1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
|
import sys
import pytest
from astropy import units as u
from astropy.coordinates import CartesianDifferential, CartesianRepresentation
from astropy.time import Time
from matplotlib import pyplot as plt
from poliastro.bodies import Earth, Jupiter, Mars, Sun
from poliastro.constants import J2000_TDB
from poliastro.ephem import Ephem
from poliastro.examples import churi, iss, molniya
from poliastro.frames import Planes
from poliastro.maneuver import Maneuver
from poliastro.plotting.static import StaticOrbitPlotter
from poliastro.twobody import Orbit
from poliastro.util import time_range
def test_axes_labels_and_title():
ax = plt.gca()
op = StaticOrbitPlotter(ax)
ss = iss
op.plot(ss)
assert ax.get_xlabel() == "$x$ (km)"
assert ax.get_ylabel() == "$y$ (km)"
def test_number_of_lines_for_osculating_orbit():
op1 = StaticOrbitPlotter()
ss = iss
l1 = op1.plot(ss)
assert len(l1) == 2
def test_legend():
op = StaticOrbitPlotter()
ss = iss
op.plot(ss, label="ISS")
legend = plt.gca().get_legend()
ss.epoch.out_subfmt = "date_hm"
label = f"{ss.epoch.iso} (ISS)"
assert legend.get_texts()[0].get_text() == label
def test_color():
op = StaticOrbitPlotter()
ss = iss
c = "#FF0000"
op.plot(ss, label="ISS", color=c)
ax = plt.gca()
assert ax.get_legend().get_lines()[0].get_c() == c
for element in ax.get_lines():
assert element.get_c() == c
def test_plot_trajectory_sets_label():
expected_label = "67P"
op = StaticOrbitPlotter()
trajectory = churi.sample()
op.plot_body_orbit(Mars, J2000_TDB, label="Mars")
op.plot_trajectory(trajectory, label=expected_label)
legend = plt.gca().get_legend()
assert legend.get_texts()[1].get_text() == expected_label
@pytest.mark.parametrize(
"dark, expected_color",
[(True, (0.0, 0.0, 0.0, 1.0)), (False, (1.0, 1.0, 1.0, 1))],
)
def test_dark_mode_plots_dark_plot(dark, expected_color):
op = StaticOrbitPlotter(dark=dark)
assert op._ax.get_facecolor() == expected_color
def test_redraw_makes_attractor_none():
# TODO: Review
op = StaticOrbitPlotter()
op._redraw()
assert op._attractor_radius is not None
def test_set_frame_plots_same_colors():
# TODO: Review
op = StaticOrbitPlotter()
op.plot_body_orbit(Jupiter, J2000_TDB)
colors1 = [orb[2] for orb in op.trajectories]
op.set_body_frame(Jupiter)
colors2 = [orb[2] for orb in op.trajectories]
assert colors1 == colors2
def test_redraw_keeps_trajectories():
# See https://github.com/poliastro/poliastro/issues/518
op = StaticOrbitPlotter()
trajectory = churi.sample()
op.plot_body_orbit(Mars, J2000_TDB, label="Mars")
op.plot_trajectory(trajectory, label="67P")
assert len(op.trajectories) == 2
op.set_body_frame(Mars)
assert len(op.trajectories) == 2
def test_plot_ephem_different_plane_raises_error():
unused_epochs = Time.now().reshape(-1)
unused_coordinates = CartesianRepresentation(
[(1, 0, 0)] * u.au,
xyz_axis=1,
differentials=CartesianDifferential(
[(0, 1, 0)] * (u.au / u.day), xyz_axis=1
),
)
op = StaticOrbitPlotter(plane=Planes.EARTH_ECLIPTIC)
op.set_attractor(Sun)
op.set_body_frame(Earth)
with pytest.raises(ValueError) as excinfo:
op.plot_ephem(
Ephem(unused_epochs, unused_coordinates, Planes.EARTH_EQUATOR)
)
assert (
"sample the ephemerides using a different plane or create a new plotter"
in excinfo.exconly()
)
@pytest.mark.mpl_image_compare
def test_basic_plotting():
fig, ax = plt.subplots()
plotter = StaticOrbitPlotter(ax=ax)
plotter.plot(iss)
return fig
@pytest.mark.mpl_image_compare
def test_basic_trajectory_plotting():
fig, ax = plt.subplots()
plotter = StaticOrbitPlotter(ax=ax)
plotter.set_attractor(Earth)
plotter.set_orbit_frame(iss)
plotter.plot_trajectory(iss.sample())
return fig
@pytest.mark.mpl_image_compare
def test_basic_orbit_and_trajectory_plotting():
fig, ax = plt.subplots()
plotter = StaticOrbitPlotter(ax=ax)
plotter.plot(iss)
plotter.plot_trajectory(molniya.sample(), label="Molniya")
return fig
@pytest.mark.mpl_image_compare
def test_trail_plotting():
fig, ax = plt.subplots()
plotter = StaticOrbitPlotter(ax=ax)
plotter.plot(iss, trail=True)
return fig
@pytest.mark.mpl_image_compare
def test_plot_different_planes():
fig, ax = plt.subplots()
plotter = StaticOrbitPlotter(ax=ax)
plotter.plot(iss)
plotter.plot(molniya.change_plane(Planes.EARTH_ECLIPTIC))
return fig
@pytest.mark.mpl_image_compare
def test_body_plotting(earth_perihelion):
Earth.plot(earth_perihelion)
return plt.gcf()
@pytest.mark.mpl_image_compare
@pytest.mark.remote_data
def test_plot_ephem_epoch():
epoch = Time("2020-02-14 00:00:00")
ephem = Ephem.from_horizons(
"2020 CD3",
time_range(
Time("2020-02-13 12:00:00"), end=Time("2020-02-14 12:00:00")
),
attractor=Earth,
)
fig, ax = plt.subplots()
plotter = StaticOrbitPlotter(ax=ax)
plotter.set_attractor(Earth)
plotter.set_orbit_frame(Orbit.from_ephem(Earth, ephem, epoch))
plotter.plot_ephem(ephem, epoch, label="2020 CD3 Minimoon", color="k")
return fig
@pytest.mark.mpl_image_compare
@pytest.mark.remote_data
def test_plot_ephem_no_epoch():
epoch = Time("2020-02-14 00:00:00")
ephem = Ephem.from_horizons(
"2020 CD3",
time_range(
Time("2020-02-13 12:00:00"), end=Time("2020-02-14 12:00:00")
),
attractor=Earth,
)
fig, ax = plt.subplots()
plotter = StaticOrbitPlotter(ax=ax)
plotter.set_attractor(Earth)
plotter.set_orbit_frame(Orbit.from_ephem(Earth, ephem, epoch))
plotter.plot_ephem(ephem, label="2020 CD3 Minimoon", color="k")
return fig
def test_body_frame_raises_warning_if_time_is_not_tdb_with_proper_time(
recwarn,
):
from poliastro.warnings import TimeScaleWarning
body = Jupiter
epoch = Time("2017-09-29 07:31:26", scale="utc")
expected_epoch_string = "2017-09-29 07:32:35.182" # epoch.tdb.value
op = StaticOrbitPlotter()
op.set_body_frame(body, epoch)
w = recwarn.pop(TimeScaleWarning)
assert expected_epoch_string in str(w.message)
@pytest.mark.xfail(
sys.maxsize < 2**32, reason="not supported for 32 bit systems"
)
@pytest.mark.mpl_image_compare
def test_plot_maneuver():
# Data from Vallado, example 6.1
alt_i = 191.34411 * u.km
alt_f = 35781.34857 * u.km
_a = 0 * u.deg
ss_i = Orbit.from_classical(
attractor=Earth,
a=Earth.R + alt_i,
ecc=0 * u.one,
inc=_a,
raan=_a,
argp=_a,
nu=_a,
)
# Create the maneuver
man = Maneuver.hohmann(ss_i, Earth.R + alt_f)
# Plot the maneuver
fig, ax = plt.subplots()
plotter = StaticOrbitPlotter(ax=ax)
plotter.plot(ss_i, label="Initial orbit", color="blue")
plotter.plot_maneuver(ss_i, man, label="Hohmann maneuver", color="red")
return fig
|