1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
/*
* Copyright (c) 2014 Advanced Micro Devices, Inc.
*
* Copyright (c) 2017 Michal Babej / Tampere University of Technology
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#define bytealign(src0, src1, src2) \
((( ((convert_utype(src0)) << 32) | convert_utype(src1)) >> (((src2) & 3)*8)))
// Reduction for medium sized arguments
_CL_OVERLOADABLE void __pocl_remainder_piby2_medium(vtype x, vtype *r, vtype *rr, itype *regn) {
// How many pi/2 is x a multiple of?
const vtype two_by_pi = (vtype)0x1.45f306dc9c883p-1;
const vtype dnpi2 = trunc(pocl_fma(x, two_by_pi, (vtype)0.5));
const vtype piby2_h = (vtype)(-7074237752028440.0 / 0x1.0p+52);
const vtype piby2_m = (vtype)(-2483878800010755.0 / 0x1.0p+105);
const vtype piby2_t = (vtype)(-3956492004828932.0 / 0x1.0p+158);
// Compute product of npi2 with 159 bits of 2/pi
vtype p_hh = piby2_h * dnpi2;
vtype p_ht = pocl_fma(piby2_h, dnpi2, -p_hh);
vtype p_mh = piby2_m * dnpi2;
vtype p_mt = pocl_fma(piby2_m, dnpi2, -p_mh);
vtype p_th = piby2_t * dnpi2;
vtype p_tt = pocl_fma(piby2_t, dnpi2, -p_th);
// Reduce to 159 bits
vtype ph = p_hh;
vtype pm = p_ht + p_mh;
vtype t = p_mh - (pm - p_ht);
vtype pt = p_th + t + p_mt + p_tt;
t = ph + pm; pm = pm - (t - ph); ph = t;
t = pm + pt; pt = pt - (t - pm); pm = t;
// Subtract from x
t = x + ph;
vtype qh = t + pm;
vtype qt = pm - (qh - t) + pt;
*r = qh;
*rr = qt;
*regn = convert_itype(dnpi2) & (itype)0x3;
}
// Given positive argument x, reduce it to the range [-pi/4,pi/4] using
// extra precision, and return the result in r, rr.
// Return value "regn" tells how many lots of pi/2 were subtracted
// from x to put it in the range [-pi/4,pi/4], mod 4.
_CL_OVERLOADABLE void __pocl_remainder_piby2_large(vtype x, vtype *r, vtype *rr, itype *regn) {
itype ux = as_itype(x);
itype e = (ux >> 52) - (itype)1023;
itype i = max((itype)23, (e >> 3) + (itype)17);
itype j = (itype)150 - i;
itype j16 = j & (itype)(~0xf);
vtype fract_temp;
// The following extracts 192 consecutive bits of 2/pi aligned on an arbitrary byte boundary
uinttype j16i = convert_uinttype(j16);
utype4 q0 = USE_VTABLE(pibits_tbl, j16i);
utype4 q1 = USE_VTABLE(pibits_tbl, (j16i + (uinttype)16));
utype4 q2 = USE_VTABLE(pibits_tbl, (j16i + (uinttype)32));
itype k = (j >> 2) & (itype)0x3;
itype4 c;
c.s0 = convert_inttype(k == (itype)0);
c.s1 = convert_inttype(k == (itype)1);
c.s2 = convert_inttype(k == (itype)2);
c.s3 = convert_inttype(k == (itype)3);
uinttype u0, u1, u2, u3, u4, u5, u6;
u0 = c.s1 ? q0.s1 : q0.s0;
u0 = c.s2 ? q0.s2 : u0;
u0 = c.s3 ? q0.s3 : u0;
u1 = c.s1 ? q0.s2 : q0.s1;
u1 = c.s2 ? q0.s3 : u1;
u1 = c.s3 ? q1.s0 : u1;
u2 = c.s1 ? q0.s3 : q0.s2;
u2 = c.s2 ? q1.s0 : u2;
u2 = c.s3 ? q1.s1 : u2;
u3 = c.s1 ? q1.s0 : q0.s3;
u3 = c.s2 ? q1.s1 : u3;
u3 = c.s3 ? q1.s2 : u3;
u4 = c.s1 ? q1.s1 : q1.s0;
u4 = c.s2 ? q1.s2 : u4;
u4 = c.s3 ? q1.s3 : u4;
u5 = c.s1 ? q1.s2 : q1.s1;
u5 = c.s2 ? q1.s3 : u5;
u5 = c.s3 ? q2.s0 : u5;
u6 = c.s1 ? q1.s3 : q1.s2;
u6 = c.s2 ? q2.s0 : u6;
u6 = c.s3 ? q2.s1 : u6;
const utype lomask = (utype)(0xffffffff);
const utype himask = lomask << 32;
const utype himask2 = (utype)0xffff00000000UL;
utype v0 = bytealign(u1, u0, j) & lomask;
utype v1 = bytealign(u2, u1, j) & lomask;
utype v2 = bytealign(u3, u2, j) & lomask;
utype v3 = bytealign(u4, u3, j) & lomask;
utype v4 = bytealign(u5, u4, j) & lomask;
utype v5 = bytealign(u6, u5, j) & lomask;
utype v1hi = v1 << 32;
utype v2hi = v2 << 32;
utype v4hi = v4 << 32;
utype v5hi = v5 << 32;
// Place those 192 bits in 4 48-bit vtypes along with correct exponent
// If i > 1018 we would get subnormals so we scale p up and x down to get the same product
i = (itype)2 + 8*i;
x *= (i > (itype)1018) ? (vtype)0x1.0p-136 : (vtype)1.0;
i -= (i > (itype)1018) ? (itype)136 : (itype)0;
utype ua = as_utype(1023 + 52 - i) << 52;
vtype a = as_vtype(ua);
utype addi3 = (utype)0x0300000000000000U;
vtype p0 = as_vtype(v0 | (ua | (v1hi & himask2)) ) - a;
ua += addi3;
a = as_vtype(ua & himask);
vtype p1 = as_vtype( ((v2 << 16) | (v1 >> 16))
| ((ua | (v2hi >> 16)) & himask) ) - a;
ua += addi3;
a = as_vtype(ua & himask);
vtype p2 = as_vtype(v3 | ((ua | (v4hi & himask2))) ) - a;
ua += addi3;
a = as_vtype(ua & himask);
vtype p3 = as_vtype( ((v5 << 16) | (v4 >> 16))
| ((ua | (v5hi >> 16)) & himask) ) - a;
// Exact multiply
vtype f0h = p0 * x;
vtype f0l = pocl_fma(p0, x, (vtype)-f0h);
vtype f1h = p1 * x;
vtype f1l = pocl_fma(p1, x, (vtype)-f1h);
vtype f2h = p2 * x;
vtype f2l = pocl_fma(p2, x, (vtype)-f2h);
vtype f3h = p3 * x;
vtype f3l = pocl_fma(p3, x, (vtype)-f3h);
// Accumulate product into 4 vtypes
vtype s, t;
vtype f3 = f3h + f2h;
t = f2h - (f3 - f3h);
s = f3l + t;
t = t - (s - f3l);
vtype f2 = s + f1h;
t = f1h - (f2 - s) + t;
s = f2l + t;
t = t - (s - f2l);
vtype f1 = s + f0h;
t = f0h - (f1 - s) + t;
s = f1l + t;
vtype f0 = s + f0l;
// Strip off unwanted large integer bits
f3 = (vtype)0x1.0p+10 * fract((f3 * 0x1.0p-10), &fract_temp);
f3 += ((f3 + f2) < (vtype)0.0) ? (vtype)0x1.0p+10 : (vtype)0.0;
// Compute least significant integer bits
t = f3 + f2;
vtype di = t - fract(t, &fract_temp);
i = convert_itype(di);
// Shift out remaining integer part
f3 -= di;
s = f3 + f2; t = f2 - (s - f3); f3 = s; f2 = t;
s = f2 + f1; t = f1 - (s - f2); f2 = s; f1 = t;
f1 += f0;
// Subtract 1 if fraction is >= 0.5, and update regn
#ifdef SINGLEVEC
itype g = (f3 >= (vtype)0.5);
i += g;
#else
utype g = (as_utype(f3 >= (vtype)0.5) >> 63);
i += as_itype(g);
#endif
f3 -= convert_vtype(g);
// Shift up bits
s = f3 + f2; t = f2 -(s - f3); f3 = s; f2 = t + f1;
// Multiply precise fraction by pi/2 to get radians
const vtype p2h = (vtype)(7074237752028440.0 / 0x1.0p+52);
const vtype p2t = (vtype)(4967757600021510.0 / 0x1.0p+106);
vtype rhi = f3 * p2h;
vtype rlo = pocl_fma(f2, p2h, pocl_fma(f3, p2t, pocl_fma(f3, p2h, -rhi)));
*r = rhi + rlo;
*rr = rlo - (*r - rhi);
*regn = i & (itype)0x3;
}
_CL_OVERLOADABLE v2type __pocl_sincos_piby4(vtype x, vtype xx) {
// Taylor series for sin(x) is x - x^3/3! + x^5/5! - x^7/7! ...
// = x * (1 - x^2/3! + x^4/5! - x^6/7! ...
// = x * f(w)
// where w = x*x and f(w) = (1 - w/3! + w^2/5! - w^3/7! ...
// We use a minimax approximation of (f(w) - 1) / w
// because this produces an expansion in even powers of x.
// If xx (the tail of x) is non-zero, we add a correction
// term g(x,xx) = (1-x*x/2)*xx to the result, where g(x,xx)
// is an approximation to cos(x)*sin(xx) valid because
// xx is tiny relative to x.
// Taylor series for cos(x) is 1 - x^2/2! + x^4/4! - x^6/6! ...
// = f(w)
// where w = x*x and f(w) = (1 - w/2! + w^2/4! - w^3/6! ...
// We use a minimax approximation of (f(w) - 1 + w/2) / (w*w)
// because this produces an expansion in even powers of x.
// If xx (the tail of x) is non-zero, we subtract a correction
// term g(x,xx) = x*xx to the result, where g(x,xx)
// is an approximation to sin(x)*sin(xx) valid because
// xx is tiny relative to x.
const vtype sc1 = (vtype)-0.166666666666666646259241729;
const vtype sc2 = (vtype)0.833333333333095043065222816e-2;
const vtype sc3 = (vtype)-0.19841269836761125688538679e-3;
const vtype sc4 = (vtype)0.275573161037288022676895908448e-5;
const vtype sc5 = (vtype)-0.25051132068021699772257377197e-7;
const vtype sc6 = (vtype)0.159181443044859136852668200e-9;
const vtype cc1 = (vtype)0.41666666666666665390037e-1;
const vtype cc2 = (vtype)-0.13888888888887398280412e-2;
const vtype cc3 = (vtype)0.248015872987670414957399e-4;
const vtype cc4 = (vtype)-0.275573172723441909470836e-6;
const vtype cc5 = (vtype)0.208761463822329611076335e-8;
const vtype cc6 = (vtype)-0.113826398067944859590880e-10;
vtype x2 = x * x;
vtype x3 = x2 * x;
vtype r = 0.5 * x2;
vtype t = (vtype)1.0 - r;
vtype sp = pocl_fma(
pocl_fma(
pocl_fma(
pocl_fma(sc6, x2, sc5),
x2, sc4),
x2, sc3),
x2, sc2);
vtype cp = t + pocl_fma(
pocl_fma(
pocl_fma(
pocl_fma(
pocl_fma(
pocl_fma(cc6, x2, cc5),
x2, cc4),
x2, cc3),
x2, cc2),
x2, cc1),
x2*x2,
pocl_fma(x, xx, ((vtype)1.0 - t) - r));
v2type ret;
ret.lo = x - pocl_fma(-x3, sc1,
pocl_fma(
pocl_fma(-x3, sp, 0.5*xx),
x2,
-xx));
ret.hi = cp;
return ret;
}
|