File: ordered_set.h

package info (click to toggle)
poco 1.10.0-6%2Bdeb11u1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 50,624 kB
  • sloc: cpp: 301,905; ansic: 192,793; makefile: 1,429; sh: 493; xml: 65; perl: 29
file content (642 lines) | stat: -rw-r--r-- 25,474 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
/**
 * MIT License
 * 
 * Copyright (c) 2017 Tessil
 * 
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 * 
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 * 
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#ifndef TSL_ORDERED_SET_H
#define TSL_ORDERED_SET_H


#include <cstddef>
#include <deque>
#include <functional>
#include <initializer_list>
#include <memory>
#include <type_traits>
#include <utility>
#include <vector>
#include "ordered_hash.h"


namespace tsl {


/**
 * Implementation of an hash set using open adressing with robin hood with backshift delete to resolve collisions.
 * 
 * The particularity of this hash set is that it remembers the order in which the elements were added and
 * provide a way to access the structure which stores these values through the 'values_container()' method. 
 * The used container is defined by ValueTypeContainer, by default a std::deque is used (grows faster) but
 * a std::vector may be used. In this case the set provides a 'data()' method which give a direct access 
 * to the memory used to store the values (which can be usefull to communicate with C API's).
 * 
 * The Key must be copy constructible and/or move constructible. To use `unordered_erase` it also must be swappable.
 * 
 * The behaviour of the hash set is undefinded if the destructor of Key throws an exception.
 * 
 * Iterators invalidation:
 *  - clear, operator=, reserve, rehash: always invalidate the iterators (also invalidate end()).
 *  - insert, emplace, emplace_hint, operator[]: when a std::vector is used as ValueTypeContainer 
 *                                               and if size() < capacity(), only end(). 
 *                                               Otherwise all the iterators are invalidated if an insert occurs.
 *  - erase, unordered_erase: when a std::vector is used as ValueTypeContainer invalidate the iterator of 
 *                            the erased element and all the ones after the erased element (including end()). 
 *                            Otherwise all the iterators are invalidated if an erase occurs.
 */
template<class Key, 
         class Hash = std::hash<Key>,
         class KeyEqual = std::equal_to<Key>,
         class Allocator = std::allocator<Key>,
         class ValueTypeContainer = std::deque<Key, Allocator>>
class ordered_set {
private:
    template<typename U>
    using has_is_transparent = tsl::detail_ordered_hash::has_is_transparent<U>;
    
    class KeySelect {
    public:
        using key_type = Key;
        
        const key_type& operator()(const Key& key) const noexcept {
            return key;
        }
        
        key_type& operator()(Key& key) noexcept {
            return key;
        }
    };
    
    using ht = detail_ordered_hash::ordered_hash<Key, KeySelect, void,
                                                 Hash, KeyEqual, Allocator, ValueTypeContainer>;
            
public:
    using key_type = typename ht::key_type;
    using value_type = typename ht::value_type;
    using size_type = typename ht::size_type;
    using difference_type = typename ht::difference_type;
    using hasher = typename ht::hasher;
    using key_equal = typename ht::key_equal;
    using allocator_type = typename ht::allocator_type;
    using reference = typename ht::reference;
    using const_reference = typename ht::const_reference;
    using pointer = typename ht::pointer;
    using const_pointer = typename ht::const_pointer;
    using iterator = typename ht::iterator;
    using const_iterator = typename ht::const_iterator;
    using reverse_iterator = typename ht::reverse_iterator;
    using const_reverse_iterator = typename ht::const_reverse_iterator;
    
    using values_container_type = typename ht::values_container_type;

    
    /*
     * Constructors
     */
    ordered_set(): ordered_set(ht::DEFAULT_INIT_BUCKETS_SIZE) {
    }
    
    explicit ordered_set(size_type bucket_count, 
                         const Hash& hash = Hash(),
                         const KeyEqual& equal = KeyEqual(),
                         const Allocator& alloc = Allocator()): 
                        m_ht(bucket_count, hash, equal, alloc, ht::DEFAULT_MAX_LOAD_FACTOR)
    {
    }
    
    ordered_set(size_type bucket_count,
                const Allocator& alloc): ordered_set(bucket_count, Hash(), KeyEqual(), alloc)
    {
    }
    
    ordered_set(size_type bucket_count,
                const Hash& hash,
                const Allocator& alloc): ordered_set(bucket_count, hash, KeyEqual(), alloc)
    {
    }
    
    explicit ordered_set(const Allocator& alloc): ordered_set(ht::DEFAULT_INIT_BUCKETS_SIZE, alloc) {
    }
    
    template<class InputIt>
    ordered_set(InputIt first, InputIt last,
                size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
                const Hash& hash = Hash(),
                const KeyEqual& equal = KeyEqual(),
                const Allocator& alloc = Allocator()): ordered_set(bucket_count, hash, equal, alloc)
    {
        insert(first, last);
    }
    
    template<class InputIt>
    ordered_set(InputIt first, InputIt last,
                size_type bucket_count,
                const Allocator& alloc): ordered_set(first, last, bucket_count, Hash(), KeyEqual(), alloc)
    {
    }
    
    template<class InputIt>
    ordered_set(InputIt first, InputIt last,
                size_type bucket_count,
                const Hash& hash,
                const Allocator& alloc): ordered_set(first, last, bucket_count, hash, KeyEqual(), alloc)
    {
    }

    ordered_set(std::initializer_list<value_type> init,
                size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
                const Hash& hash = Hash(),
                const KeyEqual& equal = KeyEqual(),
                const Allocator& alloc = Allocator()): 
            ordered_set(init.begin(), init.end(), bucket_count, hash, equal, alloc)
    {
    }

    ordered_set(std::initializer_list<value_type> init,
                size_type bucket_count,
                const Allocator& alloc): 
            ordered_set(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(), alloc)
    {
    }

    ordered_set(std::initializer_list<value_type> init,
                size_type bucket_count,
                const Hash& hash,
                const Allocator& alloc): 
            ordered_set(init.begin(), init.end(), bucket_count, hash, KeyEqual(), alloc)
    {
    }

    
    ordered_set& operator=(std::initializer_list<value_type> ilist) {
        m_ht.clear();
        
        m_ht.reserve(ilist.size());
        m_ht.insert(ilist.begin(), ilist.end());
        
        return *this;
    }
    
    allocator_type get_allocator() const { return m_ht.get_allocator(); }
    
    
    /*
     * Iterators
     */
    iterator begin() noexcept { return m_ht.begin(); }
    const_iterator begin() const noexcept { return m_ht.begin(); }
    const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
    
    iterator end() noexcept { return m_ht.end(); }
    const_iterator end() const noexcept { return m_ht.end(); }
    const_iterator cend() const noexcept { return m_ht.cend(); }
    
    reverse_iterator rbegin() noexcept { return m_ht.rbegin(); }
    const_reverse_iterator rbegin() const noexcept { return m_ht.rbegin(); }
    const_reverse_iterator rcbegin() const noexcept { return m_ht.rcbegin(); }
    
    reverse_iterator rend() noexcept { return m_ht.rend(); }
    const_reverse_iterator rend() const noexcept { return m_ht.rend(); }
    const_reverse_iterator rcend() const noexcept { return m_ht.rcend(); }
    
    
    /*
     * Capacity
     */
    bool empty() const noexcept { return m_ht.empty(); }
    size_type size() const noexcept { return m_ht.size(); }
    size_type max_size() const noexcept { return m_ht.max_size(); }
    
    /*
     * Modifiers
     */
    void clear() noexcept { m_ht.clear(); }
    
    
    
    std::pair<iterator, bool> insert(const value_type& value) { return m_ht.insert(value); }
    std::pair<iterator, bool> insert(value_type&& value) { return m_ht.insert(std::move(value)); }
    
    iterator insert(const_iterator hint, const value_type& value) {
        return m_ht.insert(hint, value); 
    }
    
    iterator insert(const_iterator hint, value_type&& value) { 
        return m_ht.insert(hint, std::move(value)); 
    }
    
    template<class InputIt>
    void insert(InputIt first, InputIt last) { m_ht.insert(first, last); }
    void insert(std::initializer_list<value_type> ilist) { m_ht.insert(ilist.begin(), ilist.end()); }

    
    
    /**
     * Due to the way elements are stored, emplace will need to move or copy the key-value once.
     * The method is equivalent to insert(value_type(std::forward<Args>(args)...));
     * 
     * Mainly here for compatibility with the std::unordered_map interface.
     */
    template<class... Args>
    std::pair<iterator, bool> emplace(Args&&... args) { return m_ht.emplace(std::forward<Args>(args)...); }
    
    /**
     * Due to the way elements are stored, emplace_hint will need to move or copy the key-value once.
     * The method is equivalent to insert(hint, value_type(std::forward<Args>(args)...));
     * 
     * Mainly here for compatibility with the std::unordered_map interface.
     */
    template<class... Args>
    iterator emplace_hint(const_iterator hint, Args&&... args) {
        return m_ht.emplace_hint(hint, std::forward<Args>(args)...); 
    }

    /**
     * When erasing an element, the insert order will be preserved and no holes will be present in the container
     * returned by 'values_container()'. 
     * 
     * The method is in O(n), if the order is not important 'unordered_erase(...)' method is faster with an O(1)
     * average complexity.
     */    
    iterator erase(iterator pos) { return m_ht.erase(pos); }
    
    /**
     * @copydoc erase(iterator pos)
     */    
    iterator erase(const_iterator pos) { return m_ht.erase(pos); }
    
    /**
     * @copydoc erase(iterator pos)
     */    
    iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); }
    
    /**
     * @copydoc erase(iterator pos)
     */    
    size_type erase(const key_type& key) { return m_ht.erase(key); }
    
    /**
     * @copydoc erase(iterator pos)
     * 
     * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
     * as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
     */    
    size_type erase(const key_type& key, std::size_t precalculated_hash) { 
        return m_ht.erase(key, precalculated_hash); 
    }
    
    /**
     * @copydoc erase(iterator pos)
     * 
     * This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists. 
     * If so, K must be hashable and comparable to Key.
     */
    template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> 
    size_type erase(const K& key) { return m_ht.erase(key); }
    
    /**
     * @copydoc erase(const key_type& key, std::size_t precalculated_hash)
     * 
     * This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists. 
     * If so, K must be hashable and comparable to Key.
     */
    template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> 
    size_type erase(const K& key, std::size_t precalculated_hash) { 
        return m_ht.erase(key, precalculated_hash); 
    }
    
    
    
    void swap(ordered_set& other) { other.m_ht.swap(m_ht); }
    
    /*
     * Lookup
     */
    size_type count(const Key& key) const { return m_ht.count(key); }
    
    /**
     * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
     * as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
     */
    size_type count(const Key& key, std::size_t precalculated_hash) const { 
        return m_ht.count(key, precalculated_hash); 
    }
    
    /**
     * This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists. 
     * If so, K must be hashable and comparable to Key.
     */
    template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
    size_type count(const K& key) const { return m_ht.count(key); }
    
    /**
     * @copydoc count(const K& key) const
     * 
     * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
     * as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
     */     
    template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> 
    size_type count(const K& key, std::size_t precalculated_hash) const { 
        return m_ht.count(key, precalculated_hash);
    }
    
    
    
    
    iterator find(const Key& key) { return m_ht.find(key); }
    
    /**
     * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
     * as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
     */
    iterator find(const Key& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
    
    const_iterator find(const Key& key) const { return m_ht.find(key); }
    
    /**
     * @copydoc find(const Key& key, std::size_t precalculated_hash)
     */
    const_iterator find(const Key& key, std::size_t precalculated_hash) const { 
        return m_ht.find(key, precalculated_hash);
    }
    
    /**
     * This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists. 
     * If so, K must be hashable and comparable to Key.
     */
    template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
    iterator find(const K& key) { return m_ht.find(key); }
    
    /**
     * @copydoc find(const K& key)
     * 
     * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
     * as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
     */
    template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> 
    iterator find(const K& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
    
    /**
     * @copydoc find(const K& key)
     */
    template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
    const_iterator find(const K& key) const { return m_ht.find(key); }
    
    /**
     * @copydoc find(const K& key)
     * 
     * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
     * as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
     */
    template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> 
    const_iterator find(const K& key, std::size_t precalculated_hash) const { 
        return m_ht.find(key, precalculated_hash); 
    }
    
    
    
    std::pair<iterator, iterator> equal_range(const Key& key) { return m_ht.equal_range(key); }
    
    /**
     * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
     * as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
     */
    std::pair<iterator, iterator> equal_range(const Key& key, std::size_t precalculated_hash) { 
        return m_ht.equal_range(key, precalculated_hash); 
    }
    
    std::pair<const_iterator, const_iterator> equal_range(const Key& key) const { return m_ht.equal_range(key); }
    
    /**
     * @copydoc equal_range(const Key& key, std::size_t precalculated_hash)
     */
    std::pair<const_iterator, const_iterator> equal_range(const Key& key, std::size_t precalculated_hash) const { 
        return m_ht.equal_range(key, precalculated_hash); 
    }
    
    /**
     * This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists. 
     * If so, K must be hashable and comparable to Key.
     */
    template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>     
    std::pair<iterator, iterator> equal_range(const K& key) { return m_ht.equal_range(key); }
    
    /**
     * @copydoc equal_range(const K& key)
     * 
     * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
     * as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
     */
    template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> 
    std::pair<iterator, iterator> equal_range(const K& key, std::size_t precalculated_hash) { 
        return m_ht.equal_range(key, precalculated_hash); 
    }
    
    /**
     * @copydoc equal_range(const K& key)
     */
    template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>     
    std::pair<const_iterator, const_iterator> equal_range(const K& key) const { return m_ht.equal_range(key); }
    
    /**
     * @copydoc equal_range(const K& key, std::size_t precalculated_hash)
     */    
    template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> 
    std::pair<const_iterator, const_iterator> equal_range(const K& key, std::size_t precalculated_hash) const { 
        return m_ht.equal_range(key, precalculated_hash); 
    }
    

    /*
     * Bucket interface 
     */
    size_type bucket_count() const { return m_ht.bucket_count(); }
    size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
    
    
    /*
     *  Hash policy 
     */
    float load_factor() const { return m_ht.load_factor(); }
    float max_load_factor() const { return m_ht.max_load_factor(); }
    void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
    
    void rehash(size_type count) { m_ht.rehash(count); }
    void reserve(size_type count) { m_ht.reserve(count); }
    
    
    /*
     * Observers
     */
    hasher hash_function() const { return m_ht.hash_function(); }
    key_equal key_eq() const { return m_ht.key_eq(); }
    
    
    /*
     * Other
     */
    
    /**
     * Convert a const_iterator to an iterator.
     */
    iterator mutable_iterator(const_iterator pos) {
        return m_ht.mutable_iterator(pos);
    }
    
    /**
     * Requires index <= size().
     * 
     * Return an iterator to the element at index. Return end() if index == size().
     */
    iterator nth(size_type index) { return m_ht.nth(index); }
    
    /**
     * @copydoc nth(size_type index)
     */
    const_iterator nth(size_type index) const { return m_ht.nth(index); }
    
    
    /**
     * Return const_reference to the first element. Requires the container to not be empty.
     */
    const_reference front() const { return m_ht.front(); }
    
    /**
     * Return const_reference to the last element. Requires the container to not be empty.
     */
    const_reference back() const { return m_ht.back(); }
    
    
    /**
     * Only available if ValueTypeContainer is a std::vector. Same as calling 'values_container().data()'.
     */ 
    template<class U = values_container_type, typename std::enable_if<tsl::detail_ordered_hash::is_vector<U>::value>::type* = nullptr>    
    const typename values_container_type::value_type* data() const noexcept { return m_ht.data(); }
    
    /**
     * Return the container in which the values are stored. The values are in the same order as the insertion order
     * and are contiguous in the structure, no holes (size() == values_container().size()).
     */        
    const values_container_type& values_container() const noexcept { return m_ht.values_container(); }

    template<class U = values_container_type, typename std::enable_if<tsl::detail_ordered_hash::is_vector<U>::value>::type* = nullptr>    
    size_type capacity() const noexcept { return m_ht.capacity(); }
    
    void shrink_to_fit() { m_ht.shrink_to_fit(); }
    
    
    
    /**
     * Insert the value before pos shifting all the elements on the right of pos (including pos) one position 
     * to the right.
     * 
     * Amortized linear time-complexity in the distance between pos and end().
     */
    std::pair<iterator, bool> insert_at_position(const_iterator pos, const value_type& value) { 
        return m_ht.insert_at_position(pos, value); 
    }
    
    /**
     * @copydoc insert_at_position(const_iterator pos, const value_type& value)
     */
    std::pair<iterator, bool> insert_at_position(const_iterator pos, value_type&& value) { 
        return m_ht.insert_at_position(pos, std::move(value)); 
    }
    
    /**
     * @copydoc insert_at_position(const_iterator pos, const value_type& value)
     * 
     * Same as insert_at_position(pos, value_type(std::forward<Args>(args)...), mainly
     * here for coherence.
     */
    template<class... Args>
    std::pair<iterator, bool> emplace_at_position(const_iterator pos, Args&&... args) {
        return m_ht.emplace_at_position(pos, std::forward<Args>(args)...); 
    }
    
    
    
    void pop_back() { m_ht.pop_back(); }
    
    /**
     * Faster erase operation with an O(1) average complexity but it doesn't preserve the insertion order.
     * 
     * If an erasure occurs, the last element of the map will take the place of the erased element.
     */    
    iterator unordered_erase(iterator pos) { return m_ht.unordered_erase(pos); }
    
    /**
     * @copydoc unordered_erase(iterator pos)
     */    
    iterator unordered_erase(const_iterator pos) { return m_ht.unordered_erase(pos); }
    
    /**
     * @copydoc unordered_erase(iterator pos)
     */    
    size_type unordered_erase(const key_type& key) { return m_ht.unordered_erase(key); }
    
    /**
     * @copydoc unordered_erase(iterator pos)
     * 
     * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
     * as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
     */    
    size_type unordered_erase(const key_type& key, std::size_t precalculated_hash) { 
        return m_ht.unordered_erase(key, precalculated_hash); 
    }
    
    /**
     * @copydoc unordered_erase(iterator pos)
     * 
     * This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists. 
     * If so, K must be hashable and comparable to Key.
     */
    template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> 
    size_type unordered_erase(const K& key) { return m_ht.unordered_erase(key); }
    
    /**
     * @copydoc unordered_erase(const K& key)
     * 
     * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
     * as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
     */
    template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr> 
    size_type unordered_erase(const K& key, std::size_t precalculated_hash) { 
        return m_ht.unordered_erase(key, precalculated_hash); 
    }
    
    
    
    friend bool operator==(const ordered_set& lhs, const ordered_set& rhs) { return lhs.m_ht == rhs.m_ht; }
    friend bool operator!=(const ordered_set& lhs, const ordered_set& rhs) { return lhs.m_ht != rhs.m_ht; }
    friend bool operator<(const ordered_set& lhs, const ordered_set& rhs) { return lhs.m_ht < rhs.m_ht; }
    friend bool operator<=(const ordered_set& lhs, const ordered_set& rhs) { return lhs.m_ht <= rhs.m_ht; }
    friend bool operator>(const ordered_set& lhs, const ordered_set& rhs) { return lhs.m_ht > rhs.m_ht; }
    friend bool operator>=(const ordered_set& lhs, const ordered_set& rhs) { return lhs.m_ht >= rhs.m_ht; }
    
    friend void swap(ordered_set& lhs, ordered_set& rhs) { lhs.swap(rhs); }
    
private:
    ht m_ht;    
};

} // end namespace tsl

#endif