1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
|
// Implementation for VariableUniformityAnalysis function pass.
//
// Copyright (c) 2013-2019 Pekka Jääskeläinen
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#include "CompilerWarnings.h"
IGNORE_COMPILER_WARNING("-Wmaybe-uninitialized")
#include <llvm/ADT/Twine.h>
POP_COMPILER_DIAGS
IGNORE_COMPILER_WARNING("-Wunused-parameter")
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ValueSymbolTable.h"
#include "llvm/Support/CommandLine.h"
POP_COMPILER_DIAGS
#include "Barrier.h"
#include "Kernel.h"
#include "LLVMUtils.h"
#include "VariableUniformityAnalysis.h"
#include "VariableUniformityAnalysisResult.hh"
#include "Workgroup.h"
#include "WorkitemHandler.h"
#include <iostream>
#include <map>
#include <sstream>
#include "pocl_llvm_api.h"
// #define DEBUG_UNIFORMITY_ANALYSIS
#ifdef DEBUG_UNIFORMITY_ANALYSIS
#include "DebugHelpers.h"
#endif
#define PASS_NAME "pocl-vua"
#define PASS_CLASS pocl::VariableUniformityAnalysis
#define PASS_DESC \
"Analyses the variables of the function for uniformity (same value across " \
"WIs)."
namespace pocl {
using namespace llvm;
// Recursively mark the canonical induction variable PHI as uniform.
// If there's a canonical induction variable in loops, the variable
// update for each iteration should be uniform. Note: this does not yet
// imply all the work-items execute the loop same number of times!
void VariableUniformityAnalysisResult::markInductionVariables(Function &F,
llvm::Loop &L) {
if (llvm::PHINode *inductionVar = L.getCanonicalInductionVariable()) {
#ifdef DEBUG_UNIFORMITY_ANALYSIS
std::cerr << "### canonical induction variable, assuming uniform:";
inductionVar->dump();
#endif
setUniform(&F, inductionVar);
}
for (llvm::Loop *Subloop : L.getSubLoops()) {
markInductionVariables(F, *Subloop);
}
}
bool VariableUniformityAnalysisResult::runOnFunction(
Function &F, llvm::LoopInfo &LI, llvm::PostDominatorTree &PDT) {
if (!isKernelToProcess(F))
return false;
#ifdef DEBUG_UNIFORMITY_ANALYSIS
std::cerr << "### refreshing VUA" << std::endl;
dumpCFG(F, F.getName().str() + ".vua.dot");
F.dump();
#endif
/* Do the actual analysis on-demand except for the basic block
divergence analysis. */
uniformityCache_[&F].clear();
for (llvm::LoopInfo::iterator i = LI.begin(), e = LI.end(); i != e; ++i) {
llvm::Loop *L = *i;
markInductionVariables(F, *L);
}
setUniform(&F, &F.getEntryBlock());
analyzeBBDivergence(&F, &F.getEntryBlock(), &F.getEntryBlock(), PDT);
return false;
}
/**
* Returns true in case the value should be privatized, e.g., a copy
* should be created for each parallel work-item.
*
* This is not the same as !isUniform() because of some of the allocas.
* Specifically, the loop iteration variables are sometimes uniform,
* that is, each work item sees the same induction variable value at every iteration,
* but the variables should be still replicated to avoid multiple increments
* of the same induction variable by each work-item.
*/
bool VariableUniformityAnalysisResult::shouldBePrivatized(llvm::Function *F,
llvm::Value *Val) {
if (!isUniform(F, Val)) return true;
/* Check if the value is stored in stack (is an alloca or writes to an alloca). */
/* It should be enough to context save the initial alloca and the stores to
make sure each work-item gets their own stack slot and they are updated.
How the value (based on which of those allocas) is computed does not matter as
we are deadling with uniform computation. */
if (isa<AllocaInst>(Val)) return true;
if (isa<StoreInst>(Val) &&
isa<AllocaInst>(dyn_cast<StoreInst>(Val)->getPointerOperand())) return true;
return false;
}
/**
* BB divergence analysis.
*
* Define:
* Uniform BB. A basic block which is known to be executed by all or none
* of the work-items, that is, a BB where it's known safe to add a barrier.
*
* Divergent/varying BB. A basic block where work-items *might* diverge.
* That is, it cannot be proven that all work-items execute the BB.
*
* Propagate the information from the entry downwards (breadth first).
* This avoids infinite recursion with loop back edges and enables
* to keep book of the "last seen" uniform BB.
*
* The conditions to mark a BB 'uniform':
*
* a) the function entry, or
* b) BBs that post-dominate at least one uniform BB (try the previously
* found one), or
* c) BBs that are branched to directly from a uniform BB using a uniform branch.
* Note: This assumes the CFG is well-formed in a way that there cannot be a divergent
* branch to the same BB in that case.
*
* Otherwise, assume divergent (might not be *proven* to be one!).
*
*/
void VariableUniformityAnalysisResult::analyzeBBDivergence(
llvm::Function *F, llvm::BasicBlock *BB,
llvm::BasicBlock *PreviousUniformBB, llvm::PostDominatorTree &PDT) {
#ifdef DEBUG_UNIFORMITY_ANALYSIS
std::cerr << "### Analyzing BB divergence (bb=" << bb->getName().str()
<< ", prevUniform=" << previousUniformBB->getName().str() << ")"
<< std::endl;
#endif
auto Term = PreviousUniformBB->getTerminator();
if (Term == NULL) {
// this is most likely a function with a single basic block, the entry
// node, which ends with a ret
return;
}
llvm::BranchInst *BrInst = dyn_cast<llvm::BranchInst>(Term);
llvm::SwitchInst *SwInst = dyn_cast<llvm::SwitchInst>(Term);
if (BrInst == nullptr && SwInst == nullptr) {
// Can only handle branches and switches for now.
return;
}
// The BBs that were found uniform.
std::vector<llvm::BasicBlock *> FoundUniforms;
// Condition c)
if ((BrInst && (!BrInst->isConditional() ||
isUniform(F, BrInst->getCondition()))) ||
(SwInst && isUniform(F, SwInst->getCondition()))) {
// This is a branch with a uniform condition, propagate the uniformity
// to the BB of interest.
for (unsigned suc = 0, end = Term->getNumSuccessors(); suc < end; ++suc) {
llvm::BasicBlock *Successor = Term->getSuccessor(suc);
// TODO: should we check that there are no divergent entries to this
// BB even though if the currently checked condition is uniform?
setUniform(F, Successor, true);
FoundUniforms.push_back(Successor);
}
}
// Condition b)
if (FoundUniforms.size() == 0) {
if (PDT.dominates(BB, PreviousUniformBB)) {
setUniform(F, BB, true);
FoundUniforms.push_back(BB);
}
}
/* Assume diverging. */
if (!isUniformityAnalyzed(F, BB))
setUniform(F, BB, false);
for (auto UniformBB : FoundUniforms) {
// Propagate the Uniform BB data downwards.
auto NextTerm = UniformBB->getTerminator();
for (unsigned Suc = 0, End = NextTerm->getNumSuccessors(); Suc < End;
++Suc) {
llvm::BasicBlock *NextBB = NextTerm->getSuccessor(Suc);
if (!isUniformityAnalyzed(F, NextBB)) {
analyzeBBDivergence(F, NextBB, UniformBB, PDT);
}
}
}
}
bool VariableUniformityAnalysisResult::isUniformityAnalyzed(
llvm::Function *F, llvm::Value *V) const {
UniformityIndex &Cache = uniformityCache_[F];
UniformityIndex::const_iterator I = Cache.find(V);
if (I != Cache.end()) {
return true;
}
return false;
}
/**
* Simple uniformity analysis that recursively analyses all the
* operands affecting the value.
*
* Known uniform Values that act as "leafs" in the recursive uniformity
* check logic:
* a) kernel arguments
* b) constants
* c) OpenCL C identifiers that are constant for all work-items in a work-group
*
*/
bool VariableUniformityAnalysisResult::isUniform(llvm::Function *F,
llvm::Value *V) {
UniformityIndex &Cache = uniformityCache_[F];
UniformityIndex::const_iterator I = Cache.find(V);
if (I != Cache.end()) {
return (*I).second;
}
if (llvm::BasicBlock *BB = dyn_cast<llvm::BasicBlock>(V)) {
if (BB == &F->getEntryBlock()) {
setUniform(F, V, true);
return true;
}
}
if (isa<llvm::Argument>(V)) {
setUniform(F, V, true);
return true;
}
if (isa<llvm::ConstantInt>(V)) {
setUniform(F, V, true);
return true;
}
if (isa<llvm::AllocaInst>(V)) {
/* Allocas might or might not be divergent. These are produced
from work-item private arrays or the PHIsToAllocas. It depends
what is written to them whether they are really divergent.
We need to figure out if any of the stores to the alloca contain
work-item id dependent data. Take a white listing approach that
detects the ex-phi allocas of loop iteration variables of non-diverging
loops.
Currently the following case is white listed:
a) are scalars, and
b) are accessed only with load and stores (e.g. address not taken) from
uniform basic blocks, and
c) the stored data is uniform
Because alloca data can be modified in loops and thus be dependent on
itself, we need a bit involved mechanism to handle it. First create
a copy of the uniformity cache, then assume the alloca itself is uniform,
then check if all the stores to the alloca contain uniform data. If
our initial assumption was wrong, restore the cache from the backup.
*/
UniformityCache backupCache(uniformityCache_);
setUniform(F, V);
bool isUniformAlloca = true;
llvm::Instruction *instruction = dyn_cast<llvm::AllocaInst>(V);
for (Instruction::use_iterator ui = instruction->use_begin(),
ue = instruction->use_end();
ui != ue; ++ui) {
llvm::Instruction *user = cast<Instruction>(ui->getUser());
if (user == NULL) continue;
llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(user);
if (store) {
if (!isUniform(F, store->getValueOperand()) ||
!isUniform(F, store->getParent())) {
if (!isUniform(F, store->getParent())) {
#ifdef DEBUG_UNIFORMITY_ANALYSIS
std::cerr << "### alloca was written in a non-uniform BB" << std::endl;
store->getParent()->dump();
/* TODO: This is a problematic chicken-egg situation because the
BB uniformity check ends up analyzing allocas in phi-removed code:
the loop constructs refer to these allocas and at that point we
do not yet know if the BB itself is uniform. This leads to not
being able to detect loop iteration variables as uniform. */
#endif
}
isUniformAlloca = false;
break;
}
} else if (isa<llvm::LoadInst>(user) || isa<llvm::BitCastInst>(user)) {
} else if (isa<llvm::CallInst>(user)) {
CallInst *CallInstr = dyn_cast<CallInst>(user);
Function *Callee = CallInstr->getCalledFunction();
if (Callee != nullptr &&
(Callee->getName().startswith("llvm.lifetime.end") ||
Callee->getName().startswith("llvm.lifetime.start"))) {
#ifdef DEBUG_UNIFORMITY_ANALYSIS
std::cerr << "### alloca is used by llvm.lifetime" << std::endl;
user->dump();
#endif
} else {
#ifdef DEBUG_UNIFORMITY_ANALYSIS
std::cerr << "### alloca has a suspicious user" << std::endl;
user->dump();
#endif
isUniformAlloca = false;
break;
}
} else {
#ifdef DEBUG_UNIFORMITY_ANALYSIS
std::cerr << "### alloca has a suspicious user" << std::endl;
user->dump();
#endif
isUniformAlloca = false;
break;
}
}
if (!isUniformAlloca) {
// restore the old uniform data as our guess was wrong
uniformityCache_ = backupCache;
}
setUniform(F, V, isUniformAlloca);
return isUniformAlloca;
}
/* TODO: global memory loads are uniform in case they are accessing
the higher scope ids (group_id_?). */
if (isa<llvm::LoadInst>(V)) {
llvm::LoadInst *load = dyn_cast<llvm::LoadInst>(V);
llvm::Value *pointer = load->getPointerOperand();
llvm::Module *M = load->getParent()->getParent()->getParent();
if (pointer == M->getGlobalVariable("_group_id_x") ||
pointer == M->getGlobalVariable("_group_id_y") ||
pointer == M->getGlobalVariable("_group_id_z") ||
pointer == M->getGlobalVariable("_work_dim") ||
pointer == M->getGlobalVariable("_num_groups_x") ||
pointer == M->getGlobalVariable("_num_groups_y") ||
pointer == M->getGlobalVariable("_num_groups_z") ||
pointer == M->getGlobalVariable("_global_offset_x") ||
pointer == M->getGlobalVariable("_global_offset_y") ||
pointer == M->getGlobalVariable("_global_offset_z") ||
pointer == M->getGlobalVariable("_local_size_x") ||
pointer == M->getGlobalVariable("_local_size_y") ||
pointer == M->getGlobalVariable("_local_size_z") ||
pointer == M->getGlobalVariable(PoclGVarBufferName)) {
setUniform(F, V, true);
return true;
}
}
if (isa<llvm::PHINode>(V)) {
/* TODO: PHINodes need control flow analysis:
even if the values are uniform, the selected
value depends on the preceeding basic block which
might depend on the ID. Assume they are not uniform
for now in general and treat the loop iteration
variable as a special case (set externally from a LoopPass).
TODO: PHINodes can depend (indirectly or directly) on itself in loops
so it would need infinite recursion checking.
*/
setUniform(F, V, false);
return false;
}
llvm::Instruction *instr = dyn_cast<llvm::Instruction>(V);
if (instr == NULL) {
setUniform(F, V, false);
return false;
}
// Atomic operations might look like uniform if only considering the operands
// (access a global memory location of which ordering by default is not
// constrained), but their semantics have ordering: Each work-item should get
// their own value from that memory location.
if (instr->isAtomic()) {
setUniform(F, V, false);
return false;
}
// not computed previously, scan all operands of the instruction
// and figure out their uniformity recursively
for (unsigned opr = 0; opr < instr->getNumOperands(); ++opr) {
llvm::Value *operand = instr->getOperand(opr);
if (!isUniform(F, operand)) {
setUniform(F, V, false);
return false;
}
}
setUniform(F, V, true);
return true;
}
void VariableUniformityAnalysisResult::setUniform(llvm::Function *F,
llvm::Value *V,
bool isUniform) {
UniformityIndex &Cache = uniformityCache_[F];
Cache[V] = isUniform;
#ifdef DEBUG_UNIFORMITY_ANALYSIS
std::cerr << "### ";
if (isUniform)
std::cerr << "uniform ";
else
std::cerr << "varying ";
if (isa<llvm::BasicBlock>(V)) {
std::cerr << "BB: " << V->getName().str() << std::endl;
} else {
V->dump();
}
#endif
}
bool VariableUniformityAnalysisResult::doFinalization(llvm::Module & /*M*/) {
uniformityCache_.clear();
return true;
}
#if LLVM_MAJOR < MIN_LLVM_NEW_PASSMANAGER
char VariableUniformityAnalysis::ID = 0;
bool VariableUniformityAnalysis::runOnFunction(Function &F) {
pImpl = new VariableUniformityAnalysisResult;
llvm::LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
llvm::PostDominatorTree &PDT =
getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
return pImpl->runOnFunction(F, LI, PDT);
}
void VariableUniformityAnalysis::getAnalysisUsage(
llvm::AnalysisUsage &AU) const {
AU.addRequired<PostDominatorTreeWrapperPass>();
AU.addPreserved<PostDominatorTreeWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addPreserved<LoopInfoWrapperPass>();
// required by LoopInfo:
AU.addRequired<DominatorTreeWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
}
VariableUniformityAnalysis::~VariableUniformityAnalysis() {
delete pImpl;
pImpl = nullptr;
}
REGISTER_OLD_FANALYSIS(PASS_NAME, PASS_CLASS, PASS_DESC);
#else
llvm::AnalysisKey VariableUniformityAnalysis::Key;
VariableUniformityAnalysis::Result
VariableUniformityAnalysis::run(llvm::Function &F,
llvm::FunctionAnalysisManager &AM) {
llvm::LoopInfo &LI = AM.getResult<llvm::LoopAnalysis>(F);
llvm::PostDominatorTree &PDT =
AM.getResult<llvm::PostDominatorTreeAnalysis>(F);
VariableUniformityAnalysisResult Res;
Res.runOnFunction(F, LI, PDT);
return Res;
}
bool VariableUniformityAnalysisResult::invalidate(
llvm::Function &F, const llvm::PreservedAnalyses PA,
llvm::AnalysisManager<llvm::Function>::Invalidator &Inv) {
// TODO: this is required by the LoopPasses that use this analysis; however,
// it's most likely incorrect. We should convert LoopPasses to FunctionPasses
// and properly invalidate VUA
return false;
#if 0
auto PAC = PA.getChecker<VariableUniformityAnalysis>();
bool Preserved = (PAC.preserved() ||
PAC.preservedSet<AllAnalysesOn<Function>>());
if (!Preserved) {
uniformityCache_.erase(&F);
}
return !Preserved;
#endif
}
REGISTER_NEW_FANALYSIS(PASS_NAME, PASS_CLASS, PASS_DESC);
#endif
} // namespace pocl
|