1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
|
// Implementation of LLVMUtils, useful common LLVM-related functionality.
//
// Copyright (c) 2013-2019 Pekka Jääskeläinen
// 2023 Pekka Jääskeläinen / Intel Finland Oy
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#include "CompilerWarnings.h"
IGNORE_COMPILER_WARNING("-Wmaybe-uninitialized")
#include <llvm/ADT/Twine.h>
POP_COMPILER_DIAGS
IGNORE_COMPILER_WARNING("-Wunused-parameter")
#include <llvm/IR/Constants.h>
#include <llvm/IR/DebugInfoMetadata.h>
#include <llvm/IR/Instructions.h>
#include <llvm/IR/Metadata.h>
#include <llvm/IR/Module.h>
#include <llvm/ADT/SmallSet.h>
// include all passes & analysis
#include "AllocasToEntry.h"
#include "AutomaticLocals.h"
#include "BarrierTailReplication.h"
#include "BreakConstantGEPs.h"
#include "CanonicalizeBarriers.h"
#include "DebugHelpers.h"
#include "Flatten.hh"
#include "FlattenBarrierSubs.hh"
#include "FlattenGlobals.hh"
#include "HandleSamplerInitialization.h"
#include "ImplicitConditionalBarriers.h"
#include "ImplicitLoopBarriers.h"
#include "InlineKernels.hh"
#include "IsolateRegions.h"
#include "LoopBarriers.h"
#include "MinLegalVecSize.hh"
#include "OptimizeWorkItemFuncCalls.h"
#include "OptimizeWorkItemGVars.h"
#include "PHIsToAllocas.h"
#include "ParallelRegion.h"
#include "RemoveBarrierCalls.h"
#include "SubCFGFormation.h"
#include "VariableUniformityAnalysis.h"
#include "WorkItemAliasAnalysis.h"
#include "Workgroup.h"
#include "WorkitemHandlerChooser.h"
#include "WorkitemLoops.h"
#include "WorkitemReplication.h"
#include "LLVMUtils.h"
POP_COMPILER_DIAGS
#include "Barrier.h"
#include "pocl_llvm_api.h"
#include "pocl_spir.h"
#include <iostream>
#include <set>
using namespace llvm;
//#define DEBUG_LLVM_UTILS
static void findInstructionUsesImpl(Use &U, std::vector<Use *> &Uses,
std::set<Use *> &Visited) {
if (Visited.count(&U))
return;
Visited.insert(&U);
assert(isa<Constant>(*U));
if (isa<Instruction>(U.getUser())) {
Uses.push_back(&U);
return;
}
if (isa<Constant>(U.getUser())) {
for (auto &U : U.getUser()->uses())
findInstructionUsesImpl(U, Uses, Visited);
return;
}
// Catch other user kinds - we may need to process them (somewhere but not
// here).
llvm_unreachable("Unexpected user kind.");
}
// Return list of non-constant leaf use edges whose users are instructions.
static std::vector<Use *> findInstructionUses(GlobalVariable *GVar) {
std::vector<Use *> Uses;
std::set<Use *> Visited;
for (auto &U : GVar->uses())
findInstructionUsesImpl(U, Uses, Visited);
return Uses;
}
namespace pocl {
/**
* Regenerates the metadata that points to the original kernel
* (of which finger print was modified) to point to the new
* kernel.
*
* Only checks if the first operand of the metadata is the kernel
* function.
*/
void
regenerate_kernel_metadata(llvm::Module &M, FunctionMapping &kernels)
{
// reproduce the opencl.kernel_wg_size_info metadata
NamedMDNode *wg_sizes = M.getNamedMetadata("opencl.kernel_wg_size_info");
if (wg_sizes != NULL && wg_sizes->getNumOperands() > 0)
{
for (std::size_t mni = 0; mni < wg_sizes->getNumOperands(); ++mni)
{
MDNode *wgsizeMD = dyn_cast<MDNode>(wg_sizes->getOperand(mni));
for (FunctionMapping::const_iterator i = kernels.begin(),
e = kernels.end(); i != e; ++i)
{
Function *old_kernel = (*i).first;
Function *new_kernel = (*i).second;
Function *func_from_md;
func_from_md = dyn_cast<Function>(
dyn_cast<ValueAsMetadata>(wgsizeMD->getOperand(0))->getValue());
if (old_kernel == new_kernel || wgsizeMD->getNumOperands() == 0 ||
func_from_md != old_kernel)
continue;
// found a wg size metadata that points to the old kernel, copy its
// operands except the first one to a new MDNode
SmallVector<Metadata*, 8> operands;
operands.push_back(llvm::ValueAsMetadata::get(new_kernel));
for (unsigned opr = 1; opr < wgsizeMD->getNumOperands(); ++opr) {
operands.push_back(wgsizeMD->getOperand(opr));
}
MDNode *new_wg_md = MDNode::get(M.getContext(), operands);
wg_sizes->addOperand(new_wg_md);
}
}
}
// reproduce the opencl.kernels metadata, if it exists
// unconditionally adding opencl.kernels confuses the
// metadata parser in pocl_llvm_metadata.cc, which uses
// "opencl.kernels" to distinguish old SPIR format from new
NamedMDNode *nmd = M.getNamedMetadata("opencl.kernels");
if (nmd) {
M.eraseNamedMetadata(nmd);
nmd = M.getOrInsertNamedMetadata("opencl.kernels");
for (FunctionMapping::const_iterator i = kernels.begin(),
e = kernels.end();
i != e; ++i) {
MDNode *md = MDNode::get(M.getContext(), ArrayRef<Metadata *>(
llvm::ValueAsMetadata::get((*i).second)));
nmd->addOperand(md);
}
}
}
// Recursively descend a Value's users and convert any constant expressions into
// regular instructions.
void breakConstantExpressions(llvm::Value *Val, llvm::Function *Func) {
std::vector<llvm::Value *> Users(Val->user_begin(), Val->user_end());
for (auto *U : Users) {
if (auto *CE = llvm::dyn_cast<llvm::ConstantExpr>(U)) {
// First, make sure no users of this constant expression are themselves
// constant expressions.
breakConstantExpressions(U, Func);
// Convert this constant expression to an instruction.
llvm::Instruction *I = CE->getAsInstruction();
I->insertBefore(&*Func->begin()->begin());
CE->replaceAllUsesWith(I);
CE->destroyConstant();
}
}
}
static void
recursivelyFindCalledFunctions(llvm::SmallSet<llvm::Function *, 12> &FSet,
llvm::Function *F) {
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) {
for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE; ++BI) {
Instruction *Instr = dyn_cast<Instruction>(BI);
if (!llvm::isa<CallInst>(Instr))
continue;
CallInst *CallInstr = dyn_cast<CallInst>(Instr);
Function *Callee = CallInstr->getCalledFunction();
if (!Callee)
continue;
if (Callee->isDeclaration())
continue;
if (FSet.contains(Callee))
continue;
FSet.insert(Callee);
recursivelyFindCalledFunctions(FSet, Callee);
}
}
}
bool isGVarUsedByFunction(llvm::GlobalVariable *GVar, llvm::Function *F) {
std::vector<Use *> Uses = findInstructionUses(GVar);
// we must recursively search for each function called by F, because
// this (isGVarUsedByFunction) is called by isAutomaticLocal(),
// which in turn is called on "unprocessed" LLVM bitcode (or SPIRV),
// where we haven't run any LLVM passes yet; in particular the pass
// that inlines all functions using "special" variables and kernels
llvm::SmallSet<llvm::Function *, 12> CalledFunctionSet;
CalledFunctionSet.insert(F);
recursivelyFindCalledFunctions(CalledFunctionSet, F);
std::vector<Function *> Funcs;
for (auto &U : Uses) {
if (Instruction *I = dyn_cast<Instruction>(U->getUser()))
{
if (CalledFunctionSet.contains(I->getFunction()))
return true;
}
}
return false;
}
bool
isAutomaticLocal(llvm::Function *F, llvm::GlobalVariable &Var) {
// Without the fake address space IDs, there is no reliable way to figure out
// if the address space is local from the bitcode. We could check its AS
// against the device's local address space id, but for now lets rely on the
// naming convention only. Only relying on the naming convention has the problem
// that LLVM can move private const arrays to the global space which make
// them look like local arrays (see Github Issue 445). This should be properly
// fixed in Clang side with e.g. a naming convention for the local arrays to
// detect them robstly without having logical address space info in the IR.
std::string FuncName = F->getName().str();
if (!llvm::isa<llvm::PointerType>(Var.getType()) || Var.isConstant())
return false;
if (Var.getName().startswith(FuncName + ".")) {
assert(isGVarUsedByFunction(&Var, F) == true);
return true;
}
// handle SPIR local AS (3)
if (Var.getParent() && Var.getParent()->getNamedMetadata("spirv.Source") &&
(Var.getType()->getAddressSpace() == SPIR_ADDRESS_SPACE_LOCAL)) {
if (!Var.hasName())
Var.setName(llvm::Twine(FuncName, ".__anon_gvar"));
// check it's used by this particular function
return isGVarUsedByFunction(&Var, F);
}
return false;
}
void eraseFunctionAndCallers(llvm::Function *Function) {
if (!Function)
return;
std::vector<llvm::Value *> Callers(Function->user_begin(),
Function->user_end());
for (auto &U : Callers) {
llvm::CallInst *Call = llvm::dyn_cast<llvm::CallInst>(U);
if (!Call)
continue;
Call->eraseFromParent();
}
Function->eraseFromParent();
}
int getConstantIntMDValue(Metadata *MD) {
ConstantInt *CI = mdconst::extract<ConstantInt>(MD);
return CI->getLimitedValue();
}
llvm::Metadata *createConstantIntMD(llvm::LLVMContext &C, int32_t Val) {
IntegerType *I32Type = IntegerType::get(C, 32);
return ConstantAsMetadata::get(ConstantInt::get(I32Type, Val));
}
llvm::DISubprogram *mimicDISubprogram(llvm::DISubprogram *Old,
const llvm::StringRef &NewFuncName,
llvm::DIScope *Scope) {
return DISubprogram::getDistinct(
Old->getContext(), Old->getScope(), NewFuncName, "", Old->getFile(),
Old->getLine(), Old->getType(), Old->getScopeLine(),
Old->getContainingType(), Old->getVirtualIndex(),
Old->getThisAdjustment(), Old->getFlags(), Old->getSPFlags(),
Old->getUnit(), Old->getTemplateParams(), Old->getDeclaration());
}
bool isLocalMemFunctionArg(llvm::Function *F, unsigned ArgIndex) {
MDNode *MD = F->getMetadata("kernel_arg_addr_space");
if (MD == nullptr || MD->getNumOperands() <= ArgIndex)
return false;
else
return getConstantIntMDValue(MD->getOperand(ArgIndex)) ==
SPIR_ADDRESS_SPACE_LOCAL;
}
bool isProgramScopeVariable(GlobalVariable &GVar, unsigned DeviceLocalAS) {
bool retval = false;
// no need to handle constants
if (GVar.isConstant()) {
retval = false;
goto END;
}
// program-scope variables from direct Clang compilation have external
// linkage with Target AS numbers
if (GVar.getLinkage() == GlobalValue::LinkageTypes::ExternalLinkage) {
retval = true;
goto END;
}
#ifdef DEBUG_LLVM_UTILS
std::cerr << "isProgramScopeVariable: checking variable: " <<
GVar.getName().str() << "\n";
#endif
// global variables from SPIR-V have internal linkage with SPIR AS numbers
if (GVar.getLinkage() == GlobalValue::LinkageTypes::InternalLinkage) {
#ifdef DEBUG_LLVM_UTILS
std::cerr << "isProgramScopeVariable: checking internal linkage\n";
#endif
PointerType *GVarT = GVar.getType();
assert(GVarT != nullptr);
unsigned AddrSpace = GVarT->getAddressSpace();
if (AddrSpace == SPIR_ADDRESS_SPACE_GLOBAL) {
#ifdef DEBUG_LLVM_UTILS
std::cerr << "isProgramScopeVariable: AS = SPIR Global AS\n";
#endif
if (!GVar.hasName()) {
GVar.setName("__anonymous_gvar");
}
retval = true;
}
// variables in local AS cannot have initializer (OpenCL standard).
// for CPU target, Local AS = Global AS = 0, and
// function-scope variables ("static global X = {...};")
// must be recognized as program-scope variables
if (GVar.hasInitializer()) {
Constant *C = GVar.getInitializer();
bool isUndef = isa<UndefValue>(C);
if (AddrSpace == DeviceLocalAS && !isUndef) {
#ifdef DEBUG_LLVM_UTILS
std::cerr << "isProgramScopeVariable: AS = device's Local AS && "
"isUndef == false\n";
#endif
if (!GVar.hasName()) {
GVar.setName("__anonymous_gvar");
}
retval = true;
}
}
}
END:
#ifdef DEBUG_LLVM_UTILS
std::cerr << "isProgramScopeVariable: \n"
<< "Variable: " << GVar.getName().str()
<< " is ProgramScope variable: " << retval << "\n";
#endif
return retval;
}
void setFuncArgAddressSpaceMD(llvm::Function *F, unsigned ArgIndex,
unsigned AS) {
unsigned MDKind = F->getContext().getMDKindID("kernel_arg_addr_space");
MDNode *OldMD = F->getMetadata(MDKind);
assert(OldMD == nullptr || OldMD->getNumOperands() >= ArgIndex);
LLVMContext &C = F->getContext();
llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
for (unsigned i = 0; i < ArgIndex; ++i) {
AddressQuals.push_back(createConstantIntMD(
C, OldMD != nullptr ? getConstantIntMDValue(OldMD->getOperand(i))
: SPIR_ADDRESS_SPACE_GLOBAL));
}
AddressQuals.push_back(createConstantIntMD(C, AS));
F->setMetadata(MDKind, MDNode::get(F->getContext(), AddressQuals));
}
// Returns true in case the given function is a kernel that
// should be processed by the kernel compiler.
bool isKernelToProcess(const llvm::Function &F) {
const Module *m = F.getParent();
if (F.getMetadata("kernel_arg_access_qual") &&
F.getMetadata("pocl_generated") == nullptr)
return true;
if (F.isDeclaration())
return false;
if (!F.hasName())
return false;
if (F.getName().startswith("@llvm"))
return false;
NamedMDNode *kernels = m->getNamedMetadata("opencl.kernels");
if (kernels == NULL) {
std::string KernelName;
bool HasMeta = getModuleStringMetadata(*m, "KernelName", KernelName);
if (HasMeta && KernelName.size() && F.getName().str() == KernelName)
return true;
return false;
}
for (unsigned i = 0, e = kernels->getNumOperands(); i != e; ++i) {
if (kernels->getOperand(i)->getOperand(0) == NULL)
continue; // globaldce might have removed uncalled kernels
Function *k = cast<Function>(
dyn_cast<ValueAsMetadata>(kernels->getOperand(i)->getOperand(0))
->getValue());
if (&F == k)
return true;
}
return false;
}
//#define DEBUG_UNREACHABLE_SWITCH_REMOVAL
void removeUnreachableSwitchCases(llvm::Function &F) {
std::vector<BasicBlock *> BBsToDel;
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
BasicBlock *BB = &*FI;
if (BB->hasName() && BB->getName().startswith("default.unreachable")) {
#ifdef DEBUG_UNREACHABLE_SWITCH_REMOVAL
std::cerr << "##################################################\n";
std::cerr << "### converting unreachable block: " << (void *)BB << "\n";
#endif
BBsToDel.push_back(BB);
std::set<SwitchInst *> SwUsers;
for (auto U : BB->users()) {
if (SwitchInst *SwI = dyn_cast<SwitchInst>(U)) {
SwUsers.insert(SwI);
} else {
#ifdef DEBUG_UNREACHABLE_SWITCH_REMOVAL
// we can ignore BBlocks with a single "br label default.unreachable"
if (!isa<BranchInst>(U)) {
std::cerr << "Unhandled unreachable user:\n";
U->dump();
}
#endif
}
}
for (SwitchInst *SwI : SwUsers) {
#ifdef DEBUG_UNREACHABLE_SWITCH_REMOVAL
std::cerr << "Found a switch user, replacing the unr label:\n";
SwI->dump();
#endif
if (SwI->getDefaultDest() == BB) {
#ifdef DEBUG_UNREACHABLE_SWITCH_REMOVAL
std::cerr << "... default switch user is the unr BB\n";
#endif
// remove the last case, and make its BB as the default
auto FinalCaseIt = std::prev(SwI->case_end());
BasicBlock *FinalBB = FinalCaseIt->getCaseSuccessor();
SwI->removeCase(FinalCaseIt);
SwI->setDefaultDest(FinalBB);
#ifdef DEBUG_UNREACHABLE_SWITCH_REMOVAL
std::cerr << "Final fixed switch:\n";
SwI->dump();
#endif
} else {
#ifdef DEBUG_UNREACHABLE_SWITCH_REMOVAL
std::cerr << "Unhandled switch, the default branch is not unr:\n";
SwI->dump();
#endif
}
}
}
}
for (auto BB : BBsToDel) {
BB->eraseFromParent();
}
}
// Returns true in case the given function is a kernel with work-group
// barriers inside it.
bool hasWorkgroupBarriers(const llvm::Function &F) {
for (llvm::Function::const_iterator i = F.begin(), e = F.end(); i != e; ++i) {
const llvm::BasicBlock *bb = &*i;
if (pocl::Barrier::hasBarrier(bb)) {
// Ignore the implicit entry and exit barriers.
if (pocl::Barrier::hasOnlyBarrier(bb) && bb == &F.getEntryBlock())
continue;
if (pocl::Barrier::hasOnlyBarrier(bb) &&
bb->getTerminator()->getNumSuccessors() == 0)
continue;
return true;
}
}
return false;
}
const char *WorkgroupVariablesArray[NumWorkgroupVariables+1] = {"_local_id_x",
"_local_id_y",
"_local_id_z",
"_local_size_x",
"_local_size_y",
"_local_size_z",
"_work_dim",
"_num_groups_x",
"_num_groups_y",
"_num_groups_z",
"_group_id_x",
"_group_id_y",
"_group_id_z",
"_global_offset_x",
"_global_offset_y",
"_global_offset_z",
"_pocl_sub_group_size",
PoclGVarBufferName,
NULL};
const std::vector<std::string>
WorkgroupVariablesVector(WorkgroupVariablesArray,
WorkgroupVariablesArray+NumWorkgroupVariables);
const char *WIFuncNameArray[NumWIFuncNames] = {"_Z13get_global_idj",
"_Z17get_global_offsetj",
"_Z15get_global_sizej",
"_Z12get_group_idj",
"_Z12get_local_idj",
"_Z14get_local_sizej",
"_Z23get_enqueued_local_sizej",
"_Z14get_num_groupsj",
"_Z20get_global_linear_idv",
"_Z19get_local_linear_idv",
"_Z12get_work_dimv"};
const std::vector<std::string> WIFuncNameVec(WIFuncNameArray,
WIFuncNameArray + NumWIFuncNames);
#if LLVM_MAJOR >= MIN_LLVM_NEW_PASSMANAGER
// register all PoCL analyses & passes with an LLVM PassBuilder instance,
// so that it can parse them from string representation
void registerPassBuilderPasses(llvm::PassBuilder &PB) {
AllocasToEntry::registerWithPB(PB);
AutomaticLocals::registerWithPB(PB);
BarrierTailReplication::registerWithPB(PB);
BreakConstantGEPs::registerWithPB(PB);
CanonicalizeBarriers::registerWithPB(PB);
FlattenAll::registerWithPB(PB);
FlattenBarrierSubs::registerWithPB(PB);
FlattenGlobals::registerWithPB(PB);
HandleSamplerInitialization::registerWithPB(PB);
ImplicitConditionalBarriers::registerWithPB(PB);
ImplicitLoopBarriers::registerWithPB(PB);
InlineKernels::registerWithPB(PB);
IsolateRegions::registerWithPB(PB);
LoopBarriers::registerWithPB(PB);
FixMinVecSize::registerWithPB(PB);
OptimizeWorkItemFuncCalls::registerWithPB(PB);
OptimizeWorkItemGVars::registerWithPB(PB);
PHIsToAllocas::registerWithPB(PB);
RemoveBarrierCalls::registerWithPB(PB);
SubCFGFormation::registerWithPB(PB);
Workgroup::registerWithPB(PB);
WorkitemLoops::registerWithPB(PB);
WorkitemReplication::registerWithPB(PB);
PoCLCFGPrinter::registerWithPB(PB);
}
void registerFunctionAnalyses(llvm::PassBuilder &PB) {
VariableUniformityAnalysis::registerWithPB(PB);
WorkitemHandlerChooser::registerWithPB(PB);
WorkItemAliasAnalysis::registerWithPB(PB);
}
#endif
} // namespace pocl
|