1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
|
/**
* MIT License
*
* Copyright (c) 2017 Tessil
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef TSL_ORDERED_SET_H
#define TSL_ORDERED_SET_H
#include <cstddef>
#include <deque>
#include <functional>
#include <initializer_list>
#include <memory>
#include <type_traits>
#include <utility>
#include <vector>
#include "ordered_hash.h"
namespace tsl {
/**
* Implementation of an hash set using open adressing with robin hood with backshift delete to resolve collisions.
*
* The particularity of this hash set is that it remembers the order in which the elements were added and
* provide a way to access the structure which stores these values through the 'values_container()' method.
* The used container is defined by ValueTypeContainer, by default a std::deque is used (grows faster) but
* a std::vector may be used. In this case the set provides a 'data()' method which give a direct access
* to the memory used to store the values (which can be usefull to communicate with C API's).
*
* The Key must be copy constructible and/or move constructible. To use `unordered_erase` it also must be swappable.
*
* The behaviour of the hash set is undefinded if the destructor of Key throws an exception.
*
* Iterators invalidation:
* - clear, operator=, reserve, rehash: always invalidate the iterators (also invalidate end()).
* - insert, emplace, emplace_hint, operator[]: when a std::vector is used as ValueTypeContainer
* and if size() < capacity(), only end().
* Otherwise all the iterators are invalidated if an insert occurs.
* - erase, unordered_erase: when a std::vector is used as ValueTypeContainer invalidate the iterator of
* the erased element and all the ones after the erased element (including end()).
* Otherwise all the iterators are invalidated if an erase occurs.
*/
template<class Key,
class Hash = std::hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Allocator = std::allocator<Key>,
class ValueTypeContainer = std::deque<Key, Allocator>>
class ordered_set {
private:
template<typename U>
using has_is_transparent = tsl::detail_ordered_hash::has_is_transparent<U>;
class KeySelect {
public:
using key_type = Key;
const key_type& operator()(const Key& key) const noexcept {
return key;
}
key_type& operator()(Key& key) noexcept {
return key;
}
};
using ht = detail_ordered_hash::ordered_hash<Key, KeySelect, void,
Hash, KeyEqual, Allocator, ValueTypeContainer>;
public:
using key_type = typename ht::key_type;
using value_type = typename ht::value_type;
using size_type = typename ht::size_type;
using difference_type = typename ht::difference_type;
using hasher = typename ht::hasher;
using key_equal = typename ht::key_equal;
using allocator_type = typename ht::allocator_type;
using reference = typename ht::reference;
using const_reference = typename ht::const_reference;
using pointer = typename ht::pointer;
using const_pointer = typename ht::const_pointer;
using iterator = typename ht::iterator;
using const_iterator = typename ht::const_iterator;
using reverse_iterator = typename ht::reverse_iterator;
using const_reverse_iterator = typename ht::const_reverse_iterator;
using values_container_type = typename ht::values_container_type;
/*
* Constructors
*/
ordered_set(): ordered_set(ht::DEFAULT_INIT_BUCKETS_SIZE) {
}
explicit ordered_set(size_type bucket_count,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()):
m_ht(bucket_count, hash, equal, alloc, ht::DEFAULT_MAX_LOAD_FACTOR)
{
}
ordered_set(size_type bucket_count,
const Allocator& alloc): ordered_set(bucket_count, Hash(), KeyEqual(), alloc)
{
}
ordered_set(size_type bucket_count,
const Hash& hash,
const Allocator& alloc): ordered_set(bucket_count, hash, KeyEqual(), alloc)
{
}
explicit ordered_set(const Allocator& alloc): ordered_set(ht::DEFAULT_INIT_BUCKETS_SIZE, alloc) {
}
template<class InputIt>
ordered_set(InputIt first, InputIt last,
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()): ordered_set(bucket_count, hash, equal, alloc)
{
insert(first, last);
}
template<class InputIt>
ordered_set(InputIt first, InputIt last,
size_type bucket_count,
const Allocator& alloc): ordered_set(first, last, bucket_count, Hash(), KeyEqual(), alloc)
{
}
template<class InputIt>
ordered_set(InputIt first, InputIt last,
size_type bucket_count,
const Hash& hash,
const Allocator& alloc): ordered_set(first, last, bucket_count, hash, KeyEqual(), alloc)
{
}
ordered_set(std::initializer_list<value_type> init,
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()):
ordered_set(init.begin(), init.end(), bucket_count, hash, equal, alloc)
{
}
ordered_set(std::initializer_list<value_type> init,
size_type bucket_count,
const Allocator& alloc):
ordered_set(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(), alloc)
{
}
ordered_set(std::initializer_list<value_type> init,
size_type bucket_count,
const Hash& hash,
const Allocator& alloc):
ordered_set(init.begin(), init.end(), bucket_count, hash, KeyEqual(), alloc)
{
}
ordered_set& operator=(std::initializer_list<value_type> ilist) {
m_ht.clear();
m_ht.reserve(ilist.size());
m_ht.insert(ilist.begin(), ilist.end());
return *this;
}
allocator_type get_allocator() const { return m_ht.get_allocator(); }
/*
* Iterators
*/
iterator begin() noexcept { return m_ht.begin(); }
const_iterator begin() const noexcept { return m_ht.begin(); }
const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
iterator end() noexcept { return m_ht.end(); }
const_iterator end() const noexcept { return m_ht.end(); }
const_iterator cend() const noexcept { return m_ht.cend(); }
reverse_iterator rbegin() noexcept { return m_ht.rbegin(); }
const_reverse_iterator rbegin() const noexcept { return m_ht.rbegin(); }
const_reverse_iterator rcbegin() const noexcept { return m_ht.rcbegin(); }
reverse_iterator rend() noexcept { return m_ht.rend(); }
const_reverse_iterator rend() const noexcept { return m_ht.rend(); }
const_reverse_iterator rcend() const noexcept { return m_ht.rcend(); }
/*
* Capacity
*/
bool empty() const noexcept { return m_ht.empty(); }
size_type size() const noexcept { return m_ht.size(); }
size_type max_size() const noexcept { return m_ht.max_size(); }
/*
* Modifiers
*/
void clear() noexcept { m_ht.clear(); }
std::pair<iterator, bool> insert(const value_type& value) { return m_ht.insert(value); }
std::pair<iterator, bool> insert(value_type&& value) { return m_ht.insert(std::move(value)); }
iterator insert(const_iterator hint, const value_type& value) {
return m_ht.insert(hint, value);
}
iterator insert(const_iterator hint, value_type&& value) {
return m_ht.insert(hint, std::move(value));
}
template<class InputIt>
void insert(InputIt first, InputIt last) { m_ht.insert(first, last); }
void insert(std::initializer_list<value_type> ilist) { m_ht.insert(ilist.begin(), ilist.end()); }
/**
* Due to the way elements are stored, emplace will need to move or copy the key-value once.
* The method is equivalent to insert(value_type(std::forward<Args>(args)...));
*
* Mainly here for compatibility with the std::unordered_map interface.
*/
template<class... Args>
std::pair<iterator, bool> emplace(Args&&... args) { return m_ht.emplace(std::forward<Args>(args)...); }
/**
* Due to the way elements are stored, emplace_hint will need to move or copy the key-value once.
* The method is equivalent to insert(hint, value_type(std::forward<Args>(args)...));
*
* Mainly here for compatibility with the std::unordered_map interface.
*/
template<class... Args>
iterator emplace_hint(const_iterator hint, Args&&... args) {
return m_ht.emplace_hint(hint, std::forward<Args>(args)...);
}
/**
* When erasing an element, the insert order will be preserved and no holes will be present in the container
* returned by 'values_container()'.
*
* The method is in O(n), if the order is not important 'unordered_erase(...)' method is faster with an O(1)
* average complexity.
*/
iterator erase(iterator pos) { return m_ht.erase(pos); }
/**
* @copydoc erase(iterator pos)
*/
iterator erase(const_iterator pos) { return m_ht.erase(pos); }
/**
* @copydoc erase(iterator pos)
*/
iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); }
/**
* @copydoc erase(iterator pos)
*/
size_type erase(const key_type& key) { return m_ht.erase(key); }
/**
* @copydoc erase(iterator pos)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
*/
size_type erase(const key_type& key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
/**
* @copydoc erase(iterator pos)
*
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type erase(const K& key) { return m_ht.erase(key); }
/**
* @copydoc erase(const key_type& key, std::size_t precalculated_hash)
*
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type erase(const K& key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
void swap(ordered_set& other) { other.m_ht.swap(m_ht); }
/*
* Lookup
*/
size_type count(const Key& key) const { return m_ht.count(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
size_type count(const Key& key, std::size_t precalculated_hash) const {
return m_ht.count(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type count(const K& key) const { return m_ht.count(key); }
/**
* @copydoc count(const K& key) const
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type count(const K& key, std::size_t precalculated_hash) const {
return m_ht.count(key, precalculated_hash);
}
iterator find(const Key& key) { return m_ht.find(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
iterator find(const Key& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
const_iterator find(const Key& key) const { return m_ht.find(key); }
/**
* @copydoc find(const Key& key, std::size_t precalculated_hash)
*/
const_iterator find(const Key& key, std::size_t precalculated_hash) const {
return m_ht.find(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
iterator find(const K& key) { return m_ht.find(key); }
/**
* @copydoc find(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
iterator find(const K& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
/**
* @copydoc find(const K& key)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const_iterator find(const K& key) const { return m_ht.find(key); }
/**
* @copydoc find(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const_iterator find(const K& key, std::size_t precalculated_hash) const {
return m_ht.find(key, precalculated_hash);
}
std::pair<iterator, iterator> equal_range(const Key& key) { return m_ht.equal_range(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
std::pair<iterator, iterator> equal_range(const Key& key, std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
std::pair<const_iterator, const_iterator> equal_range(const Key& key) const { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const Key& key, std::size_t precalculated_hash)
*/
std::pair<const_iterator, const_iterator> equal_range(const Key& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<iterator, iterator> equal_range(const K& key) { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<iterator, iterator> equal_range(const K& key, std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* @copydoc equal_range(const K& key)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<const_iterator, const_iterator> equal_range(const K& key) const { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const K& key, std::size_t precalculated_hash)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<const_iterator, const_iterator> equal_range(const K& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/*
* Bucket interface
*/
size_type bucket_count() const { return m_ht.bucket_count(); }
size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
/*
* Hash policy
*/
float load_factor() const { return m_ht.load_factor(); }
float max_load_factor() const { return m_ht.max_load_factor(); }
void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
void rehash(size_type count) { m_ht.rehash(count); }
void reserve(size_type count) { m_ht.reserve(count); }
/*
* Observers
*/
hasher hash_function() const { return m_ht.hash_function(); }
key_equal key_eq() const { return m_ht.key_eq(); }
/*
* Other
*/
/**
* Convert a const_iterator to an iterator.
*/
iterator mutable_iterator(const_iterator pos) {
return m_ht.mutable_iterator(pos);
}
/**
* Requires index <= size().
*
* Return an iterator to the element at index. Return end() if index == size().
*/
iterator nth(size_type index) { return m_ht.nth(index); }
/**
* @copydoc nth(size_type index)
*/
const_iterator nth(size_type index) const { return m_ht.nth(index); }
/**
* Return const_reference to the first element. Requires the container to not be empty.
*/
const_reference front() const { return m_ht.front(); }
/**
* Return const_reference to the last element. Requires the container to not be empty.
*/
const_reference back() const { return m_ht.back(); }
/**
* Only available if ValueTypeContainer is a std::vector. Same as calling 'values_container().data()'.
*/
template<class U = values_container_type, typename std::enable_if<tsl::detail_ordered_hash::is_vector<U>::value>::type* = nullptr>
const typename values_container_type::value_type* data() const noexcept { return m_ht.data(); }
/**
* Return the container in which the values are stored. The values are in the same order as the insertion order
* and are contiguous in the structure, no holes (size() == values_container().size()).
*/
const values_container_type& values_container() const noexcept { return m_ht.values_container(); }
template<class U = values_container_type, typename std::enable_if<tsl::detail_ordered_hash::is_vector<U>::value>::type* = nullptr>
size_type capacity() const noexcept { return m_ht.capacity(); }
void shrink_to_fit() { m_ht.shrink_to_fit(); }
/**
* Insert the value before pos shifting all the elements on the right of pos (including pos) one position
* to the right.
*
* Amortized linear time-complexity in the distance between pos and end().
*/
std::pair<iterator, bool> insert_at_position(const_iterator pos, const value_type& value) {
return m_ht.insert_at_position(pos, value);
}
/**
* @copydoc insert_at_position(const_iterator pos, const value_type& value)
*/
std::pair<iterator, bool> insert_at_position(const_iterator pos, value_type&& value) {
return m_ht.insert_at_position(pos, std::move(value));
}
/**
* @copydoc insert_at_position(const_iterator pos, const value_type& value)
*
* Same as insert_at_position(pos, value_type(std::forward<Args>(args)...), mainly
* here for coherence.
*/
template<class... Args>
std::pair<iterator, bool> emplace_at_position(const_iterator pos, Args&&... args) {
return m_ht.emplace_at_position(pos, std::forward<Args>(args)...);
}
void pop_back() { m_ht.pop_back(); }
/**
* Faster erase operation with an O(1) average complexity but it doesn't preserve the insertion order.
*
* If an erasure occurs, the last element of the map will take the place of the erased element.
*/
iterator unordered_erase(iterator pos) { return m_ht.unordered_erase(pos); }
/**
* @copydoc unordered_erase(iterator pos)
*/
iterator unordered_erase(const_iterator pos) { return m_ht.unordered_erase(pos); }
/**
* @copydoc unordered_erase(iterator pos)
*/
size_type unordered_erase(const key_type& key) { return m_ht.unordered_erase(key); }
/**
* @copydoc unordered_erase(iterator pos)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
size_type unordered_erase(const key_type& key, std::size_t precalculated_hash) {
return m_ht.unordered_erase(key, precalculated_hash);
}
/**
* @copydoc unordered_erase(iterator pos)
*
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type unordered_erase(const K& key) { return m_ht.unordered_erase(key); }
/**
* @copydoc unordered_erase(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type unordered_erase(const K& key, std::size_t precalculated_hash) {
return m_ht.unordered_erase(key, precalculated_hash);
}
friend bool operator==(const ordered_set& lhs, const ordered_set& rhs) { return lhs.m_ht == rhs.m_ht; }
friend bool operator!=(const ordered_set& lhs, const ordered_set& rhs) { return lhs.m_ht != rhs.m_ht; }
friend bool operator<(const ordered_set& lhs, const ordered_set& rhs) { return lhs.m_ht < rhs.m_ht; }
friend bool operator<=(const ordered_set& lhs, const ordered_set& rhs) { return lhs.m_ht <= rhs.m_ht; }
friend bool operator>(const ordered_set& lhs, const ordered_set& rhs) { return lhs.m_ht > rhs.m_ht; }
friend bool operator>=(const ordered_set& lhs, const ordered_set& rhs) { return lhs.m_ht >= rhs.m_ht; }
friend void swap(ordered_set& lhs, ordered_set& rhs) { lhs.swap(rhs); }
private:
ht m_ht;
};
} // end namespace tsl
#endif
|