1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
/*
* Copyright (c) 2014,2015 Advanced Micro Devices, Inc.
*
* Copyright (c) 2017 Michal Babej / Tampere University of Technology
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/*
Algorithm:
Based on:
Ping-Tak Peter Tang
"Table-driven implementation of the logarithm function in IEEE
floating-point arithmetic"
ACM Transactions on Mathematical Software (TOMS)
Volume 16, Issue 4 (December 1990)
x very close to 1.0 is handled differently, for x everywhere else
a brief explanation is given below
x = (2^m)*A
x = (2^m)*(G+g) with (1 <= G < 2) and (g <= 2^(-8))
x = (2^m)*2*(G/2+g/2)
x = (2^m)*2*(F+f) with (0.5 <= F < 1) and (f <= 2^(-9))
Y = (2^(-1))*(2^(-m))*(2^m)*A
Now, range of Y is: 0.5 <= Y < 1
F = 0x80 + (first 7 mantissa bits) + (8th mantissa bit)
Now, range of F is: 128 <= F <= 256
F = F / 256
Now, range of F is: 0.5 <= F <= 1
f = -(Y-F), with (f <= 2^(-9))
log(x) = m*log(2) + log(2) + log(F-f)
log(x) = m*log(2) + log(2) + log(F) + log(1-(f/F))
log(x) = m*log(2) + log(2*F) + log(1-r)
r = (f/F), with (r <= 2^(-8))
r = f*(1/F) with (1/F) precomputed to avoid division
log(x) = m*log(2) + log(G) - poly
log(G) is precomputed
poly = (r + (r^2)/2 + (r^3)/3 + (r^4)/4) + (r^5)/5))
log(2) and log(G) need to be maintained in extra precision
to avoid losing precision in the calculations
For x close to 1.0, we employ the following technique to
ensure faster convergence.
log(x) = log((1+s)/(1-s)) = 2*s + (2/3)*s^3 + (2/5)*s^5 + (2/7)*s^7
x = ((1+s)/(1-s))
x = 1 + r
s = r/(2+r)
*/
_CL_OVERLOADABLE vtype
#if defined(COMPILING_LOG2)
log2(vtype x)
#elif defined(COMPILING_LOGB)
logb(vtype x)
#elif defined(COMPILING_LOG10)
log10(vtype x)
#else
log(vtype x)
#endif
{
#if defined(COMPILING_LOGB)
#define COMPILING_LOG2
#endif
#if defined(COMPILING_LOG2)
const vtype LOG2E = (vtype)0x1.715476p+0f; // 1.4426950408889634
const vtype LOG2E_HEAD = (vtype)0x1.700000p+0f; // 1.4375
const vtype LOG2E_TAIL = (vtype)0x1.547652p-8f; // 0.00519504072
#elif defined(COMPILING_LOG10)
const vtype LOG10E = (vtype)0x1.bcb7b2p-2f; // 0.43429448190325182
const vtype LOG10E_HEAD = (vtype)0x1.bc0000p-2f; // 0.43359375
const vtype LOG10E_TAIL = (vtype)0x1.6f62a4p-11f; // 0.0007007319
const vtype LOG10_2_HEAD = (vtype)0x1.340000p-2f; // 0.30078125
const vtype LOG10_2_TAIL = (vtype)0x1.04d426p-12f; // 0.000248745637
#else
const vtype LOG2_HEAD = (vtype)0x1.62e000p-1f; // 0.693115234
const vtype LOG2_TAIL = (vtype)0x1.0bfbe8p-15f; // 0.0000319461833
#endif
utype xi = as_utype(x);
utype ax = xi & (utype)EXSIGNBIT_SP32;
// Calculations for |x-1| < 2^-4
vtype r = x - (vtype)1.0f;
itype near1 = (fabs(r) < (vtype)0x1.0p-4f);
vtype u2 = MATH_DIVIDE(r, (vtype)2.0f + r);
vtype corr = u2 * r;
vtype u = u2 + u2;
vtype v = u * u;
vtype znear1, z1, z2;
// 2/(5 * 2^5), 2/(3 * 2^3)
z2 = pocl_fma(u,
pocl_fma(v,
(vtype)0x1.99999ap-7f,
(vtype)0x1.555556p-4f)*v,
-corr);
#if defined(COMPILING_LOG2)
z1 = as_vtype(as_itype(r) & (itype)0xffff0000);
z2 = z2 + (r - z1);
znear1 = pocl_fma(z1, LOG2E_HEAD,
pocl_fma(z2, LOG2E_HEAD,
pocl_fma(z1, LOG2E_TAIL, z2*LOG2E_TAIL)));
#elif defined(COMPILING_LOG10)
z1 = as_vtype(as_itype(r) & (itype)0xffff0000);
z2 = z2 + (r - z1);
znear1 = pocl_fma(z1, LOG10E_HEAD,
pocl_fma(z2, LOG10E_HEAD,
pocl_fma(z1, LOG10E_TAIL, z2*LOG10E_TAIL)));
#else
znear1 = z2 + r;
#endif
// Calculations for x not near 1
itype m = as_itype(xi >> EXPSHIFTBITS_SP32) - (itype)EXPBIAS_SP32;
// Normalize subnormal
utype xis = as_utype(as_vtype(xi | (utype)0x3f800000) - (vtype)1.0f);
itype ms = (as_itype(xis) >> EXPSHIFTBITS_SP32) - (itype)253;
itype c = (m == -127);
m = c ? ms : m;
utype xin = c ? xis : xi;
vtype mf = convert_vtype(m);
utype indx = (xin & (utype)0x007f0000) + ((xin & (utype)0x00008000) << 1);
// F - Y
vtype f = as_vtype((utype)0x3f000000 | indx)
- as_vtype((utype)0x3f000000 | (xin & MANTBITS_SP32));
indx = indx >> 16;
r = f * USE_VTABLE(log_inv_tbl, indx);
// 1/3, 1/2
vtype poly = pocl_fma(
pocl_fma(r, (vtype)0x1.555556p-2f, (vtype)0.5f),
r*r,
r);
#if defined(COMPILING_LOG2)
v2type tv = USE_VTABLE(log2_tbl, indx);
vtype s0 = tv.lo;
vtype s1 = tv.hi;
z1 = s0 + mf;
z2 = pocl_fma(poly, -LOG2E, s1);
#elif defined(COMPILING_LOG10)
v2type tv = USE_VTABLE(log10_tbl, indx);
vtype s0 = tv.lo;
vtype s1 = tv.hi;
z1 = pocl_fma(mf, LOG10_2_HEAD, s0);
z2 = pocl_fma(poly, -LOG10E, mf*LOG10_2_TAIL) + s1;
#else
v2type tv = USE_VTABLE(loge_tbl, indx);
vtype s0 = tv.lo;
vtype s1 = tv.hi;
z1 = pocl_fma(mf, LOG2_HEAD, s0);
z2 = pocl_fma(mf, LOG2_TAIL, -poly) + s1;
#endif
vtype z = z1 + z2;
z = near1 ? znear1 : z;
// Corner cases
z = (ax >= (utype)PINFBITPATT_SP32) ? x : z;
z = (xi != ax) ? as_vtype((utype)QNANBITPATT_SP32) : z;
z = (ax == 0) ? as_vtype((utype)NINFBITPATT_SP32) : z;
return z;
}
|