1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
|
//
// MemoryPool.h
//
// Library: Foundation
// Package: Core
// Module: MemoryPool
//
// Definition of the MemoryPool class.
//
// Copyright (c) 2005-2006, Applied Informatics Software Engineering GmbH.
// and Contributors.
//
// SPDX-License-Identifier: BSL-1.0
//
#ifndef Foundation_MemoryPool_INCLUDED
#define Foundation_MemoryPool_INCLUDED
#include "Poco/Foundation.h"
#include "Poco/AtomicCounter.h"
#include "Poco/Mutex.h"
#include <vector>
#include <cstddef>
namespace Poco {
class Foundation_API MemoryPool
/// A simple pool for fixed-size memory blocks.
///
/// The main purpose of this class is to speed-up
/// memory allocations, as well as to reduce memory
/// fragmentation in situations where the same blocks
/// are allocated all over again, such as in server
/// applications.
///
/// All allocated blocks are retained for future use.
/// A limit on the number of blocks can be specified.
/// Blocks can be preallocated.
{
public:
MemoryPool(std::size_t blockSize, int preAlloc = 0, int maxAlloc = 0);
/// Creates a MemoryPool for blocks with the given blockSize.
/// The number of blocks given in preAlloc are preallocated.
~MemoryPool();
void* get();
/// Returns a memory block. If there are no more blocks
/// in the pool, a new block will be allocated.
///
/// If maxAlloc blocks are already allocated, an
/// OutOfMemoryException is thrown.
void release(void* ptr);
/// Releases a memory block and returns it to the pool.
std::size_t blockSize() const;
/// Returns the block size.
int allocated() const;
/// Returns the number of allocated blocks.
int available() const;
/// Returns the number of available blocks in the pool.
private:
MemoryPool();
MemoryPool(const MemoryPool&);
MemoryPool& operator = (const MemoryPool&);
void clear();
enum
{
BLOCK_RESERVE = 128
};
typedef std::vector<char*> BlockVec;
std::size_t _blockSize;
int _maxAlloc;
int _allocated;
BlockVec _blocks;
FastMutex _mutex;
};
//
// FastMemoryPool
//
// Macro defining the default initial size of any
// FastMemoryPool; can be overridden by specifying
// FastMemoryPool pre-alloc at runtime.
#define POCO_FAST_MEMORY_POOL_PREALLOC 1000
template <typename T, typename M = FastMutex>
class FastMemoryPool
/// FastMemoryPool is a class for pooling fixed-size blocks of memory.
///
/// The main purpose of this class is to speed-up memory allocations,
/// as well as to reduce memory fragmentation in situations where the
/// same blocks are allocated all over again, such as in server
/// applications. It differs from the MemoryPool in the way the block
/// size is determined - it is inferred form the held type size and
/// applied statically. It is also, as its name implies, faster than
/// Poco::MemoryPool. It is likely to be significantly faster than
/// the runtime platform generic memory allocation functionality
/// as well, but it has certain limitations (aside from only giving
/// blocks of fixed size) - see more below.
///
/// An object using memory from the pool should be created using
/// in-place new operator; once released back to the pool, its
/// destructor will be called by the pool. The returned pointer
/// must be a valid pointer to the type for which it was obtained.
///
/// Example use:
///
/// using std::vector;
/// using std:string;
/// using std::to_string;
/// using Poco::FastMemoryPool;
///
/// int blocks = 10;
/// FastMemoryPool<int> fastIntPool(blocks);
/// FastMemoryPool<string> fastStringPool(blocks);
///
/// vector<int*> intVec(blocks, 0);
/// vector<string*> strVec(blocks);
///
/// for (int i = 0; i < blocks; ++i)
/// {
/// intVec[i] = new (fastIntPool.get()) int(i);
/// strVec[i] = new (fastStringPool.get()) string(to_string(i));
/// }
///
/// for (int i = 0; i < blocks; ++i)
/// {
/// fastIntPool.release(intVec[i]);
/// fastStringPool.release(strVec[i]);
/// }
///
/// Pool keeps memory blocks in "buckets". A bucket is an array of
/// blocks; it is always allocated with a single `new[]`, and its blocks
/// are initialized at creation time. Whenever the current capacity
/// of the pool is reached, a new bucket is allocated and its blocks
/// initialized for internal use. If the new bucket allocation would
/// exceed allowed maximum size, std::bad_alloc() exception is thrown,
/// with object itself left intact.
///
/// Pool internally keeps track of available blocks through a linked-list
/// and utilizes unused memory blocks for that purpose. This means that,
/// for types smaller than pointer the size of a block will be greater
/// than the size of the type. The implications are following:
///
/// - FastMemoryPool can not be used for arrays of types smaller
/// than pointer
///
/// - if FastMemoryPool is used to store variable-size arrays, it
/// must not have multiple buckets; the way to achieve this is by
/// specifying proper argument values at construction.
///
/// Neither of the above are primarily intended or recommended modes
/// of use. It is recommended to use a FastMemoryPool for creation of
/// many objects of the same type. Furthermore, it is perfectly fine
/// to have arrays or STL containers of pointers to objects created
/// in blocks of memory obtained from the FastMemoryPool.
///
/// Before a block is given to the user, it is removed from the list;
/// when a block is returned to the pool, it is re-inserted in the
/// list. Pool will return held memory to the system at destruction,
/// and will not leak memory after destruction; this means that after
/// pool destruction, any memory that was taken, but not returned to
/// it becomes invalid.
///
/// FastMemoryPool is thread safe; it uses Poco::FastMutex by
/// default, but other mutexes can be specified through the template
/// parameter, if needed. Poco::NullMutex can be specified as template
/// parameter to avoid locking and improve speed in single-threaded
/// scenarios.
{
private:
class Block
/// A block of memory. This class represents a memory
/// block. It has dual use, the primary one being
/// obvious - memory provided to the user of the pool.
/// The secondary use is for internal "housekeeping"
/// purposes.
///
/// It works like this:
///
/// - when initially created, a Block is properly
/// constructed and positioned into the internal
/// linked list of blocks
///
/// - when given to the user, the Block is removed
/// from the internal linked list of blocks
///
/// - when returned back to the pool, the Block
/// is again in-place constructed and inserted
/// as next available block in the linked list
/// of blocks
{
public:
Block()
/// Creates a Block and sets its next pointer.
/// This constructor should ony be used to initialize
/// a block sequence (an array of blocks) in a newly
/// allocated bucket.
///
/// After the construction, the last block's `next`
/// pointer points outside the allocated memory and
/// must be set to zero. This design improves performance,
/// because otherwise the block array would require an
/// initialization loop after the allocation.
{
_memory.next = this + 1;
}
explicit Block(Block* next)
/// Creates a Block and sets its next pointer.
{
_memory.next = next;
}
#ifndef POCO_DOC
union
/// Memory block storage.
///
/// Note that this storage is properly aligned
/// for the datatypes it holds. It will not work
/// for arrays of types smaller than pointer size.
/// Furthermore, the pool itself will not work for
/// a variable-size array of any type after it is
/// resized.
{
char buffer[sizeof(T)];
Block* next;
} _memory;
#endif
private:
Block(const Block&);
Block& operator = (const Block&);
};
public:
typedef M MutexType;
typedef typename M::ScopedLock ScopedLock;
typedef Block* Bucket;
typedef std::vector<Bucket> BucketVec;
FastMemoryPool(std::size_t blocksPerBucket = POCO_FAST_MEMORY_POOL_PREALLOC, std::size_t bucketPreAlloc = 10, std::size_t maxAlloc = 0):
_blocksPerBucket(blocksPerBucket),
_maxAlloc(maxAlloc),
_available(0)
/// Creates the FastMemoryPool.
///
/// The size of a block is inferred from the type size. Number of blocks
/// per bucket, pre-allocated bucket pointer storage and maximum allowed
/// total size of the pool can be customized by overriding default
/// parameter value:
///
/// - blocksPerBucket specifies how many blocks each bucket contains
/// defaults to POCO_FAST_MEMORY_POOL_PREALLOC
///
/// - bucketPreAlloc specifies how much space for bucket pointers
/// (buckets themselves are not pre-allocated) will
/// be pre-alocated.
///
/// - maxAlloc specifies maximum allowed total pool size in bytes.
{
if (_blocksPerBucket < 2)
throw std::invalid_argument("FastMemoryPool: blocksPerBucket must be >=2");
_buckets.reserve(bucketPreAlloc);
resize();
}
~FastMemoryPool()
/// Destroys the FastMemoryPool and releases all memory.
/// Any memory taken from, but not returned to, the pool
/// becomes invalid.
{
clear();
}
void* get()
/// Returns pointer to the next available
/// memory block. If the pool is exhausted,
/// it will be resized by allocating a new
/// bucket.
{
Block* ret;
{
ScopedLock l(_mutex);
if(_firstBlock == 0) resize();
ret = _firstBlock;
_firstBlock = _firstBlock->_memory.next;
}
--_available;
return ret;
}
template <typename P>
void release(P* ptr)
/// Recycles the released memory by initializing it for
/// internal use and setting it as next available block;
/// previously next block becomes this block's next.
/// Releasing of null pointers is silently ignored.
/// Destructor is called for the returned pointer.
{
if (!ptr) return;
reinterpret_cast<P*>(ptr)->~P();
++_available;
ScopedLock l(_mutex);
_firstBlock = new (ptr) Block(_firstBlock);
}
std::size_t blockSize() const
/// Returns the block size in bytes.
{
return sizeof(Block);
}
std::size_t allocated() const
/// Returns the total amount of memory allocated, in bytes.
{
return _buckets.size() * _blocksPerBucket;
}
std::size_t available() const
/// Returns currently available amount of memory in bytes.
{
return _available;
}
private:
FastMemoryPool(const FastMemoryPool&);
FastMemoryPool& operator = (const FastMemoryPool&);
void resize()
/// Creates new bucket and initializes it for internal use.
/// Sets the previously next block to point to the new bucket's
/// first block and the new bucket's last block becomes the
/// last block.
{
if (_buckets.size() == _buckets.capacity())
{
std::size_t newSize = _buckets.capacity() * 2;
if (_maxAlloc != 0 && newSize > _maxAlloc) throw std::bad_alloc();
_buckets.reserve(newSize);
}
_buckets.push_back(new Block[_blocksPerBucket]);
_firstBlock = _buckets.back();
// terminate last block
_firstBlock[_blocksPerBucket-1]._memory.next = 0;
_available = _available.value() + static_cast<AtomicCounter::ValueType>(_blocksPerBucket);
}
void clear()
{
typename BucketVec::iterator it = _buckets.begin();
typename BucketVec::iterator end = _buckets.end();
for (; it != end; ++it) delete[] *it;
}
typedef Poco::AtomicCounter Counter;
const
std::size_t _blocksPerBucket;
BucketVec _buckets;
Block* _firstBlock;
std::size_t _maxAlloc;
Counter _available;
mutable M _mutex;
};
//
// inlines
//
inline std::size_t MemoryPool::blockSize() const
{
return _blockSize;
}
inline int MemoryPool::allocated() const
{
return _allocated;
}
inline int MemoryPool::available() const
{
return (int) _blocks.size();
}
} // namespace Poco
#endif // Foundation_MemoryPool_INCLUDED
|