1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
|
/*
* Copyright (c) 2014 Advanced Micro Devices, Inc.
*
* Copyright (c) 2017 Michal Babej / Tampere University of Technology
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#define bitalign(hi, lo, shift) \
((hi) << ((itype)32 - (shift))) | ((lo) >> (shift));
_CL_OVERLOADABLE void __pocl_fullMulS(vtype *hi, vtype *lo, vtype a, vtype b, vtype bh, vtype bt)
{
if (HAVE_FMA32) {
vtype ph = a * b;
*hi = ph;
*lo = fma(a, b, -ph);
} else {
vtype ah = as_vtype(as_utype(a) & (utype)0xfffff000U);
vtype at = a - ah;
vtype ph = a * b;
vtype pt = pocl_fma(at, bt, pocl_fma(at, bh, pocl_fma(ah, bt, pocl_fma(ah, bh, -ph))));
*hi = ph;
*lo = pt;
}
}
_CL_OVERLOADABLE vtype __pocl_removePi2S(vtype *hi, vtype *lo, vtype x)
{
// 72 bits of pi/2
const vtype fpiby2_1 = (vtype)( 0xC90FDA / 0x1.0p+23f);
const vtype fpiby2_1_h = (vtype)( 0xC90 / 0x1.0p+11f);
const vtype fpiby2_1_t = (vtype)( 0xFDA / 0x1.0p+23f);
const vtype fpiby2_2 = (vtype)( 0xA22168 / 0x1.0p+47f);
const vtype fpiby2_2_h = (vtype)( 0xA22 / 0x1.0p+35f);
const vtype fpiby2_2_t = (vtype)( 0x168 / 0x1.0p+47f);
const vtype fpiby2_3 = (vtype)( 0xC234C4 / 0x1.0p+71f);
const vtype fpiby2_3_h = (vtype)( 0xC23 / 0x1.0p+59f);
const vtype fpiby2_3_t = (vtype)( 0x4C4 / 0x1.0p+71f);
const vtype twobypi = (vtype)0x1.45f306p-1f;
vtype fnpi2 = trunc(pocl_fma(x, twobypi, (vtype)0.5f));
// subtract n * pi/2 from x
vtype rhead, rtail;
__pocl_fullMulS(&rhead, &rtail, fnpi2, fpiby2_1, fpiby2_1_h, fpiby2_1_t);
vtype v = x - rhead;
vtype rem = v + (((x - v) - rhead) - rtail);
vtype rhead2, rtail2;
__pocl_fullMulS(&rhead2, &rtail2, fnpi2, fpiby2_2, fpiby2_2_h, fpiby2_2_t);
v = rem - rhead2;
rem = v + (((rem - v) - rhead2) - rtail2);
vtype rhead3, rtail3;
__pocl_fullMulS(&rhead3, &rtail3, fnpi2, fpiby2_3, fpiby2_3_h, fpiby2_3_t);
v = rem - rhead3;
*hi = v + ((rem - v) - rhead3);
*lo = -rtail3;
return fnpi2;
}
_CL_OVERLOADABLE itype __pocl_argReductionSmallS(vtype *r, vtype *rr, vtype x)
{
vtype fnpi2 = __pocl_removePi2S(r, rr, x);
return convert_itype(fnpi2) & (itype)0x3;
}
#define FULL_MUL(A, B, HI, LO) \
LO = A * B; \
HI = mul_hi(A, B)
#define FULL_MAD(A, B, C, HI, LO) \
LO = ((A) * (B) + (C)); \
HI = mul_hi(A, B); \
HI += ((LO < C) ? (utype)1 : (utype)0)
#ifdef SINGLEVEC
#define SHIFT_MINUS_32 shift -= c << 5
#else
#define SHIFT_MINUS_32 shift -= c & (itype)32
#endif
_CL_OVERLOADABLE itype __pocl_argReductionLargeS(vtype *r, vtype *rr, vtype x)
{
itype xe = (itype)(as_itype(x) >> 23) - (itype)127;
utype xm = (utype)0x00800000U | (as_utype(x) & (utype)0x7fffffU);
// 224 bits of 2/PI: . A2F9836E 4E441529 FC2757D1 F534DDC0 DB629599 3C439041 FE5163AB
const utype b6 = (utype)0xA2F9836EU;
const utype b5 = (utype)0x4E441529U;
const utype b4 = (utype)0xFC2757D1U;
const utype b3 = (utype)0xF534DDC0U;
const utype b2 = (utype)0xDB629599U;
const utype b1 = (utype)0x3C439041U;
const utype b0 = (utype)0xFE5163ABU;
utype p0, p1, p2, p3, p4, p5, p6, p7, c0, c1;
FULL_MUL(xm, b0, c0, p0);
FULL_MAD(xm, b1, c0, c1, p1);
FULL_MAD(xm, b2, c1, c0, p2);
FULL_MAD(xm, b3, c0, c1, p3);
FULL_MAD(xm, b4, c1, c0, p4);
FULL_MAD(xm, b5, c0, c1, p5);
FULL_MAD(xm, b6, c1, p7, p6);
itype fbits = (itype)224 + (itype)23 - xe;
// shift amount to get 2 lsb of integer part at top 2 bits
// min: 25 (xe=18) max: 134 (xe=127)
itype shift = (itype)254 - fbits;
// Shift by up to 134/32 = 4 words
itype c = (shift > 31);
p7 = c ? p6 : p7;
p6 = c ? p5 : p6;
p5 = c ? p4 : p5;
p4 = c ? p3 : p4;
p3 = c ? p2 : p3;
p2 = c ? p1 : p2;
p1 = c ? p0 : p1;
SHIFT_MINUS_32;
c = (shift > 31);
p7 = c ? p6 : p7;
p6 = c ? p5 : p6;
p5 = c ? p4 : p5;
p4 = c ? p3 : p4;
p3 = c ? p2 : p3;
p2 = c ? p1 : p2;
SHIFT_MINUS_32;
c = (shift > 31);
p7 = c ? p6 : p7;
p6 = c ? p5 : p6;
p5 = c ? p4 : p5;
p4 = c ? p3 : p4;
p3 = c ? p2 : p3;
SHIFT_MINUS_32;
c = (shift > 31);
p7 = c ? p6 : p7;
p6 = c ? p5 : p6;
p5 = c ? p4 : p5;
p4 = c ? p3 : p4;
SHIFT_MINUS_32;
// bitalign cannot handle a shift of 32
c = (shift > 0);
shift = (itype)32 - shift;
utype t7 = bitalign(p7, p6, shift);
utype t6 = bitalign(p6, p5, shift);
utype t5 = bitalign(p5, p4, shift);
p7 = c ? t7 : p7;
p6 = c ? t6 : p6;
p5 = c ? t5 : p5;
// Get 2 lsb of itype part and msb of fraction
itype i = as_itype(p7 >> 29);
// Scoot up 2 more bits so only fraction remains
p7 = bitalign(p7, p6, 30);
p6 = bitalign(p6, p5, 30);
p5 = bitalign(p5, p4, 30);
// Subtract 1 if msb of fraction is 1, i.e. fraction >= 0.5
utype flip = (i << 31) ? (utype)0xffffffffU : (utype)0U;
utype sign = (i << 31) ? (utype)0x80000000U : (utype)0U;
p7 = p7 ^ flip;
p6 = p6 ^ flip;
p5 = p5 ^ flip;
// Find exponent and shift away leading zeroes and hidden bit
xe = as_itype(clz(p7)) + (itype)1;
shift = (itype)32 - xe;
p7 = bitalign(p7, p6, shift);
p6 = bitalign(p6, p5, shift);
// Most significant part of fraction
vtype q1 = as_vtype(as_itype(sign) | (((itype)127 - xe) << 23) | as_itype(p7 >> 9));
// Shift out bits we captured on q1
p7 = bitalign(p7, p6, 32-23);
// Get 24 more bits of fraction in another vtype, there are not long strings of zeroes here
itype xxe = as_itype(clz(p7)) + (itype)1;
p7 = bitalign(p7, p6, (itype)32 - xxe);
vtype q0 = as_vtype(as_itype(sign) | (((itype)127 - (xe + (itype)23 + xxe)) << 23) | as_itype(p7 >> 9));
// At this point, the fraction q1 + q0 is correct to at least 48 bits
// Now we need to multiply the fraction by pi/2
// This loses us about 4 bits
// pi/2 = C90 FDA A22 168 C23 4C4
const vtype pio2h = (vtype)(0xc90fda / 0x1.0p+23f);
const vtype pio2hh = (vtype)(0xc90 / 0x1.0p+11f);
const vtype pio2ht = (vtype)(0xfda / 0x1.0p+23f);
const vtype pio2t = (vtype)(0xa22168 / 0x1.0p+47f);
vtype rh, rt;
if (HAVE_FMA32) {
rh = q1 * pio2h;
rt = pocl_fma(q0, pio2h,
pocl_fma(q1, pio2t,
pocl_fma(q1, pio2h, -rh)));
} else {
vtype q1h = as_vtype(as_utype(q1) & (utype)0xfffff000);
vtype q1t = q1 - q1h;
rh = q1 * pio2h;
rt = pocl_fma(q1t, pio2ht,
pocl_fma(q1t, pio2hh,
pocl_fma(q1h, pio2ht, pocl_fma(q1h, pio2hh, -rh))));
rt = pocl_fma(q0, pio2h, pocl_fma(q1, pio2t, rt));
}
vtype t = rh + rt;
rt = rt - (t - rh);
*r = t;
*rr = rt;
return ((i >> 1) + (i & (itype)1)) & (itype)0x3;
}
#undef SHIFT_MINUS_32
_CL_OVERLOADABLE itype __pocl_argReductionS(vtype *r, vtype *rr, vtype x)
{
itype retval = __pocl_argReductionSmallS(r, rr, x);
itype cond = (x >= (vtype)0x1.0p+23f);
if (SV_ANY(cond)) {
retval = __pocl_argReductionLargeS(r, rr, x);
}
return retval;
}
// Evaluate single precisions in and cos of value in interval [-pi/4, pi/4]
_CL_OVERLOADABLE v2type __pocl_sincosf_piby4(vtype x)
{
// Taylor series for sin(x) is x - x^3/3! + x^5/5! - x^7/7! ...
// = x * (1 - x^2/3! + x^4/5! - x^6/7! ...
// = x * f(w)
// where w = x*x and f(w) = (1 - w/3! + w^2/5! - w^3/7! ...
// We use a minimax approximation of (f(w) - 1) / w
// because this produces an expansion in even powers of x.
// Taylor series for cos(x) is 1 - x^2/2! + x^4/4! - x^6/6! ...
// = f(w)
// where w = x*x and f(w) = (1 - w/2! + w^2/4! - w^3/6! ...
// We use a minimax approximation of (f(w) - 1 + w/2) / (w*w)
// because this produces an expansion in even powers of x.
const vtype sc1 = (vtype)-0.166666666638608441788607926e0F;
const vtype sc2 = (vtype)0.833333187633086262120839299e-2F;
const vtype sc3 = (vtype)-0.198400874359527693921333720e-3F;
const vtype sc4 = (vtype)0.272500015145584081596826911e-5F;
const vtype cc1 = (vtype)0.41666666664325175238031e-1F;
const vtype cc2 = (vtype)-0.13888887673175665567647e-2F;
const vtype cc3 = (vtype)0.24800600878112441958053e-4F;
const vtype cc4 = (vtype)-0.27301013343179832472841e-6F;
vtype x2 = x * x;
v2type ret;
ret.lo = pocl_fma(x*x2,
pocl_fma(x2,
pocl_fma(x2,
pocl_fma(x2, sc4, sc3),
sc2),
sc1),
x);
ret.hi = pocl_fma(x2*x2,
pocl_fma(x2,
pocl_fma(x2,
pocl_fma(x2, cc4, cc3),
cc2),
cc1),
pocl_fma(x2, (vtype)(-0.5f), (vtype)1.0f));
return ret;
}
_CL_OVERLOADABLE vtype __pocl_cosf_piby4(vtype x, vtype y) {
// Taylor series for cos(x) is 1 - x^2/2! + x^4/4! - x^6/6! ...
// = f(w)
// where w = x*x and f(w) = (1 - w/2! + w^2/4! - w^3/6! ...
// We use a minimax approximation of (f(w) - 1 + w/2) / (w*w)
// because this produces an expansion in even powers of x.
const vtype c1 = (vtype)0.416666666e-1f;
const vtype c2 = (vtype)-0.138888876e-2f;
const vtype c3 = (vtype)0.248006008e-4f;
const vtype c4 = (vtype)-0.2730101334e-6f;
const vtype c5 = (vtype)2.0875723372e-09f; // 0x310f74f6
const vtype c6 = (vtype)-1.1359647598e-11f; // 0xad47d74e
vtype z = x * x;
vtype r = z * pocl_fma(z,
pocl_fma(z,
pocl_fma(z,
pocl_fma(z,
pocl_fma(z, c6, c5),
c4),
c3),
c2),
c1);
// if |x| < 0.3
vtype qx = (vtype)0.0f;
itype ix = as_itype(x) & (itype)EXSIGNBIT_SP32;
// 0.78125 > |x| >= 0.3
vtype xby4 = as_vtype(ix - (itype)0x01000000);
qx = ((ix >= (itype)0x3e99999a) & (ix <= (itype)0x3f480000)) ? xby4 : qx;
// x > 0.78125
qx = (ix > (itype)0x3f480000) ? (vtype)0.28125f : qx;
vtype hz = pocl_fma(z, (vtype)0.5f, -qx);
vtype a = (vtype)1.0f - qx;
vtype ret = a - (hz - pocl_fma(z, r, -x*y));
return ret;
}
_CL_OVERLOADABLE vtype __pocl_sinf_piby4(vtype x, vtype y) {
// Taylor series for sin(x) is x - x^3/3! + x^5/5! - x^7/7! ...
// = x * (1 - x^2/3! + x^4/5! - x^6/7! ...
// = x * f(w)
// where w = x*x and f(w) = (1 - w/3! + w^2/5! - w^3/7! ...
// We use a minimax approximation of (f(w) - 1) / w
// because this produces an expansion in even powers of x.
const vtype c1 = (vtype)-0.1666666666e0f;
const vtype c2 = (vtype)0.8333331876e-2f;
const vtype c3 = (vtype)-0.198400874e-3f;
const vtype c4 = (vtype)0.272500015e-5f;
const vtype c5 = (vtype)-2.5050759689e-08f; // 0xb2d72f34
const vtype c6 = (vtype)1.5896910177e-10f; // 0x2f2ec9d3
vtype z = x * x;
vtype v = z * x;
vtype r = pocl_fma(z,
pocl_fma(z,
pocl_fma(z,
pocl_fma(z, c6, c5),
c4),
c3),
c2);
vtype ret = x - pocl_fma(v, -c1,
pocl_fma(z,
pocl_fma(y, (vtype)0.5f, -v*r), -y));
return ret;
}
|