File: test_svm.cpp

package info (click to toggle)
pocl 6.0-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 25,320 kB
  • sloc: lisp: 149,513; ansic: 103,778; cpp: 54,947; python: 1,513; sh: 949; ruby: 255; pascal: 226; tcl: 180; makefile: 175; java: 72; xml: 49
file content (939 lines) | stat: -rw-r--r-- 31,075 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
/* Tests for SVM.

   Copyright (c) 2023-2024 Pekka Jääskeläinen / Intel Finland Oy

   Permission is hereby granted, free of charge, to any person obtaining a copy
   of this software and associated documentation files (the "Software"), to deal
   in the Software without restriction, including without limitation the rights
   to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
   copies of the Software, and to permit persons to whom the Software is
   furnished to do so, subject to the following conditions:

   The above copyright notice and this permission notice shall be included in
   all copies or substantial portions of the Software.

   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
   IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
   AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
   LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
   OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
   THE SOFTWARE.
*/

// Enable OpenCL C++ exceptions
#define CL_HPP_ENABLE_EXCEPTIONS

#include "pocl_opencl.h"

#include "../../include/CL/cl_ext_pocl.h"
#include <CL/opencl.hpp>

#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <map>
#include <random>

#include "pocl_opencl.h"

#define N_ELEMENTS 16

static char GetAddrSourceCode[] = R"raw(

  __kernel void get_addr (__global int *svm_buffer,
                          __global ulong* addr) {
    for (int i = 0; i < N_ELEMENTS; ++i) {
      svm_buffer[i] += 1;
    }
    *addr = (ulong)svm_buffer;
  }
)raw";

#define STRINGIFY(X, Y) X #Y
#define SET_N_ELEMENTS(NUM) STRINGIFY("-DN_ELEMENTS=", NUM)

int TestCGSVM(cl::Platform Platform) {

  unsigned Errors = 0;
  bool AllOK = true;

  try {
    cl_context_properties cprops[] = {CL_CONTEXT_PLATFORM,
                                      (cl_context_properties)Platform(), 0};
    cl::Context Context(CL_DEVICE_TYPE_CPU | CL_DEVICE_TYPE_GPU, cprops);

    std::vector<cl::Device> Devices = Context.getInfo<CL_CONTEXT_DEVICES>();

    std::vector<cl::Device> SuitableDevices;

    for (cl::Device &Dev : Devices) {
      if (Dev.getInfo<CL_DEVICE_SVM_CAPABILITIES>() &
          CL_DEVICE_SVM_COARSE_GRAIN_BUFFER) {
        SuitableDevices.push_back(Dev);
        break;
      } else {
        std::cout << "Device '" << Dev.getInfo<CL_DEVICE_NAME>() << "' doesn't support CG SVM."
                  << std::endl;
      }
    }

    if (SuitableDevices.empty()) {
      std::cout << "No devices with SVM coarse grain buffer capabilities found."
                << std::endl;
      return 77;
    }

    // Basics: Create a bunch of random-sized allocations and ensure their address
    // ranges do not overlap.
    constexpr size_t NumAllocs = 1000;
    constexpr size_t MaxSize = 1024*1024;

    std::mt19937 Gen(1234);
    std::uniform_int_distribution<> Distrib(1, MaxSize);

    std::map<char*, size_t> Allocs;
    for (size_t i = 0; i < NumAllocs; ++i) {
      size_t AllocSize = Distrib(Gen);

      char *Buf = (char*)::clSVMAlloc(Context.get(), CL_MEM_READ_WRITE,
                                      AllocSize, 0);

      // If we exhaust the SVM space space, it's fine.
      // Freeing the allocations should make the remainder of the test
      // work still, unless there's a mem leak in the implementation.
      if (Buf == nullptr)
        break;

      // Check for overlap.
      for (auto& m : Allocs) {
        if (m.first <= Buf && m.first + m.second > Buf) {
          std::cerr << "An SVM allocation at " << std::hex << (size_t)Buf
                    << " with size " << std::dec << AllocSize
                    << " overlaps with a previous one at " << std::hex
                    << (size_t)m.first << " with size " << m.second << std::endl;
          return false;
        }
      }
      Allocs[Buf] = AllocSize;
    }

    if (Allocs.size() == 0) {
      std::cerr << "Unable to allocate any SVM chunks." << std::endl;
      return EXIT_FAILURE;
    }
    for (auto& m : Allocs) {
      // std::cout << "Freeing " << std::hex << (size_t)m.first << std::endl;
      clSVMFree(Context.get(), m.first);
    }

    cl::CommandQueue Queue(Context, SuitableDevices[0], 0);

    cl::Program::Sources Sources({GetAddrSourceCode});
    cl::Program Program(Context, Sources);

    Program.build(SuitableDevices, SET_N_ELEMENTS(N_ELEMENTS));

    cl::Kernel GetAddrKernel(Program, "get_addr");

    constexpr size_t BufSize = N_ELEMENTS * sizeof(int);
    int *CGSVMBuf = (int*)::clSVMAlloc(Context.get(), CL_MEM_READ_WRITE,
                                       BufSize, 0);

    if (CGSVMBuf == nullptr) {
      std::cerr << "CG SVM allocation returned a nullptr." << std::endl;
      return EXIT_FAILURE;
    }

    cl_ulong AddrFromKernel = 1;

    cl::Buffer AddrCLBuffer =
        cl::Buffer(Context, CL_MEM_WRITE_ONLY, sizeof(cl_ulong), nullptr);

    ::clSetKernelArgSVMPointer(GetAddrKernel.get(), 0, CGSVMBuf);
    GetAddrKernel.setArg(1, AddrCLBuffer);

    int HostBuf[] = {0, 1, 2, 3};
    // Initialize the first inputs via an SVM memcpy command.

    // Without the destination being host-mapped...
    CHECK_CL_ERROR(::clEnqueueSVMMemcpy(Queue.get(), CL_TRUE, &CGSVMBuf[0],
                                        &HostBuf[0], 2 * sizeof(int), 0,
                                        nullptr, nullptr));

    Queue.enqueueMapSVM(&CGSVMBuf[0], true, CL_MAP_READ, 2 * sizeof(int));

    for (int i = 0; i < 2; ++i) {
      if (CGSVMBuf[i] != i) {
        AllOK = false;
        std::cerr << "CGSVMBuf[" << i << "] " << std::hex << &CGSVMBuf[i]
                  << " expected to be " << i << " but got " << (int)CGSVMBuf[i]
                  << std::endl;
      }
      if (HostBuf[i] != i) {
        AllOK = false;
        std::cerr << "HostBuf[" << i << "] expected to be " << i << " but got "
                  << (int)HostBuf[i] << std::endl;
      }
    }

    Queue.enqueueUnmapSVM(CGSVMBuf);

    // ...and while it has been host-mapped.
    ::clEnqueueSVMMemcpy(Queue.get(), CL_TRUE, &CGSVMBuf[2], &HostBuf[2],
                         2 * sizeof(int), 0, nullptr, nullptr);

    Queue.enqueueMapSVM(CGSVMBuf, true, CL_MAP_WRITE, BufSize);
    // Write the rest of the inputs directly.
    for (int i = 4; i < N_ELEMENTS; ++i) {
      CGSVMBuf[i] = i;
    }

    Queue.enqueueUnmapSVM(CGSVMBuf);
    Queue.enqueueNDRangeKernel(GetAddrKernel, cl::NullRange, cl::NDRange(1),
                               cl::NullRange);
    Queue.enqueueMapSVM(CGSVMBuf, true, CL_MAP_READ, BufSize);

    Queue.enqueueReadBuffer(AddrCLBuffer,
                            CL_TRUE, // block
                            0, sizeof(cl_ulong), (void *)&AddrFromKernel);

    if (CGSVMBuf != (void *)AddrFromKernel) {
      std::cerr << "CG buffer's device address on kernel side and host "
        "side do not match. Host sees " << std::hex << CGSVMBuf << " while "
        "the device sees " << AddrFromKernel << std::endl;
      AllOK = false;
    }

    // Read some of the data with SVMMemcpy().
    ::clEnqueueSVMMemcpy(Queue.get(), CL_TRUE, &HostBuf[0], &CGSVMBuf[0],
                         4 * sizeof(int), 0, nullptr, nullptr);

    std::cerr << std::dec;
    for (int i = 0; i < N_ELEMENTS; ++i) {
      if (CGSVMBuf[i] != i + 1) {
        AllOK = false;
        std::cerr << "CGSVMBuf[" << i << "] expected to be " << i + 1
                  << " but got " << (int)CGSVMBuf[i] << std::endl;
      }
      if (i < 4 && i + 1 != HostBuf[i]) {
        AllOK = false;
        std::cerr << "Wrong data in the memcopied buf at " << i << " expected "
                  << i + 1 << " got " << HostBuf[i] << std::endl;
      }
    }
    clSVMFree(Context.get(), CGSVMBuf);
  } catch (cl::Error &err) {
    std::cerr << "ERROR: " << err.what() << "(" << err.err() << ")"
              << std::endl;
    AllOK = false;
  }

  if (AllOK) {
    printf("PASSED\n");
    return EXIT_SUCCESS;
  } else
    return EXIT_FAILURE;
}

int TestMultiDevice_CGSVM(cl::Platform Platform) {

  unsigned Errors = 0;
  bool AllOK = true;

  try {
    cl_context_properties cprops[] = {CL_CONTEXT_PLATFORM,
                                      (cl_context_properties)Platform(), 0};
    cl::Context Context(CL_DEVICE_TYPE_CPU | CL_DEVICE_TYPE_GPU, cprops);

    std::vector<cl::Device> Devices = Context.getInfo<CL_CONTEXT_DEVICES>();

    std::vector<cl::Device> SuitableDevices;

    for (cl::Device &Dev : Devices) {
      if (Dev.getInfo<CL_DEVICE_SVM_CAPABILITIES>() &
          CL_DEVICE_SVM_COARSE_GRAIN_BUFFER) {
        SuitableDevices.push_back(Dev);
      } else {
        std::cout << "Device '" << Dev.getInfo<CL_DEVICE_NAME>()
                  << "' doesn't support CG SVM." << std::endl;
        continue;
      }
    }

    if (SuitableDevices.size() < 2) {
      std::cout << "At least 2 devices with SVM coarse grain buffer "
                   "capabilities needed."
                << std::endl;
      return 77;
    }

    // Test that an allocation has the same virtual address in each device and
    // the host.
    int *CGSVMBuf = (int *)::clSVMAlloc(Context.get(), CL_MEM_READ_WRITE,
                                        sizeof(cl_int) * N_ELEMENTS, 0);
    if (CGSVMBuf == nullptr) {
      std::cerr << "CG SVM allocation returned a nullptr." << std::endl;
      return EXIT_FAILURE;
    }

    cl::Program::Sources Sources({GetAddrSourceCode});
    cl::Program Program(Context, Sources);

    Program.build(SuitableDevices, SET_N_ELEMENTS(N_ELEMENTS));

    cl::Kernel GetAddrKernel(Program, "get_addr");

    std::map<cl::Device *, cl::CommandQueue *> Queues;
    for (cl::Device &Device : SuitableDevices) {
      cl::CommandQueue *Q = new cl::CommandQueue(Context, Device, 0);
      Queues[&Device] = Q;
    }

    // Check that the SVM addresses of the SVM buf are the same in
    // the device side.
    for (cl::Device &Device : SuitableDevices) {
      cl::CommandQueue &Queue = *Queues[&Device];

      cl_ulong AddrFromKernel = 1;

      cl::Buffer AddrCLBuffer =
          cl::Buffer(Context, CL_MEM_WRITE_ONLY, sizeof(cl_ulong), nullptr);

      ::clSetKernelArgSVMPointer(GetAddrKernel.get(), 0, CGSVMBuf);
      // Now the runtime should automatically migrate the buffer to device 1
      // input -> device 2 input etc. due to the SVM argument reference.

      GetAddrKernel.setArg(1, AddrCLBuffer);
      Queue.enqueueNDRangeKernel(GetAddrKernel, cl::NullRange, cl::NDRange(1),
                                 cl::NullRange);
      Queue.enqueueReadBuffer(AddrCLBuffer,
                              CL_TRUE, // block
                              0, sizeof(cl_ulong), (void *)&AddrFromKernel);
      Queue.finish();
      if (CGSVMBuf != (void *)AddrFromKernel) {
        std::cerr << "SVM buffer's device address on kernel and host "
                     "sides do not match. Host sees "
                  << std::hex << CGSVMBuf << " while a device sees "
                  << AddrFromKernel << std::endl;
        AllOK = false;
      }
    }

    // Check the buffer migration to and between devices with
    // an event synch.
    // The runtime should automatically migrate the buffer to device 1 input ->
    // device 2 input etc. due to the SVM argument reference.
    cl::Event PrevKernelExecutionEvent;

    cl::CommandQueue &Q = *(*Queues.begin()).second;

    // Initialize the SVM buf at the host side.
    Q.enqueueMapSVM(CGSVMBuf, true, CL_MAP_WRITE, N_ELEMENTS * sizeof(cl_int));
    for (int i = 0; i < N_ELEMENTS; ++i) {
      CGSVMBuf[i] = i + 1;
    }
    Q.enqueueUnmapSVM(CGSVMBuf);

    for (cl::Device &Device : SuitableDevices) {
      cl::CommandQueue &Queue = *Queues[&Device];

      cl_ulong AddrFromKernel = 1;

      cl::Buffer AddrCLBuffer =
          cl::Buffer(Context, CL_MEM_WRITE_ONLY, sizeof(cl_ulong), nullptr);

      ::clSetKernelArgSVMPointer(GetAddrKernel.get(), 0, CGSVMBuf);

      GetAddrKernel.setArg(1, AddrCLBuffer);

      std::vector<cl::Event> WaitEvents;
      if (&Device != &*(SuitableDevices.begin()))
        WaitEvents.push_back(PrevKernelExecutionEvent);

      Queue.enqueueNDRangeKernel(GetAddrKernel, cl::NullRange, cl::NDRange(1),
                                 cl::NullRange, &WaitEvents,
                                 &PrevKernelExecutionEvent);
      Queue.enqueueReadBuffer(AddrCLBuffer,
                              CL_TRUE, // block
                              0, sizeof(cl_ulong), (void *)&AddrFromKernel);
    }

    cl::CommandQueue &LastQ = *Queues[&SuitableDevices.back()];
    LastQ.finish();

    // After all devices have finished execution, check the kernel check the
    // result.
    LastQ.enqueueMapSVM(CGSVMBuf, true, CL_MAP_READ,
                        N_ELEMENTS * sizeof(cl_int));
    for (int i = 0; i < N_ELEMENTS; ++i) {
      int Expected = i + 1 + Devices.size();
      if (CGSVMBuf[i] != Expected) {
        std::cerr << "SVM buffer element " << i
                  << " was not incremented by all devices "
                     "as expected: got "
                  << CGSVMBuf[i] << " expected " << Expected << std::endl;
        AllOK = false;
      }
    }

    for (cl::Device &Device : SuitableDevices) {
      delete Queues[&Device];
    }
    // TODO: run with multiple devices in the PoCL suite

  } catch (cl::Error &err) {
    std::cerr << "ERROR: " << err.what() << " (" << err.err() << ")"
              << std::endl;
    return EXIT_FAILURE;
  }

  if (AllOK) {
    printf("PASSED\n");
    return EXIT_SUCCESS;
  } else
    return EXIT_FAILURE;
}

static char SimpleKernelSourceCode[] = R"raw(

  __kernel void simple_kernel(__global int *Out,
                              __global int *In) {
    *Out = *In;
  }
)raw";

// OpenCL version of simple_kernel.hip in the chipStar samples.
int TestSimpleKernel_CGSVM(cl::Platform Platform) {
  unsigned Errors = 0;
  bool AllOK = true;

  try {
    cl_context_properties cprops[] = {CL_CONTEXT_PLATFORM,
                                      (cl_context_properties)Platform(), 0};
    cl::Context Context(CL_DEVICE_TYPE_CPU | CL_DEVICE_TYPE_GPU, cprops);

    std::vector<cl::Device> Devices = Context.getInfo<CL_CONTEXT_DEVICES>();

    std::vector<cl::Device> SuitableDevices;

    for (cl::Device &Dev : Devices) {
      if (Dev.getInfo<CL_DEVICE_SVM_CAPABILITIES>() &
          CL_DEVICE_SVM_COARSE_GRAIN_BUFFER) {
        SuitableDevices.push_back(Dev);
        break;
      } else {
        std::cout << "Device '" << Dev.getInfo<CL_DEVICE_NAME>()
                  << "' doesn't support CG SVM." << std::endl;
      }
    }

    if (SuitableDevices.empty()) {
      std::cout << "No devices with SVM coarse grain buffer capabilities found."
                << std::endl;
      return 77;
    }

    cl::CommandQueue Queue(Context, SuitableDevices[0], 0);

    cl::Program::Sources Sources({SimpleKernelSourceCode});
    cl::Program Program(Context, Sources);

    Program.build(SuitableDevices);

    cl::Kernel SimpleKernel(Program, "simple_kernel");

    int InH = 123, OutH = 0, *InD, *OutD;
    OutD =
        (int *)::clSVMAlloc(Context.get(), CL_MEM_READ_WRITE, sizeof(int), 0);
    InD = (int *)::clSVMAlloc(Context.get(), CL_MEM_READ_WRITE, sizeof(int), 0);

    if (OutD == nullptr || InD == nullptr) {
      std::cerr << "Unable to allocate SVM buffers.\n";
      return EXIT_FAILURE;
    }

    CHECK_CL_ERROR(::clEnqueueSVMMemcpy(Queue.get(), CL_TRUE, InD, &InH,
                                        sizeof(int), 0, nullptr, nullptr));

    ::clSetKernelArgSVMPointer(SimpleKernel.get(), 0, OutD);
    ::clSetKernelArgSVMPointer(SimpleKernel.get(), 1, InD);

    Queue.enqueueNDRangeKernel(SimpleKernel, cl::NullRange, cl::NDRange(1),
                               cl::NullRange);

    CHECK_CL_ERROR(::clEnqueueSVMMemcpy(Queue.get(), CL_TRUE, &OutH, OutD,
                                        sizeof(int), 0, nullptr, nullptr));

    clSVMFree(Context.get(), OutD);
    clSVMFree(Context.get(), InD);

    if (OutH == 123) {
      printf("PASSED\n");
    } else {
      AllOK = false;
      printf("OutH=%d\n", OutH);
    }
  } catch (cl::Error &err) {
    std::cerr << "ERROR: " << err.what() << "(" << err.err() << ")"
              << std::endl;
    AllOK = false;
  }

  if (AllOK)
    return EXIT_SUCCESS;
  else
    return EXIT_FAILURE;
}

// Test for cl_mem-wrapped SVM pointers.
int TestCLMem_SVM(cl::Platform Platform) {
  cl_int Err = 0;
  bool AllOK = true;

  try {
    cl_context_properties cprops[] = {CL_CONTEXT_PLATFORM,
                                      (cl_context_properties)Platform(), 0};
    cl::Context Context(CL_DEVICE_TYPE_CPU | CL_DEVICE_TYPE_GPU, cprops);

    std::vector<cl::Device> Devices = Context.getInfo<CL_CONTEXT_DEVICES>();

    std::vector<cl::Device> SuitableDevices;

    for (cl::Device &Dev : Devices) {
      if (Dev.getInfo<CL_DEVICE_SVM_CAPABILITIES>() &
          CL_DEVICE_SVM_COARSE_GRAIN_BUFFER) {
        SuitableDevices.push_back(Dev);
        break;
      } else {
        std::cout << "Device '" << Dev.getInfo<CL_DEVICE_NAME>()
                  << "' doesn't support CG SVM." << std::endl;
      }
    }

    if (SuitableDevices.empty()) {
      std::cout << "No devices with SVM coarse grain buffer capabilities found."
                << std::endl;
      return 77;
    }

    cl::CommandQueue Q(Context, SuitableDevices[0], 0);

    cl::Program::Sources Sources({SimpleKernelSourceCode});
    cl::Program Program(Context, Sources);

    Program.build(SuitableDevices);

    cl::Kernel SimpleKernel(Program, "simple_kernel");

    int InH = 123, OutH = 0, *InD, *OutD;
    InD = (int *)::clSVMAlloc(Context.get(), CL_MEM_READ_WRITE, sizeof(int), 0);
    OutD =
        (int *)::clSVMAlloc(Context.get(), CL_MEM_READ_WRITE, sizeof(int), 0);
    if (OutD == nullptr || InD == nullptr) {
      std::cerr << "Unable to allocate SVM buffers.\n";
      return EXIT_FAILURE;
    }

    cl::Buffer clBufInD(Context, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR,
                        sizeof(int), InD, &Err);

    CHECK_CL_ERROR(Err);

    cl::Buffer clBufOutD(Context, CL_MEM_READ_WRITE | CL_MEM_USE_HOST_PTR,
                         sizeof(int), OutD, &Err);
    CHECK_CL_ERROR(Err);

    if (!clBufInD.getInfo<CL_MEM_USES_SVM_POINTER>() ||
        !clBufOutD.getInfo<CL_MEM_USES_SVM_POINTER>()) {
      std::cerr << "cl_mem wrappers for the SVM pointers do not have "
                   "CL_MEM_USES_SVM_POINTER set.\n";
      return EXIT_FAILURE;
    }

    // Now clWriteBuffer() should allow us to update the SVM
    // region as an alternative to clEnqueueSVMMemcpy().
    CHECK_CL_ERROR(
        Q.enqueueWriteBuffer(clBufInD, CL_FALSE, 0, sizeof(int), &InH));

    // We still should be able to use clSetKernelArgSVMPointer
    // ::clSetKernelArgSVMPointer(SimpleKernel.get(), 0, OutD);
    // ...or clSetKernelArg()
    CHECK_CL_ERROR(SimpleKernel.setArg(0, clBufOutD));
    CHECK_CL_ERROR(SimpleKernel.setArg(1, clBufInD));

    CHECK_CL_ERROR(Q.enqueueNDRangeKernel(SimpleKernel, cl::NullRange,
                                          cl::NDRange(1), cl::NullRange));

    CHECK_CL_ERROR(
        Q.enqueueReadBuffer(clBufOutD, CL_TRUE, 0, sizeof(int), &OutH));
    clSVMFree(Context.get(), OutD);
    clSVMFree(Context.get(), InD);

    if (OutH == 123) {
      printf("PASSED\n");
    } else {
      AllOK = false;
      printf("FAILED OutH=%d\n", OutH);
    }
  } catch (cl::Error &err) {
    std::cerr << "ERROR: " << err.what() << "(" << err.err() << ")"
              << std::endl;
    AllOK = false;
  }

  if (AllOK)
    return EXIT_SUCCESS;
  else
    return EXIT_FAILURE;
}

int TestFGSVM(cl::Platform Platform) {

  unsigned Errors = 0;
  bool AllOK = true;

  try {
    cl_context_properties cprops[] = {CL_CONTEXT_PLATFORM,
                                      (cl_context_properties)Platform(), 0};
    cl::Context Context(CL_DEVICE_TYPE_CPU | CL_DEVICE_TYPE_GPU, cprops);

    std::vector<cl::Device> Devices = Context.getInfo<CL_CONTEXT_DEVICES>();

    std::vector<cl::Device> SuitableDevices;

    for (cl::Device &Dev : Devices) {
      if (Dev.getInfo<CL_DEVICE_SVM_CAPABILITIES>() &
          CL_DEVICE_SVM_FINE_GRAIN_BUFFER) {
        SuitableDevices.push_back(Dev);
        break;
      } else {
        std::cout << "Device '" << Dev.getInfo<CL_DEVICE_NAME>()
                  << "' doesn't support FG SVM." << std::endl;
      }
    }

    if (SuitableDevices.empty()) {
      std::cout << "No devices with SVM fine grain buffer capabilities found."
                << std::endl;
      return 77;
    }

    // Basics: Create a bunch of random-sized allocations and ensure their
    // address ranges do not overlap.
    constexpr size_t NumAllocs = 1000;
    constexpr size_t MaxSize = 1024 * 1024;

    std::mt19937 Gen(1234);
    std::uniform_int_distribution<> Distrib(1, MaxSize);

    std::map<char *, size_t> Allocs;
    for (size_t i = 0; i < NumAllocs; ++i) {
      size_t AllocSize = Distrib(Gen);

      char *Buf = (char *)::clSVMAlloc(
          Context.get(), CL_MEM_READ_WRITE | CL_MEM_SVM_FINE_GRAIN_BUFFER,
          AllocSize, 0);

      // If we exhaust the SVM space space, it's fine.
      // Freeing the allocations should make the remainder of the test
      // work still, unless there's a mem leak in the implementation
      // side.
      if (Buf == nullptr)
        break;

      // Check for overlap.
      for (auto &m : Allocs) {
        if (m.first <= Buf && m.first + m.second > Buf) {
          std::cerr << "An SVM allocation at " << std::hex << (size_t)Buf
                    << " with size " << std::dec << AllocSize
                    << " overlaps with a previous one at " << std::hex
                    << (size_t)m.first << " with size " << m.second
                    << std::endl;
          return false;
        }
      }
      Allocs[Buf] = AllocSize;
    }

    if (Allocs.size() == 0) {
      std::cerr << "Unable to allocate any SVM chunks." << std::endl;
      return EXIT_FAILURE;
    }
    for (auto &m : Allocs) {
      // std::cout << "Freeing " << std::hex << (size_t)m.first << std::endl;
      clSVMFree(Context.get(), m.first);
    }

    cl::CommandQueue Queue(Context, SuitableDevices[0], 0);

    cl::Program::Sources Sources({GetAddrSourceCode});
    cl::Program Program(Context, Sources);

    Program.build(SuitableDevices, SET_N_ELEMENTS(N_ELEMENTS));

    cl::Kernel GetAddrKernel(Program, "get_addr");

    constexpr size_t BufSize = N_ELEMENTS * sizeof(int);
    int *FGSVMBuf = (int *)::clSVMAlloc(
        Context.get(), CL_MEM_READ_WRITE | CL_MEM_SVM_FINE_GRAIN_BUFFER,
        BufSize, 0);

    if (FGSVMBuf == nullptr) {
      std::cerr << "FG SVM allocation returned a nullptr." << std::endl;
      return false;
    }

    cl_ulong AddrFromKernel = 1;

    cl::Buffer AddrCLBuffer =
        cl::Buffer(Context, CL_MEM_WRITE_ONLY, sizeof(cl_ulong), nullptr);

    ::clSetKernelArgSVMPointer(GetAddrKernel.get(), 0, FGSVMBuf);
    GetAddrKernel.setArg(1, AddrCLBuffer);

    int HostBuf[] = {0, 1, 2, 3};
    // Initialize the first inputs via an SVM memcpy command.

    // Without the destination being host-mapped...
    CHECK_CL_ERROR(::clEnqueueSVMMemcpy(Queue.get(), CL_TRUE, &FGSVMBuf[0],
                                        &HostBuf[0], 2 * sizeof(int), 0,
                                        nullptr, nullptr));

    for (int i = 0; i < 2; ++i) {
      if (FGSVMBuf[i] != i) {
        AllOK = false;
        std::cerr << "FGSVMBuf[" << i << "] " << std::hex << &FGSVMBuf[i]
                  << " expected to be " << i << " but got " << (int)FGSVMBuf[i]
                  << std::endl;
      }
      if (HostBuf[i] != i) {
        AllOK = false;
        std::cerr << "HostBuf[" << i << "] expected to be " << i << " but got "
                  << (int)HostBuf[i] << std::endl;
      }
    }

    ::clEnqueueSVMMemcpy(Queue.get(), CL_TRUE, &FGSVMBuf[2], &HostBuf[2],
                         2 * sizeof(int), 0, nullptr, nullptr);

    // Write the rest of the inputs directly.
    for (int i = 4; i < N_ELEMENTS; ++i) {
      FGSVMBuf[i] = i;
    }

    Queue.enqueueNDRangeKernel(GetAddrKernel, cl::NullRange, cl::NDRange(1),
                               cl::NullRange);
    Queue.enqueueReadBuffer(AddrCLBuffer,
                            CL_TRUE, // block
                            0, sizeof(cl_ulong), (void *)&AddrFromKernel);

    if (FGSVMBuf != (void *)AddrFromKernel) {
      std::cerr << "FG buffer's device address on kernel side and host "
                   "side do not match. Host sees "
                << std::hex << FGSVMBuf
                << " while "
                   "the device sees "
                << AddrFromKernel << std::endl;
      AllOK = false;
    }

    // Read some of the data with SVMMemcpy().
    ::clEnqueueSVMMemcpy(Queue.get(), CL_TRUE, &HostBuf[0], &FGSVMBuf[0],
                         4 * sizeof(int), 0, nullptr, nullptr);

    std::cerr << std::dec;
    for (int i = 0; i < N_ELEMENTS; ++i) {
      if (FGSVMBuf[i] != i + 1) {
        AllOK = false;
        std::cerr << "FGSVMBuf[" << i << "] expected to be " << i + 1
                  << " but got " << (int)FGSVMBuf[i] << std::endl;
      }
      if (i < 4 && i + 1 != HostBuf[i]) {
        AllOK = false;
        std::cerr << "Wrong data in the memcopied buf at " << i << " expected "
                  << i + 1 << " got " << HostBuf[i] << std::endl;
      }
    }
    clSVMFree(Context.get(), FGSVMBuf);
  } catch (cl::Error &err) {
    std::cerr << "ERROR: " << err.what() << "(" << err.err() << ")"
              << std::endl;
    AllOK = false;
  }

  if (!AllOK)
    return EXIT_FAILURE;
  else
    return EXIT_SUCCESS;
}

int TestSSVM(cl::Platform Platform) {

  unsigned Errors = 0;
  bool AllOK = true;

  try {
    cl_context_properties cprops[] = {CL_CONTEXT_PLATFORM,
                                      (cl_context_properties)Platform(), 0};
    cl::Context Context(CL_DEVICE_TYPE_CPU | CL_DEVICE_TYPE_GPU, cprops);

    std::vector<cl::Device> Devices = Context.getInfo<CL_CONTEXT_DEVICES>();

    std::vector<cl::Device> SuitableDevices;

    for (cl::Device &Dev : Devices) {
      if (Dev.getInfo<CL_DEVICE_SVM_CAPABILITIES>() &
          CL_DEVICE_SVM_FINE_GRAIN_SYSTEM) {
        SuitableDevices.push_back(Dev);
        break;
      } else {
        std::cout << "Device '" << Dev.getInfo<CL_DEVICE_NAME>()
                  << "' doesn't support FG System SVM." << std::endl;
      }
    }

    if (SuitableDevices.empty()) {
      std::cout << "No devices with fine grain system SVM capabilities found."
                << std::endl;
      return 77;
    }

    cl::CommandQueue Queue(Context, SuitableDevices[0], 0);

    cl::Program::Sources Sources({GetAddrSourceCode});
    cl::Program Program(Context, Sources);

    Program.build(SuitableDevices, SET_N_ELEMENTS(N_ELEMENTS));

    cl::Kernel GetAddrKernel(Program, "get_addr");

    constexpr size_t BufSize = N_ELEMENTS * sizeof(int);
    int *SSVMBuf = (int *)::malloc(BufSize);

    if (SSVMBuf == nullptr) {
      std::cerr << "malloc() returned a nullptr." << std::endl;
      return false;
    }

    cl_ulong AddrFromKernel = 1;

    cl::Buffer AddrCLBuffer =
        cl::Buffer(Context, CL_MEM_WRITE_ONLY, sizeof(cl_ulong), nullptr);

    ::clSetKernelArgSVMPointer(GetAddrKernel.get(), 0, SSVMBuf);
    GetAddrKernel.setArg(1, AddrCLBuffer);

    int HostBuf[] = {0, 1, 2, 3};
    // Initialize the first inputs via an SVM memcpy command.

    // Without the destination being host-mapped...
    CHECK_CL_ERROR(::clEnqueueSVMMemcpy(Queue.get(), CL_TRUE, &SSVMBuf[0],
                                        &HostBuf[0], 2 * sizeof(int), 0,
                                        nullptr, nullptr));

    for (int i = 0; i < 2; ++i) {
      if (SSVMBuf[i] != i) {
        AllOK = false;
        std::cerr << "SSVMBuf[" << i << "] " << std::hex << &SSVMBuf[i]
                  << " expected to be " << i << " but got " << (int)SSVMBuf[i]
                  << std::endl;
      }
      if (HostBuf[i] != i) {
        AllOK = false;
        std::cerr << "HostBuf[" << i << "] expected to be " << i << " but got "
                  << (int)HostBuf[i] << std::endl;
      }
    }

    ::clEnqueueSVMMemcpy(Queue.get(), CL_TRUE, &SSVMBuf[2], &HostBuf[2],
                         2 * sizeof(int), 0, nullptr, nullptr);

    // Write the rest of the inputs directly.
    for (int i = 4; i < N_ELEMENTS; ++i) {
      SSVMBuf[i] = i;
    }

    Queue.enqueueNDRangeKernel(GetAddrKernel, cl::NullRange, cl::NDRange(1),
                               cl::NullRange);
    Queue.enqueueReadBuffer(AddrCLBuffer,
                            CL_TRUE, // block
                            0, sizeof(cl_ulong), (void *)&AddrFromKernel);

    if (SSVMBuf != (void *)AddrFromKernel) {
      std::cerr << "FG system buffer's device address on kernel side and host "
                   "side do not match. Host sees "
                << std::hex << SSVMBuf
                << " while "
                   "the device sees "
                << AddrFromKernel << std::endl;
      AllOK = false;
    }

    // Read some of the data with SVMMemcpy().
    ::clEnqueueSVMMemcpy(Queue.get(), CL_TRUE, &HostBuf[0], &SSVMBuf[0],
                         4 * sizeof(int), 0, nullptr, nullptr);

    std::cerr << std::dec;
    for (int i = 0; i < N_ELEMENTS; ++i) {
      if (SSVMBuf[i] != i + 1) {
        AllOK = false;
        std::cerr << "SSVMBuf[" << i << "] expected to be " << i + 1
                  << " but got " << (int)SSVMBuf[i] << std::endl;
      }
      if (i < 4 && i + 1 != HostBuf[i]) {
        AllOK = false;
        std::cerr << "Wrong data in the memcopied buf at " << i << " expected "
                  << i + 1 << " got " << HostBuf[i] << std::endl;
      }
    }

    free(SSVMBuf);
  } catch (cl::Error &err) {
    std::cerr << "ERROR: " << err.what() << "(" << err.err() << ")"
              << std::endl;
    AllOK = false;
  }

  if (!AllOK)
    return EXIT_FAILURE;
  else
    return EXIT_SUCCESS;
}

int main() {

  std::vector<cl::Platform> PlatformList;

  cl::Platform::get(&PlatformList);

  std::cout << "TestSimpleKernel_CGSVM: ";
  if (TestSimpleKernel_CGSVM(PlatformList[0]) == EXIT_FAILURE)
    return EXIT_FAILURE;

  std::cout << "TestCLMem_SVM: ";
  if (TestCLMem_SVM(PlatformList[0]) == EXIT_FAILURE)
    return EXIT_FAILURE;

  std::cout << "TestCGSVM: ";
  if (TestCGSVM(PlatformList[0]) == EXIT_FAILURE)
    return EXIT_FAILURE;

  std::cout << "TestFGSVM: ";
  if (TestFGSVM(PlatformList[0]) == EXIT_FAILURE)
    return EXIT_FAILURE;

  std::cout << "TestSSVM: ";
  if (TestSSVM(PlatformList[0]) == EXIT_FAILURE)
    return EXIT_FAILURE;

  std::cout << "TestMultiDevice_CGSVM: ";
  if (TestMultiDevice_CGSVM(PlatformList[0]) == EXIT_FAILURE)
    return EXIT_FAILURE;

  PlatformList[0].unloadCompiler();

  std::cout << "OK" << std::endl;

  return EXIT_SUCCESS;
}