1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
|
/*
* Copyright (c) 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// Algorithm:
//
// e^x = 2^(x/ln(2)) = 2^(x*(64/ln(2))/64)
//
// x*(64/ln(2)) = n + f, |f| <= 0.5, n is integer
// n = 64*m + j, 0 <= j < 64
//
// e^x = 2^((64*m + j + f)/64)
// = (2^m) * (2^(j/64)) * 2^(f/64)
// = (2^m) * (2^(j/64)) * e^(f*(ln(2)/64))
//
// f = x*(64/ln(2)) - n
// r = f*(ln(2)/64) = x - n*(ln(2)/64)
//
// e^x = (2^m) * (2^(j/64)) * e^r
//
// (2^(j/64)) is precomputed
//
// e^r = 1 + r + (r^2)/2! + (r^3)/3! + (r^4)/4! + (r^5)/5!
// e^r = 1 + q
//
// q = r + (r^2)/2! + (r^3)/3! + (r^4)/4! + (r^5)/5!
//
// e^x = (2^m) * ( (2^(j/64)) + q*(2^(j/64)) )
_CL_OVERLOADABLE vtype exp10(vtype x)
{
const vtype X_MAX = (vtype) 0x1.344134p+5f; // 128*log2/log10 : 38.53183944498959
const vtype X_MIN = (vtype)-0x1.66d3e8p+5f; // -149*log2/log10 : -44.8534693539332
const vtype R_64_BY_LOG10_2 = (vtype)0x1.a934f0p+7f; // 64*log10/log2 : 212.6033980727912
const vtype R_LOG10_2_BY_64_LD = (vtype)-0x1.340000p-8f; // log2/(64 * log10) lead : 0.004699707
const vtype R_LOG10_2_BY_64_TL = (vtype)-0x1.04d426p-18f; // log2/(64 * log10) tail : 0.00000388665057
const vtype R_LN10 = (vtype)0x1.26bb1cp+1f;
itype return_nan = isnan(x);
itype return_inf = x > X_MAX;
itype return_zero = x < X_MIN;
itype n = convert_itype(x * R_64_BY_LOG10_2);
vtype fn = convert_vtype(n);
utype j = as_utype(n & (itype)0x3f);
itype m = n >> 6;
itype m2 = m << EXPSHIFTBITS_SP32;
vtype r;
r = R_LN10 * mad(fn, R_LOG10_2_BY_64_TL, mad(fn, R_LOG10_2_BY_64_LD, x));
// Truncated Taylor series for e^r
vtype z2 = mad(mad(mad(r, (vtype)0x1.555556p-5f, (vtype)0x1.555556p-3f), r, (vtype)0x1.000000p-1f), r*r, r);
vtype two_to_jby64 = USE_VTABLE(exp_tbl, j);
z2 = mad(two_to_jby64, z2, two_to_jby64);
vtype z2s = z2 * as_vtype((itype)0x1 << (m + (itype)149));
vtype z2n = as_vtype(as_itype(z2) + m2);
z2 = (m <= (itype)-126) ? z2s : z2n;
z2 = return_inf ? as_vtype((utype)PINFBITPATT_SP32) : z2;
z2 = return_zero ? (vtype)0.0f : z2;
z2 = return_nan ? x : z2;
return z2;
}
|