File: testCompressParms.c

package info (click to toggle)
polylib 5.22.5-3%2Bdfsg
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd, stretch, wheezy
  • size: 14,444 kB
  • ctags: 52,958
  • sloc: ansic: 16,342; sh: 10,134; makefile: 560
file content (418 lines) | stat: -rw-r--r-- 12,630 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
/** 
 * $Id: testCompressParms.c,v 1.4 2006/09/18 03:09:03 meister Exp $
 * 
 * Test routines for kernel/compress_parms.c functions
 * @author B. Meister, 3/2006
 * 
 */
/*
    This file is part of PolyLib.

    PolyLib is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    PolyLib is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with PolyLib.  If not, see <http://www.gnu.org/licenses/>.
*/


#include <polylib/polylib.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifdef dbg
#undef dbg
#endif
#define dbg 1

#define TEST(a) if (isOk = a) { \
                  printf(#a" tested ok.\n"); \
                } \
                else { \
                  printf(#a" NOT OK\n"); \
                } 

#define maxRays 200

const char *origNames[] =
	{"n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"};

int main(int argc, char ** argv) {
  int isOk = 0;
  Matrix * A, * B;
  if (argc>1) {
    printf("Warning: No arguments taken into account: testing"
	   "remove_parm_eqs().\n");
  }

  A = Matrix_Read();
  B = Matrix_Read();
  TEST( test_Constraints_Remove_parm_eqs(A, B) )
  TEST( test_Polyhedron_Remove_parm_eqs(A, B) )
  TEST( test_Constraints_fullDimensionize(A, B, 4) )
  Matrix_Free(A);
  Matrix_Free(B);
  return (1-isOk);
}


/** extracts the equalities involving the parameters only, try to introduce
    them back and compare the two polyhedra.
    Reads a polyhedron and a context.
 */
int test_Constraints_Remove_parm_eqs(Matrix * A, Matrix * B) {
  int isOk = 1;
  Matrix * M, *C, *Cp, * Eqs, *M1, *C1;
  Polyhedron *Pm, *Pc, *Pcp, *Peqs, *Pint;
  unsigned int * elimParms;
  printf("----- test_Constraints_Remove_parm_eqs() -----\n");
  M1 = Matrix_Copy(A);
  C1 = Matrix_Copy(B);

  M = Matrix_Copy(M1);
  C = Matrix_Copy(C1);

   /* compute the combined polyhedron */
  Pm = Constraints2Polyhedron(M, maxRays);
  Pc = Constraints2Polyhedron(C, maxRays);
  Pcp = align_context(Pc, Pm->Dimension, maxRays);
  Polyhedron_Free(Pc);
  Pc = DomainIntersection(Pm, Pcp, maxRays);
  Polyhedron_Free(Pm);
  Polyhedron_Free(Pcp);
  Matrix_Free(M);
  Matrix_Free(C);

  /* extract the parm-equalities, expressed in the combined space */
  Eqs = Constraints_Remove_parm_eqs(&M1, &C1, 1, &elimParms);

  printf("Removed equalities: \n");
  show_matrix(Eqs); 
  printf("Polyhedron without equalities involving only parameters: \n");
  show_matrix(M1);  
  printf("Context without equalities: \n");
  show_matrix(C1);  
  
  /* compute the supposedly-same polyhedron, using the extracted equalities */
  Pm = Constraints2Polyhedron(M1, maxRays);
  Pcp = Constraints2Polyhedron(C1, maxRays);
  Peqs = align_context(Pcp, Pm->Dimension, maxRays);
  Polyhedron_Free(Pcp);
  Pcp = DomainIntersection(Pm, Peqs, maxRays);
  Polyhedron_Free(Peqs);
  Polyhedron_Free(Pm);
  Peqs = Constraints2Polyhedron(Eqs, maxRays);
  Matrix_Free(Eqs);
  Matrix_Free(M1);
  Matrix_Free(C1);
  Pint = DomainIntersection(Pcp, Peqs, maxRays);
  Polyhedron_Free(Pcp);
  Polyhedron_Free(Peqs);

  /* test their equality */
  if (!PolyhedronIncludes(Pint, Pc)) {
    isOk = 0;
  }
  else {
    if (!PolyhedronIncludes(Pc, Pint)) {
      isOk = 0;
    }
  }
  Polyhedron_Free(Pc);
  Polyhedron_Free(Pint);
  return isOk;
} /* test_Constraints_Remove_parm_eqs() */


/** extracts the equalities holding on the parameters only, try to introduce
    them back and compare the two polyhedra.
    Reads a polyhedron and a context.
 */
int test_Polyhedron_Remove_parm_eqs(Matrix * A, Matrix * B) {
  int isOk = 1;
  Matrix * M, *C;
  Polyhedron *Pm, *Pc, *Pcp, *Peqs, *Pint, *Pint1;
  unsigned int * elimParms;
  printf("----- test_Polyhedron_Remove_parm_eqs() -----\n");

  M = Matrix_Copy(A);
  C = Matrix_Copy(B);

   /* compute the combined polyhedron */
  Pm = Constraints2Polyhedron(M, maxRays);
  Pc = Constraints2Polyhedron(C, maxRays);
  Pcp = align_context(Pc, Pm->Dimension, maxRays);
  Polyhedron_Free(Pc);
  Pint1 = DomainIntersection(Pm, Pcp, maxRays);
  Polyhedron_Free(Pm);
  Polyhedron_Free(Pcp);
  Matrix_Free(M);
  Matrix_Free(C);

  M = Matrix_Copy(A);
  C = Matrix_Copy(B);
  /* extract the parm-equalities, expressed in the combined space */
  Pm = Constraints2Polyhedron(M, maxRays);
  Pc = Constraints2Polyhedron(C, maxRays);
  Matrix_Free(M);
  Matrix_Free(C);
  Peqs = Polyhedron_Remove_parm_eqs(&Pm, &Pc, 1, &elimParms, 200);
  
  /* compute the supposedly-same polyhedron, using the extracted equalities */
  Pcp = align_context(Pc, Pm->Dimension, maxRays);
  Polyhedron_Free(Pc);
  Pc = DomainIntersection(Pm, Pcp, maxRays);
  Polyhedron_Free(Pm);
  Polyhedron_Free(Pcp);
 
  Pint = DomainIntersection(Pc, Peqs, maxRays);
  Polyhedron_Free(Pc);
  Polyhedron_Free(Peqs);

  /* test their equality */
  if (!PolyhedronIncludes(Pint, Pint1)) {
    isOk = 0;
  }
  else {
    if (!PolyhedronIncludes(Pint1, Pint)) {
      isOk = 0;
    }
  }
  Polyhedron_Free(Pint1);
  Polyhedron_Free(Pint);
  return isOk;
} /* test_Polyhedron_remove_parm_eqs() */


/** 
 * Eliminates certain parameters from a vector of values for parameters
 * @param origParms the initial vector of values of parameters
 * @param elimParms the list of parameters to be eliminated in the vector
 * @param newParms the vector of values without the eliminated ones.
 */
void valuesWithoutElim(Matrix * origParms, unsigned int * elimParms, 
		       Matrix ** newParms) {
  unsigned int i, j=0;
  if (*newParms==NULL) {
    *newParms = Matrix_Alloc(1, origParms->NbColumns-elimParms[0]);
  } /* else assume enough space is allocated */
  if (elimParms[0] ==0) {
    for (i=0; i< origParms->NbColumns; i++) {
      value_assign((*newParms)->p[0][i], origParms->p[0][i]);
    }
  }
  for (i=0; i< origParms->NbColumns; i++) {
    if (i!=elimParms[j+1]) {
      value_assign((*newParms)->p[0][i-j], origParms->p[0][i]);
    }
    else {
      j++;
    }
  }
}/* valuesWithoutElim */


/**
 * takes a list of parameter names, a list ofparameters to eliminate, and
 * returns the list of parameters without the eliminated ones.
 * @param parms the original parameter names
 * @param nbParms the number of original parmaeters
 * @param elimParms the array-list of indices of parameters to eliminate (first
 * element set to the number of its elements)
 * @param newParms the returned list of parm names. Allocated if set to NULL,
 * reused if not.
 * @return the number of names in the returned list.
 */
unsigned int namesWithoutElim(const char **parms, unsigned nbParms,
			      unsigned int * elimParms,
			      const char ***newParms)
{
  unsigned int i, j=0;
  unsigned int newSize = nbParms -elimParms[0];
  if (dbg) {
    printf("Size of the new parm vector: %d\n", newSize);
  }
  if (*newParms==NULL) {
    *newParms = malloc(newSize*sizeof(char *));
  }
  if (elimParms[0]==0) {
    for (i=0; i< nbParms; i++) {
      (*newParms)[i] = strdup(parms[i]);
    }
    return newSize;
  }
  for (i=0; i< nbParms; i++) {
    if (i!=elimParms[j+1]) {
      (*newParms)[i-j] = strdup(parms[i]);
    }
    else {
      j++;
    }
  }
  return newSize;
}


/**
 * Tests Constraints_fullDimensionize by comparing the Ehrhart polynomials 
 * @param A the input set of constraints
 * @param B the corresponding context
 * @param the number of samples to generate for the test
 * @return 1 if the Ehrhart polynomial had the same value for the
 * full-dimensional and non-full-dimensional sets of constraints, for their
 * corresponding sample parameters values.
 */
int test_Constraints_fullDimensionize(Matrix * A, Matrix * B, 
				      unsigned int nbSamples) {
  Matrix * Eqs= NULL, *ParmEqs=NULL, *VL=NULL;
  unsigned int * elimVars=NULL, * elimParms=NULL;
  Matrix * sample, * smallerSample=NULL;
  Matrix * transfSample=NULL;
  Matrix * parmVL=NULL;
  unsigned int i, j, r, nbOrigParms, nbParms;
  Value div, mod, *origVal=NULL, *fullVal=NULL;
  Matrix * VLInv;
  Polyhedron * P, *PC;
  Matrix * M, *C;
  Enumeration * origEP, * fullEP=NULL;
  const char **fullNames = NULL;
  int isOk = 1; /* holds the result */

  /* compute the origial Ehrhart polynomial */
  M = Matrix_Copy(A);
  C = Matrix_Copy(B);
  P = Constraints2Polyhedron(M, maxRays);
  PC = Constraints2Polyhedron(C, maxRays);
  origEP = Polyhedron_Enumerate(P, PC, maxRays, origNames);
  Matrix_Free(M);
  Matrix_Free(C);
  Polyhedron_Free(P);
  Polyhedron_Free(PC);

  /* compute the full-dimensional polyhedron corresponding to A and its Ehrhart
     polynomial */
  M = Matrix_Copy(A);
  C = Matrix_Copy(B);
  nbOrigParms = B->NbColumns-2;
  Constraints_fullDimensionize(&M, &C, &VL, &Eqs, &ParmEqs, 
			       &elimVars, &elimParms, maxRays);
  if ((Eqs->NbRows==0) && (ParmEqs->NbRows==0)) {
    Matrix_Free(M);
    Matrix_Free(C);
    Matrix_Free(Eqs);
    Matrix_Free(ParmEqs);
    free(elimVars);
    free(elimParms);
    return 1;
  }
  nbParms = C->NbColumns-2;
  P = Constraints2Polyhedron(M, maxRays);
  PC = Constraints2Polyhedron(C, maxRays);
  namesWithoutElim(origNames, nbOrigParms, elimParms, &fullNames);
  fullEP = Polyhedron_Enumerate(P, PC, maxRays, fullNames);
  Matrix_Free(M);
  Matrix_Free(C);
  Polyhedron_Free(P);
  Polyhedron_Free(PC);
  
  /* make a set of sample parameter values and compare the corresponding
     Ehrhart polnomials */
  sample = Matrix_Alloc(1,nbOrigParms);
  transfSample = Matrix_Alloc(1, nbParms);
  Lattice_extractSubLattice(VL, nbParms, &parmVL);
  VLInv = Matrix_Alloc(parmVL->NbRows, parmVL->NbRows+1);
  MatInverse(parmVL, VLInv);
  if (dbg) {
    show_matrix(parmVL);
    show_matrix(VLInv);
  }
  srand(nbSamples);
  value_init(mod);
  value_init(div);
  for (i = 0; i< nbSamples; i++) {
    /* create a random sample */
    for (j=0; j< nbOrigParms; j++) {
      value_set_si(sample->p[0][j], rand()%100);
    }
    /* compute the corresponding value for the full-dimensional
       constraints */
    valuesWithoutElim(sample, elimParms, &smallerSample); 
    /* (N' i' 1)^T = VLinv.(N i 1)^T*/
    for (r = 0; r < nbParms; r++) {
      Inner_Product(&(VLInv->p[r][0]), smallerSample->p[0], nbParms,
		    &(transfSample->p[0][r]));
      /* add the constant part */
      value_addto(transfSample->p[0][r], transfSample->p[0][r], 
					 VLInv->p[r][VLInv->NbColumns-2]);
      value_pdivision(div, transfSample->p[0][r], 
			 VLInv->p[r][VLInv->NbColumns-1]);
      value_subtract(mod, transfSample->p[0][r], div);
      /* if the parameters value does not belong to the validity lattice, the
	 Ehrhart polynomial is zero. */
      if (!value_zero_p(mod)) {
	fullEP = Enumeration_zero(nbParms, maxRays);
	break;
      }
    }
    /* compare the two forms of the Ehrhart polynomial.*/
    if (origEP ==NULL) break; /* NULL has loose semantics for EPs */
    origVal = compute_poly(origEP, sample->p[0]);
    fullVal = compute_poly(fullEP, transfSample->p[0]);
    if (!value_eq(*origVal, *fullVal)) {
      isOk = 0;
      printf("EPs don't match. \n Original value = ");
      value_print(stdout, VALUE_FMT, *origVal);
      printf("\n Original sample = [");
      for (j=0; j<sample->NbColumns; j++) {
	value_print(stdout, VALUE_FMT, sample->p[0][j]);
	printf(" ");
      }
      printf("] \n EP = ");
      if(origEP!=NULL) {
	print_evalue(stdout, &(origEP->EP), origNames);
      }
      else {
	printf("NULL");
      }
      printf(" \n Full-dimensional value = ");
      value_print(stdout, P_VALUE_FMT, *fullVal);
      printf("\n full-dimensional sample = [");
      for (j=0; j<sample->NbColumns; j++) {
	value_print(stdout, VALUE_FMT, transfSample->p[0][j]);
	printf(" ");
      }
      printf("] \n EP = ");
      if(origEP!=NULL) {
	print_evalue(stdout, &(origEP->EP), fullNames);
      }
      else {
	printf("NULL");
      }
    }
    if (dbg) {
      printf("\nOriginal value = ");
      value_print(stdout, VALUE_FMT, *origVal);
      printf("\nFull-dimensional value = ");
      value_print(stdout, P_VALUE_FMT, *fullVal);
      printf("\n");
    }
    value_clear(*origVal);
    value_clear(*fullVal);
  }
  value_clear(mod);
  value_clear(div);
  Matrix_Free(sample);
  Matrix_Free(smallerSample);
  Matrix_Free(transfSample);
  Enumeration_Free(origEP);
  Enumeration_Free(fullEP);
  return isOk;
} /* test_Constraints_fullDimensionize */