1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
|
// LLVM function pass to replicate barrier tails (successors to barriers).
//
// Copyright (c) 2011 Universidad Rey Juan Carlos and
// 2012-2019 Pekka Jääskeläinen
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#include "CompilerWarnings.h"
IGNORE_COMPILER_WARNING("-Wmaybe-uninitialized")
#include <llvm/ADT/Twine.h>
POP_COMPILER_DIAGS
IGNORE_COMPILER_WARNING("-Wunused-parameter")
#include <llvm/Analysis/LoopInfo.h>
#include <llvm/IR/InstrTypes.h>
#include <llvm/IR/Instructions.h>
#include <llvm/Transforms/Utils/BasicBlockUtils.h>
#include <llvm/Transforms/Utils/Cloning.h>
#include <llvm/Transforms/Utils/Local.h>
#include <llvm/Transforms/Utils/LoopSimplify.h>
#include "Barrier.h"
#include "BarrierTailReplication.h"
#include "LLVMUtils.h"
#include "VariableUniformityAnalysis.h"
#include "Workgroup.h"
#include "WorkitemHandlerChooser.h"
POP_COMPILER_DIAGS
//#define DEBUG_BARRIER_REPL
#include <algorithm>
#include <iostream>
#include <map>
#include <set>
#include <vector>
#define PASS_NAME "barriertails"
#define PASS_CLASS pocl::BarrierTailReplication
#define PASS_DESC "Barrier tail replication pass"
namespace pocl {
using namespace llvm;
class BarrierTailReplicationImpl {
public:
bool runOnFunction(llvm::Function &F);
BarrierTailReplicationImpl(llvm::DominatorTree &DT, llvm::LoopInfo &LI)
: DT(DT), LI(LI){};
private:
typedef std::set<llvm::BasicBlock *> BasicBlockSet;
typedef std::vector<llvm::BasicBlock *> BasicBlockVector;
typedef std::map<llvm::Value *, llvm::Value *> ValueValueMap;
llvm::DominatorTree &DT;
llvm::LoopInfo &LI;
bool ProcessFunction(llvm::Function &F);
bool FindBarriersDFS(llvm::BasicBlock *BB, BasicBlockSet &ProcessedBBs);
bool ReplicateJoinedSubgraphs(llvm::BasicBlock *Dominator,
llvm::BasicBlock *SubgraphEntry,
BasicBlockSet &ProcessedBBs);
llvm::BasicBlock *ReplicateSubgraph(llvm::BasicBlock *Entry,
llvm::Function *F);
void FindSubgraph(BasicBlockVector &Subgraph, llvm::BasicBlock *Entry);
void ReplicateBasicBlocks(BasicBlockVector &NewGraph,
llvm::ValueToValueMapTy &ReferenceMap,
BasicBlockVector &Graph, llvm::Function *F);
void UpdateReferences(const BasicBlockVector &Graph,
llvm::ValueToValueMapTy &ReferenceMap);
bool CleanupPHIs(llvm::BasicBlock *BB);
};
bool BarrierTailReplicationImpl::runOnFunction(Function &F) {
#ifdef DEBUG_BARRIER_REPL
std::cerr << "### BTR on " << F.getName().str() << std::endl;
#endif
bool changed = ProcessFunction(F);
LI.verify(DT);
/* The created tails might contain PHI nodes with operands
referring to the non-predecessor (split point) BB.
These must be cleaned to avoid breakage later on.
*/
for (Function::iterator i = F.begin(), e = F.end();
i != e; ++i)
{
llvm::BasicBlock *bb = &*i;
changed |= CleanupPHIs(bb);
}
return changed;
}
bool BarrierTailReplicationImpl::ProcessFunction(Function &F) {
BasicBlockSet processed_bbs;
return FindBarriersDFS(&F.getEntryBlock(), processed_bbs);
}
static bool blockHasBarrier(const BasicBlock *BB) {
for (BasicBlock::const_iterator i = BB->begin(), e = BB->end(); i != e; ++i) {
if (isa<Barrier>(i))
return true;
}
return false;
}
// Recursively (depht-first) look for barriers in all possible
// execution paths starting on entry, replicating the barrier
// successors to ensure there is a separate function exit BB
// for each combination of traversed barriers. The set
// processed_bbs stores the
bool BarrierTailReplicationImpl::FindBarriersDFS(BasicBlock *BB,
BasicBlockSet &ProcessedBBs) {
bool changed = false;
// Check if we already visited this BB (to avoid
// infinite recursion in case of unbarriered loops).
if (ProcessedBBs.count(BB) != 0)
return changed;
ProcessedBBs.insert(BB);
if (blockHasBarrier(BB)) {
#ifdef DEBUG_BARRIER_REPL
std::cerr << "### block " << bb->getName().str() << " has barrier, RJS" << std::endl;
#endif
BasicBlockSet processed_bbs_rjs;
changed = ReplicateJoinedSubgraphs(BB, BB, processed_bbs_rjs);
}
auto t = BB->getTerminator();
// Find barriers in the successors (depth first).
for (unsigned i = 0, e = t->getNumSuccessors(); i != e; ++i)
changed |= FindBarriersDFS(t->getSuccessor(i), ProcessedBBs);
return changed;
}
// Only replicate those parts of the subgraph that are not
// dominated by a (barrier) basic block, to avoid excesive
// (and confusing) code replication.
bool BarrierTailReplicationImpl::ReplicateJoinedSubgraphs(BasicBlock *Dominator, BasicBlock *SubgraphEntry,
BasicBlockSet &ProcessedBBs) {
bool changed = false;
assert(DT.dominates(Dominator, SubgraphEntry));
Function *f = Dominator->getParent();
auto t = SubgraphEntry->getTerminator();
for (int i = 0, e = t->getNumSuccessors(); i != e; ++i) {
BasicBlock *b = t->getSuccessor(i);
#ifdef DEBUG_BARRIER_REPL
std::cerr << "### traversing from " << subgraph_entry->getName().str()
<< " to " << b->getName().str() << std::endl;
#endif
// Check if we already handled this BB and all its branches.
if (ProcessedBBs.count(b) != 0)
{
#ifdef DEBUG_BARRIER_REPL
std::cerr << "### already processed " << std::endl;
#endif
continue;
}
const bool isBackedge = DT.dominates(b, SubgraphEntry);
if (isBackedge) {
// This is a loop backedge. Do not find subgraphs across
// those.
#ifdef DEBUG_BARRIER_REPL
std::cerr << "### a loop backedge, skipping" << std::endl;
#endif
continue;
}
if (DT.dominates(Dominator, b)) {
#ifdef DEBUG_BARRIER_REPL
std::cerr << "### " << dominator->getName().str() << " dominates "
<< b->getName().str() << std::endl;
#endif
changed |= ReplicateJoinedSubgraphs(Dominator, b, ProcessedBBs);
} else {
#ifdef DEBUG_BARRIER_REPL
std::cerr << "### " << dominator->getName().str() << " does not dominate "
<< b->getName().str() << " replicating " << std::endl;
#endif
BasicBlock *replicated_subgraph_entry =
ReplicateSubgraph(b, f);
t->setSuccessor(i, replicated_subgraph_entry);
changed = true;
}
if (changed) {
// We have modified the function. Possibly created new loops.
// Update analysis passes.
#if LLVM_VERSION_MAJOR < 11
DT.releaseMemory();
#else
DT.reset();
#endif
DT.recalculate(*f);
LI.releaseMemory();
LI.analyze(DT);
}
}
ProcessedBBs.insert(SubgraphEntry);
return changed;
}
// Removes phi elements for which there are no successors (anymore).
bool BarrierTailReplicationImpl::CleanupPHIs(llvm::BasicBlock *BB) {
bool changed = false;
#ifdef DEBUG_BARRIER_REPL
std::cerr << "### CleanupPHIs for BB:" << std::endl;
BB->dump();
#endif
for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; )
{
PHINode *PN = dyn_cast<PHINode>(BI);
if (PN == NULL) break;
bool PHIRemoved = false;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
{
bool isSuccessor = false;
// find if the predecessor branches to this one (anymore)
for (unsigned s = 0,
se = PN->getIncomingBlock(i)->getTerminator()->getNumSuccessors();
s < se; ++s) {
if (PN->getIncomingBlock(i)->getTerminator()->getSuccessor(s) == BB)
{
isSuccessor = true;
break;
}
}
if (!isSuccessor)
{
#ifdef DEBUG_BARRIER_REPL
std::cerr << "removing incoming value " << i << " from PHINode:" << std::endl;
PN->dump();
#endif
PN->removeIncomingValue(i, true);
#ifdef DEBUG_BARRIER_REPL
std::cerr << "now:" << std::endl;
PN->dump();
#endif
changed = true;
e--;
if (e == 0)
{
PHIRemoved = true;
break;
}
i = 0;
continue;
}
}
if (PHIRemoved)
BI = BB->begin();
else
BI++;
}
return changed;
}
BasicBlock *BarrierTailReplicationImpl::ReplicateSubgraph(BasicBlock *Entry,
Function *F) {
// Find all basic blocks to replicate.
BasicBlockVector Subgraph;
FindSubgraph(Subgraph, Entry);
// Replicate subgraph maintaining control flow.
BasicBlockVector V;
ValueToValueMapTy VVM;
ReplicateBasicBlocks(V, VVM, Subgraph, F);
UpdateReferences(V, VVM);
// Return entry block of replicated subgraph.
return cast<BasicBlock>(VVM[Entry]);
}
void BarrierTailReplicationImpl::FindSubgraph(BasicBlockVector &Subgraph,
BasicBlock *Entry) {
// The subgraph can have internal branches (join points)
// avoid replicating these parts multiple times within the
// same tail.
if (std::count(Subgraph.begin(), Subgraph.end(), Entry) > 0)
return;
Subgraph.push_back(Entry);
auto Tntor = Entry->getTerminator();
for (unsigned I = 0, E = Tntor->getNumSuccessors(); I != E; ++I) {
BasicBlock *successor = Tntor->getSuccessor(I);
const bool isBackedge = DT.dominates(successor, Entry);
if (isBackedge) continue;
FindSubgraph(Subgraph, successor);
}
}
void BarrierTailReplicationImpl::ReplicateBasicBlocks(BasicBlockVector &NewGraph, ValueToValueMapTy &ReferenceMap,
BasicBlockVector &Graph, Function *F) {
#ifdef DEBUG_BARRIER_REPL
std::cerr << "### ReplicateBasicBlocks: " << std::endl;
#endif
for (BasicBlockVector::const_iterator I = Graph.begin(),
E = Graph.end();
I != E; ++I) {
BasicBlock *BB = *I;
BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
BB->getName() + ".btr",
F);
ReferenceMap.insert(std::make_pair(BB, NewBB));
NewGraph.push_back(NewBB);
#ifdef DEBUG_BARRIER_REPL
std::cerr << "Replicated BB: " << new_b->getName().str() << std::endl;
#endif
for (BasicBlock::iterator I2 = BB->begin(), E2 = BB->end();
I2 != E2; ++I2) {
Instruction *Inst = I2->clone();
ReferenceMap.insert(std::make_pair(&*I2, Inst));
#if LLVM_MAJOR < 16
NewBB->getInstList().push_back(Inst);
#else
Inst->insertInto(NewBB, NewBB->end());
#endif
}
// Add predicates to PHINodes of basic blocks the replicated
// block jumps to (backedges).
auto Tntor = NewBB->getTerminator();
for (unsigned I = 0, E = Tntor->getNumSuccessors(); I != E; ++I) {
BasicBlock *successor = Tntor->getSuccessor(I);
if (std::count(Graph.begin(), Graph.end(), successor) == 0) {
// Successor is not in the graph, possible backedge.
for (BasicBlock::iterator BBI = successor->begin(), BBE = successor->end();
BBI != BBE; ++BBI) {
PHINode *Phi = dyn_cast<PHINode>(BBI);
if (Phi == NULL)
break; // All PHINodes already checked.
// Get value for original incoming edge and add new predicate.
Value *OldV = Phi->getIncomingValueForBlock(BB);
Value *NewV = ReferenceMap.find(OldV) == ReferenceMap.end() ?
NULL : ReferenceMap[OldV];
if (NewV == NULL) {
/* This case can happen at least when replicating a latch
block in a b-loop. The value produced might be from a common
path before the replicated part. Then just use the original value.*/
NewV = OldV;
#if 0
std::cerr << "### could not find a replacement block for phi node ("
<< BB->getName().str() << ")" << std::endl;
Phi->dump();
OldV->dump();
F->viewCFG();
assert (0);
#endif
}
Phi->addIncoming(NewV, NewBB);
}
}
}
}
#ifdef DEBUG_BARRIER_REPL
std::cerr << std::endl;
#endif
}
void BarrierTailReplicationImpl::UpdateReferences(
const BasicBlockVector &Graph, ValueToValueMapTy &ReferenceMap) {
for (BasicBlockVector::const_iterator BBVI = Graph.begin(),
BBVE = Graph.end();
BBVI != BBVE; ++BBVI) {
BasicBlock *BB = *BBVI;
for (BasicBlock::iterator BBI = BB->begin(), BBE = BB->end();
BBI != BBE; ++BBI) {
Instruction *Inst = &*BBI;
RemapInstruction(Inst, ReferenceMap,
RF_IgnoreMissingLocals | RF_NoModuleLevelChanges);
}
}
}
#if LLVM_MAJOR < MIN_LLVM_NEW_PASSMANAGER
char BarrierTailReplication::ID = 0;
bool BarrierTailReplication::runOnFunction(Function &F) {
if (!isKernelToProcess(F))
return false;
auto WIH = getAnalysis<WorkitemHandlerChooser>().chosenHandler();
if (WIH == WorkitemHandlerType::CBS)
return false;
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
BarrierTailReplicationImpl BTRI(DT, LI);
return BTRI.runOnFunction(F);
}
void BarrierTailReplication::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<DominatorTreeWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addPreserved<LoopInfoWrapperPass>();
AU.addPreserved<VariableUniformityAnalysis>();
AU.addRequired<WorkitemHandlerChooser>();
AU.addPreserved<WorkitemHandlerChooser>();
}
} // namespace pocl
REGISTER_OLD_FPASS(PASS_NAME, PASS_CLASS, PASS_DESC);
#else
llvm::PreservedAnalyses
BarrierTailReplication::run(llvm::Function &F,
llvm::FunctionAnalysisManager &FAM) {
if (!isKernelToProcess(F))
return PreservedAnalyses::all();
WorkitemHandlerType WIH = FAM.getResult<WorkitemHandlerChooser>(F).WIH;
if (WIH == WorkitemHandlerType::CBS)
return PreservedAnalyses::all();
llvm::DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
llvm::LoopInfo &LI = FAM.getResult<LoopAnalysis>(F);
BarrierTailReplicationImpl BTRI(DT, LI);
PreservedAnalyses PAChanged = PreservedAnalyses::none();
PAChanged.preserve<VariableUniformityAnalysis>();
PAChanged.preserve<WorkitemHandlerChooser>();
PAChanged.preserve<LoopAnalysis>();
PAChanged.preserve<DominatorTreeAnalysis>();
return BTRI.runOnFunction(F) ? PAChanged : PreservedAnalyses::all();
}
REGISTER_NEW_FPASS(PASS_NAME, PASS_CLASS, PASS_DESC);
} // namespace pocl
#endif
|