign) | (((itype)127 - (xe + (itype)23 + xxe)) << 23) | as_itype(p7 >> 9));

    // At this point, the fraction q1 + q0 is correct to at least 48 bits
    // Now we need to multiply the fraction by pi/2
    // This loses us about 4 bits
    // pi/2 = C90 FDA A22 168 C23 4C4

    const vtype pio2h = (vtype)(0xc90fda / 0x1.0p+23f);
    const vtype pio2hh = (vtype)(0xc90 / 0x1.0p+11f);
    const vtype pio2ht = (vtype)(0xfda / 0x1.0p+23f);
    const vtype pio2t = (vtype)(0xa22168 / 0x1.0p+47f);

    vtype rh, rt;

    if (HAVE_FMA32) {
        rh = q1 * pio2h;
        rt = pocl_fma(q0, pio2h,
               pocl_fma(q1, pio2t,
                 pocl_fma(q1, pio2h, -rh)));
    } else {
        vtype q1h = as_vtype(as_utype(q1) & (utype)0xfffff000);
        vtype q1t = q1 - q1h;
        rh = q1 * pio2h;
        rt = pocl_fma(q1t, pio2ht,
               pocl_fma(q1t, pio2hh,
                 pocl_fma(q1h, pio2ht, pocl_fma(q1h, pio2hh, -rh))));
        rt = pocl_fma(q0, pio2h, pocl_fma(q1, pio2t, rt));
    }

    vtype t = rh + rt;
    rt = rt - (t - rh);

    *r = t;
    *rr = rt;
    return ((i >> 1) + (i & (itype)1)) & (itype)0x3;
}

#undef SHIFT_MINUS_32

_CL_OVERLOADABLE itype __pocl_argReductionS(vtype *r, vtype *rr, vtype x)
{
    itype retval = __pocl_argReductionSmallS(r, rr, x);
    itype cond = (x >= (vtype)0x1.0p+23f);
    if (SV_ANY(cond)) {
        retval = __pocl_argReductionLargeS(r, rr, x);
    }
    return retval;
}



// Evaluate single precisions in and cos of value in interval [-pi/4, pi/4]
_CL_OVERLOADABLE v2type __pocl_sincosf_piby4(vtype x)
{
    // Taylor series for sin(x) is x - x^3/3! + x^5/5! - x^7/7! ...
    // = x * (1 - x^2/3! + x^4/5! - x^6/7! ...
    // = x * f(w)
    // where w = x*x and f(w) = (1 - w/3! + w^2/5! - w^3/7! ...
    // We use a minimax approximation of (f(w) - 1) / w
    // because this produces an expansion in even powers of x.

    // Taylor series for cos(x) is 1 - x^2/2! + x^4/4! - x^6/6! ...
    // = f(w)
    // where w = x*x and f(w) = (1 - w/2! + w^2/4! - w^3/6! ...
    // We use a minimax approximation of (f(w) - 1 + w/2) / (w*w)
    // because this produces an expansion in even powers of x.

    const vtype sc1 = (vtype)-0.166666666638608441788607926e0F;
    const vtype sc2 = (vtype)0.833333187633086262120839299e-2F;
    const vtype sc3 = (vtype)-0.198400874359527693921333720e-3F;
    const vtype sc4 = (vtype)0.272500015145584081596826911e-5F;

    const vtype cc1 = (vtype)0.41666666664325175238031e-1F;
    const vtype cc2 = (vtype)-0.13888887673175665567647e-2F;
    const vtype cc3 = (vtype)0.24800600878112441958053e-4F;
    const vtype cc4 = (vtype)-0.27301013343179832472841e-6F;

    vtype x2 = x * x;

    v2type ret;
    ret.lo = pocl_fma(x*x2,
               pocl_fma(x2,
                 pocl_fma(x2,
                   pocl_fma(x2, sc4, sc3),
                   sc2),
                 sc1),
               x);
    ret.hi = pocl_fma(x2*x2,
               pocl_fma(x2,
                 pocl_fma(x2,
                   pocl_fma(x2, cc4, cc3),
                   cc2),
                 cc1),
                 pocl_fma(x2, (vtype)(-0.5f), (vtype)1.0f));
    return ret;
}


_CL_OVERLOADABLE vtype __pocl_cosf_piby4(vtype x, vtype y) {
    // Taylor series for cos(x) is 1 - x^2/2! + x^4/4! - x^6/6! ...
    // = f(w)
    // where w = x*x and f(w) = (1 - w/2! + w^2/4! - w^3/6! ...
    // We use a minimax approximation of (f(w) - 1 + w/2) / (w*w)
    // because this produces an expansion in even powers of x.

    const vtype c1 = (vtype)0.416666666e-1f;
    const vtype c2 = (vtype)-0.138888876e-2f;
    const vtype c3 = (vtype)0.248006008e-4f;
    const vtype c4 = (vtype)-0.2730101334e-6f;
    const vtype c5 = (vtype)2.0875723372e-09f;  // 0x310f74f6
    const vtype c6 = (vtype)-1.1359647598e-11f; // 0xad47d74e

    vtype z = x * x;
    vtype r = z * pocl_fma(z,
                    pocl_fma(z,
                      pocl_fma(z,
                        pocl_fma(z,
                          pocl_fma(z, c6,  c5),
                          c4),
                        c3),
                      c2),
                    c1);

    // if |x| < 0.3
    vtype qx = (vtype)0.0f;

    itype ix = as_itype(x) & (itype)EXSIGNBIT_SP32;

    //  0.78125 > |x| >= 0.3
    vtype xby4 = as_vtype(ix - (itype)0x01000000);
    qx = ((ix >= (itype)0x3e99999a) & (ix <= (itype)0x3f480000)) ? xby4 : qx;

    // x > 0.78125
    qx = (ix > (itype)0x3f480000) ? (vtype)0.28125f : qx;

    vtype hz = pocl_fma(z, (vtype)0.5f, -qx);
    vtype a = (vtype)1.0f - qx;
    vtype ret = a - (hz - pocl_fma(z, r, -x*y));
    return ret;
}


_CL_OVERLOADABLE vtype __pocl_sinf_piby4(vtype x, vtype y) {
    // Taylor series for sin(x) is x - x^3/3! + x^5/5! - x^7/7! ...
    // = x * (1 - x^2/3! + x^4/5! - x^6/7! ...
    // = x * f(w)
    // where w = x*x and f(w) = (1 - w/3! + w^2/5! - w^3/7! ...
    // We use a minimax approximation of (f(w) - 1) / w
    // because this produces an expansion in even powers of x.

    const vtype c1 = (vtype)-0.1666666666e0f;
    const vtype c2 = (vtype)0.8333331876e-2f;
    const vtype c3 = (vtype)-0.198400874e-3f;
    const vtype c4 = (vtype)0.272500015e-5f;
    const vtype c5 = (vtype)-2.5050759689e-08f; // 0xb2d72f34
    const vtype c6 = (vtype)1.5896910177e-10f;  // 0x2f2ec9d3

    vtype z = x * x;
    vtype v = z * x;
    vtype r = pocl_fma(z,
                pocl_fma(z,
                  pocl_fma(z,
                    pocl_fma(z, c6, c5),
                    c4),
                  c3),
                c2);
    vtype ret = x - pocl_fma(v, -c1,
                      pocl_fma(z,
                        pocl_fma(y, (vtype)0.5f, -v*r), -y));

    return ret;
}