File: log_base_fp32.cl

package info (click to toggle)
pocl 6.0-6
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 25,304 kB
  • sloc: lisp: 149,513; ansic: 103,778; cpp: 54,947; python: 1,513; sh: 949; ruby: 255; pascal: 226; tcl: 180; makefile: 173; java: 72; xml: 49
file content (201 lines) | stat: -rw-r--r-- 6,356 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
/*
 * Copyright (c) 2014,2015 Advanced Micro Devices, Inc.
 *
 * Copyright (c) 2017 Michal Babej / Tampere University of Technology
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

/*
   Algorithm:

   Based on:
   Ping-Tak Peter Tang
   "Table-driven implementation of the logarithm function in IEEE
   floating-point arithmetic"
   ACM Transactions on Mathematical Software (TOMS)
   Volume 16, Issue 4 (December 1990)

   x very close to 1.0 is handled differently, for x everywhere else
   a brief explanation is given below

   x = (2^m)*A
   x = (2^m)*(G+g) with (1 <= G < 2) and (g <= 2^(-8))
   x = (2^m)*2*(G/2+g/2)
   x = (2^m)*2*(F+f) with (0.5 <= F < 1) and (f <= 2^(-9))

   Y = (2^(-1))*(2^(-m))*(2^m)*A
   Now, range of Y is: 0.5 <= Y < 1

   F = 0x80 + (first 7 mantissa bits) + (8th mantissa bit)
   Now, range of F is: 128 <= F <= 256
   F = F / 256
   Now, range of F is: 0.5 <= F <= 1

   f = -(Y-F), with (f <= 2^(-9))

   log(x) = m*log(2) + log(2) + log(F-f)
   log(x) = m*log(2) + log(2) + log(F) + log(1-(f/F))
   log(x) = m*log(2) + log(2*F) + log(1-r)

   r = (f/F), with (r <= 2^(-8))
   r = f*(1/F) with (1/F) precomputed to avoid division

   log(x) = m*log(2) + log(G) - poly

   log(G) is precomputed
   poly = (r + (r^2)/2 + (r^3)/3 + (r^4)/4) + (r^5)/5))

   log(2) and log(G) need to be maintained in extra precision
   to avoid losing precision in the calculations


   For x close to 1.0, we employ the following technique to
   ensure faster convergence.

   log(x) = log((1+s)/(1-s)) = 2*s + (2/3)*s^3 + (2/5)*s^5 + (2/7)*s^7
   x = ((1+s)/(1-s))
   x = 1 + r
   s = r/(2+r)

*/


_CL_OVERLOADABLE vtype
#if defined(COMPILING_LOG2)
log2(vtype x)
#elif defined(COMPILING_LOGB)
logb(vtype x)
#elif defined(COMPILING_LOG10)
log10(vtype x)
#else
log(vtype x)
#endif
{

#if defined(COMPILING_LOGB)
#define COMPILING_LOG2
#endif

#if defined(COMPILING_LOG2)
    const vtype LOG2E = (vtype)0x1.715476p+0f;      // 1.4426950408889634
    const vtype LOG2E_HEAD = (vtype)0x1.700000p+0f; // 1.4375
    const vtype LOG2E_TAIL = (vtype)0x1.547652p-8f; // 0.00519504072
#elif defined(COMPILING_LOG10)
    const vtype LOG10E = (vtype)0x1.bcb7b2p-2f;        // 0.43429448190325182
    const vtype LOG10E_HEAD = (vtype)0x1.bc0000p-2f;   // 0.43359375
    const vtype LOG10E_TAIL = (vtype)0x1.6f62a4p-11f;  // 0.0007007319
    const vtype LOG10_2_HEAD = (vtype)0x1.340000p-2f;  // 0.30078125
    const vtype LOG10_2_TAIL = (vtype)0x1.04d426p-12f; // 0.000248745637
#else
    const vtype LOG2_HEAD = (vtype)0x1.62e000p-1f;  // 0.693115234
    const vtype LOG2_TAIL = (vtype)0x1.0bfbe8p-15f; // 0.0000319461833
#endif

    utype xi = as_utype(x);
    utype ax = xi & (utype)EXSIGNBIT_SP32;

    // Calculations for |x-1| < 2^-4
    vtype r = x - (vtype)1.0f;
    itype near1 = (fabs(r) < (vtype)0x1.0p-4f);
    vtype u2 = MATH_DIVIDE(r, (vtype)2.0f + r);
    vtype corr = u2 * r;
    vtype u = u2 + u2;
    vtype v = u * u;
    vtype znear1, z1, z2;

    // 2/(5 * 2^5), 2/(3 * 2^3)
    z2 = pocl_fma(u,
           pocl_fma(v,
             (vtype)0x1.99999ap-7f,
             (vtype)0x1.555556p-4f)*v,
           -corr);

#if defined(COMPILING_LOG2)
    z1 = as_vtype(as_itype(r) & (itype)0xffff0000);
    z2 = z2 + (r - z1);
    znear1 = pocl_fma(z1, LOG2E_HEAD,
               pocl_fma(z2, LOG2E_HEAD,
                 pocl_fma(z1, LOG2E_TAIL, z2*LOG2E_TAIL)));
#elif defined(COMPILING_LOG10)
    z1 = as_vtype(as_itype(r) & (itype)0xffff0000);
    z2 = z2 + (r - z1);
    znear1 = pocl_fma(z1, LOG10E_HEAD,
               pocl_fma(z2, LOG10E_HEAD,
                 pocl_fma(z1, LOG10E_TAIL, z2*LOG10E_TAIL)));
#else
    znear1 = z2 + r;
#endif

    // Calculations for x not near 1
    itype m = as_itype(xi >> EXPSHIFTBITS_SP32) - (itype)EXPBIAS_SP32;

    // Normalize subnormal
    utype xis = as_utype(as_vtype(xi | (utype)0x3f800000) - (vtype)1.0f);
    itype ms = (as_itype(xis) >> EXPSHIFTBITS_SP32) - (itype)253;
    itype c = (m == -127);
    m = c ? ms : m;
    utype xin = c ? xis : xi;

    vtype mf = convert_vtype(m);
    utype indx = (xin & (utype)0x007f0000) + ((xin & (utype)0x00008000) << 1);

    // F - Y
    vtype f = as_vtype((utype)0x3f000000 | indx)
              - as_vtype((utype)0x3f000000 | (xin & MANTBITS_SP32));

    indx = indx >> 16;
    r = f * USE_VTABLE(log_inv_tbl, indx);

    // 1/3,  1/2
    vtype poly = pocl_fma(
                   pocl_fma(r, (vtype)0x1.555556p-2f, (vtype)0.5f),
                   r*r,
                   r);

#if defined(COMPILING_LOG2)
    v2type tv = USE_VTABLE(log2_tbl, indx);
    vtype s0 = tv.lo;
    vtype s1 = tv.hi;
    z1 = s0 + mf;
    z2 = pocl_fma(poly, -LOG2E, s1);
#elif defined(COMPILING_LOG10)
    v2type tv = USE_VTABLE(log10_tbl, indx);
    vtype s0 = tv.lo;
    vtype s1 = tv.hi;
    z1 = pocl_fma(mf, LOG10_2_HEAD, s0);
    z2 = pocl_fma(poly, -LOG10E, mf*LOG10_2_TAIL) + s1;
#else
    v2type tv = USE_VTABLE(loge_tbl, indx);
    vtype s0 = tv.lo;
    vtype s1 = tv.hi;
    z1 = pocl_fma(mf, LOG2_HEAD, s0);
    z2 = pocl_fma(mf, LOG2_TAIL, -poly) + s1;
#endif

    vtype z = z1 + z2;
    z = near1 ? znear1 : z;

    // Corner cases
    z = (ax >= (utype)PINFBITPATT_SP32) ? x : z;
    z = (xi != ax) ? as_vtype((utype)QNANBITPATT_SP32) : z;
    z = (ax == 0) ? as_vtype((utype)NINFBITPATT_SP32) : z;

    return z;
}