File: SolveDio_8c_source.html

package info (click to toggle)
polylib 5.22.5-3%2Bdfsg
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd, stretch, wheezy
  • size: 14,444 kB
  • ctags: 52,958
  • sloc: ansic: 16,342; sh: 10,134; makefile: 560
file content (344 lines) | stat: -rw-r--r-- 38,750 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>polylib: SolveDio.c Source File</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
  <div class="tabs">
    <ul>
      <li><a href="main.html"><span>Main&nbsp;Page</span></a></li>
      <li><a href="annotated.html"><span>Classes</span></a></li>
      <li class="current"><a href="files.html"><span>Files</span></a></li>
    </ul>
  </div>
  <div class="tabs">
    <ul>
      <li><a href="files.html"><span>File&nbsp;List</span></a></li>
      <li><a href="globals.html"><span>File&nbsp;Members</span></a></li>
    </ul>
  </div>
<h1>SolveDio.c</h1><a href="SolveDio_8c.html">Go to the documentation of this file.</a><div class="fragment"><pre class="fragment"><a name="l00001"></a>00001 <span class="comment">/*</span>
<a name="l00002"></a>00002 <span class="comment">    This file is part of PolyLib.</span>
<a name="l00003"></a>00003 <span class="comment"></span>
<a name="l00004"></a>00004 <span class="comment">    PolyLib is free software: you can redistribute it and/or modify</span>
<a name="l00005"></a>00005 <span class="comment">    it under the terms of the GNU General Public License as published by</span>
<a name="l00006"></a>00006 <span class="comment">    the Free Software Foundation, either version 3 of the License, or</span>
<a name="l00007"></a>00007 <span class="comment">    (at your option) any later version.</span>
<a name="l00008"></a>00008 <span class="comment"></span>
<a name="l00009"></a>00009 <span class="comment">    PolyLib is distributed in the hope that it will be useful,</span>
<a name="l00010"></a>00010 <span class="comment">    but WITHOUT ANY WARRANTY; without even the implied warranty of</span>
<a name="l00011"></a>00011 <span class="comment">    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the</span>
<a name="l00012"></a>00012 <span class="comment">    GNU General Public License for more details.</span>
<a name="l00013"></a>00013 <span class="comment"></span>
<a name="l00014"></a>00014 <span class="comment">    You should have received a copy of the GNU General Public License</span>
<a name="l00015"></a>00015 <span class="comment">    along with PolyLib.  If not, see &lt;http://www.gnu.org/licenses/&gt;.</span>
<a name="l00016"></a>00016 <span class="comment">*/</span>
<a name="l00017"></a>00017 
<a name="l00018"></a>00018 <span class="preprocessor">#include &lt;stdlib.h&gt;</span>
<a name="l00019"></a>00019 <span class="preprocessor">#include &lt;<a class="code" href="polylib_8h.html">polylib/polylib.h</a>&gt;</span>
<a name="l00020"></a>00020 
<a name="l00021"></a>00021 <span class="keyword">static</span> <span class="keywordtype">void</span> <a class="code" href="SolveDio_8c.html#a43985b3ec6d9d36c531222181045b68f">RearrangeMatforSolveDio</a>(<a class="code" href="structmatrix.html">Matrix</a> *M);
<a name="l00022"></a>00022 
<a name="l00023"></a>00023 <span class="comment">/*</span>
<a name="l00024"></a>00024 <span class="comment"> *  Solve Diophantine Equations :</span>
<a name="l00025"></a>00025 <span class="comment"> *        This function takes as input a system of equations in the form</span>
<a name="l00026"></a>00026 <span class="comment"> *          Ax + C = 0 and finds the solution for it, if it exists</span>
<a name="l00027"></a>00027 <span class="comment"> *       </span>
<a name="l00028"></a>00028 <span class="comment"> *        Input : The matrix form the system of the equations Ax + C = 0</span>
<a name="l00029"></a>00029 <span class="comment"> *                 ( a pointer to a Matrix. )</span>
<a name="l00030"></a>00030 <span class="comment"> *                 A pointer to the pointer, where the matrix U </span>
<a name="l00031"></a>00031 <span class="comment"> *                  corresponding to the free variables of the equation</span>
<a name="l00032"></a>00032 <span class="comment"> *                  is stored.</span>
<a name="l00033"></a>00033 <span class="comment"> *                 A pointer to the pointer of a vector is a solution to T.</span>
<a name="l00034"></a>00034 <span class="comment"> *</span>
<a name="l00035"></a>00035 <span class="comment"> *</span>
<a name="l00036"></a>00036 <span class="comment"> *        Output : The above matrix U and the vector T.</span>
<a name="l00037"></a>00037 <span class="comment"> *</span>
<a name="l00038"></a>00038 <span class="comment"> *        Algorithm :</span>
<a name="l00039"></a>00039 <span class="comment"> *                    Given an integral matrix A, we can split it such that</span>
<a name="l00040"></a>00040 <span class="comment"> *                    A = HU, where H is in HNF (lowr triangular)</span>
<a name="l00041"></a>00041 <span class="comment"> *                      and U is unimodular.</span>
<a name="l00042"></a>00042 <span class="comment"> *                    So Ax = c -&gt; HUx = c -&gt; Ht = c ( where Ux = t).</span>
<a name="l00043"></a>00043 <span class="comment"> *                       Solving for Ht = c is easy.</span>
<a name="l00044"></a>00044 <span class="comment"> *                       Using &apos;t&apos; we find x = U(inverse) * t.</span>
<a name="l00045"></a>00045 <span class="comment"> * </span>
<a name="l00046"></a>00046 <span class="comment"> *        Steps :</span>
<a name="l00047"></a>00047 <span class="comment"> *                   1) For the above algorithm to work correctly to</span>
<a name="l00048"></a>00048 <span class="comment"> *                      need the condition that the first &apos;rank&apos; rows are</span>
<a name="l00049"></a>00049 <span class="comment"> *                      the rows which contribute to the rank of the matrix.</span>
<a name="l00050"></a>00050 <span class="comment"> *                      So first we copy Input into a matrix &apos;A&apos; and </span>
<a name="l00051"></a>00051 <span class="comment"> *                      rearrange the rows of A (if required) such that</span>
<a name="l00052"></a>00052 <span class="comment"> *                      the first rank rows contribute to the rank.</span>
<a name="l00053"></a>00053 <span class="comment"> *                   2) Extract A and C from the matrix &apos;A&apos;. A = n * l matrix.</span>
<a name="l00054"></a>00054 <span class="comment"> *                   3) Find the Hermite normal form of the matrix A.</span>
<a name="l00055"></a>00055 <span class="comment"> *                       ( the matrices the lower tri. H and the unimod U).</span>
<a name="l00056"></a>00056 <span class="comment"> *                   4) Using H, find the values of T one by one.</span>
<a name="l00057"></a>00057 <span class="comment"> *                      Here we use a sort of Gaussian elimination to find</span>
<a name="l00058"></a>00058 <span class="comment"> *                      the solution. You have a lower triangular matrix</span>
<a name="l00059"></a>00059 <span class="comment"> *                      and a vector, </span>
<a name="l00060"></a>00060 <span class="comment"> *                      [ [a11, 0], [a21, a22, 0] ...,[arank1...a rankrank 0]]</span>
<a name="l00061"></a>00061 <span class="comment"> *                       and the solution vector [t1.. tn] and the vector </span>
<a name="l00062"></a>00062 <span class="comment"> *                      [ c1, c2 .. cl], now as we are traversing down the</span>
<a name="l00063"></a>00063 <span class="comment"> *                      rows one by one, we will have all the information </span>
<a name="l00064"></a>00064 <span class="comment"> *                      needed to calculate the next &apos;t&apos;.</span>
<a name="l00065"></a>00065 <span class="comment"> *                      </span>
<a name="l00066"></a>00066 <span class="comment"> *                      That is to say, when you want to calculate t2, </span>
<a name="l00067"></a>00067 <span class="comment"> *                      you would have already calculated the value of t1</span>
<a name="l00068"></a>00068 <span class="comment"> *                      and similarly if you are calculating t3, you will </span>
<a name="l00069"></a>00069 <span class="comment"> *                      need t1 and t2 which will be available by that time.</span>
<a name="l00070"></a>00070 <span class="comment"> *                      So, we apply a sort of Gaussian Elimination inorder</span>
<a name="l00071"></a>00071 <span class="comment"> *                      to find the vector T.</span>
<a name="l00072"></a>00072 <span class="comment"> *</span>
<a name="l00073"></a>00073 <span class="comment"> *                   5) After finding t_rank, the remaining (l-rank) t&apos;s are</span>
<a name="l00074"></a>00074 <span class="comment"> *                      made equal to zero, and we verify, if these values</span>
<a name="l00075"></a>00075 <span class="comment"> *                      agree with the remaining (n-rank) rows of A.</span>
<a name="l00076"></a>00076 <span class="comment"> *</span>
<a name="l00077"></a>00077 <span class="comment"> *                   6) If a solution exists, find the values of X using </span>
<a name="l00078"></a>00078 <span class="comment"> *                        U (inverse) * T.</span>
<a name="l00079"></a>00079 <span class="comment"> */</span>
<a name="l00080"></a>00080 
<a name="l00081"></a><a class="code" href="SolveDio_8h.html#a0f417a4dacdd52103cc96cbe93e038cb">00081</a> <span class="keywordtype">int</span> <a class="code" href="SolveDio_8c.html#a0f417a4dacdd52103cc96cbe93e038cb">SolveDiophantine</a>(<a class="code" href="structmatrix.html">Matrix</a> *M, <a class="code" href="structmatrix.html">Matrix</a> **U, <a class="code" href="structVector.html">Vector</a> **X) {
<a name="l00082"></a>00082   
<a name="l00083"></a>00083   <span class="keywordtype">int</span> i, j, k1, k2, <a class="code" href="verif__ehrhart_8c.html#a1c0ed9242a98f138b59c76f8454cfaa6">min</a>, rank;
<a name="l00084"></a>00084   <a class="code" href="structmatrix.html">Matrix</a> *A, *temp, *hermi, *unimod,  *unimodinv ;
<a name="l00085"></a>00085   Value *C; <span class="comment">/* temp storage for the vector C */</span>
<a name="l00086"></a>00086   Value *T; <span class="comment">/* storage for the vector t */</span>
<a name="l00087"></a>00087   Value sum, tmp;
<a name="l00088"></a>00088   
<a name="l00089"></a>00089 <span class="preprocessor">#ifdef DOMDEBUG</span>
<a name="l00090"></a>00090 <span class="preprocessor"></span>  FILE *fp;
<a name="l00091"></a>00091   fp = fopen(<span class="stringliteral">&quot;_debug&quot;</span>, <span class="stringliteral">&quot;a&quot;</span>);
<a name="l00092"></a>00092   fprintf(fp,<span class="stringliteral">&quot;\nEntered SOLVEDIOPHANTINE\n&quot;</span>); 
<a name="l00093"></a>00093   fclose(fp);
<a name="l00094"></a>00094 <span class="preprocessor">#endif</span>
<a name="l00095"></a>00095 <span class="preprocessor"></span>
<a name="l00096"></a>00096   <a class="code" href="source_2arith_2arithmetique_8h.html#af71a2ca0294a19cff0cdcbdcc052ee27">value_init</a>(sum); <a class="code" href="source_2arith_2arithmetique_8h.html#af71a2ca0294a19cff0cdcbdcc052ee27">value_init</a>(tmp);
<a name="l00097"></a>00097   
<a name="l00098"></a>00098   <span class="comment">/* Ensuring that the first rank row of A contribute to the rank*/</span> 
<a name="l00099"></a>00099   A = <a class="code" href="Matop_8c.html#a9d027e9fc6b85e6fa37fc284bf1b5e06">Matrix_Copy</a>(M);
<a name="l00100"></a>00100   <a class="code" href="SolveDio_8c.html#a43985b3ec6d9d36c531222181045b68f">RearrangeMatforSolveDio</a>(A);
<a name="l00101"></a>00101   temp = <a class="code" href="matrix_8c.html#ac0b29e1d99a2823ad00b5f2157879d80">Matrix_Alloc</a>(A-&gt;<a class="code" href="structmatrix.html#a16ad614d15c6e81c0041e877b623c72d">NbRows</a>-1, A-&gt;<a class="code" href="structmatrix.html#a68858fd3b57684ef38bdfce13c65d182">NbColumns</a>-1);
<a name="l00102"></a>00102   
<a name="l00103"></a>00103   <span class="comment">/* Copying A into temp, ignoring the Homogeneous part */</span> 
<a name="l00104"></a>00104   <span class="keywordflow">for</span> (i = 0; i &lt; A-&gt;<a class="code" href="structmatrix.html#a16ad614d15c6e81c0041e877b623c72d">NbRows</a> -1; i++)
<a name="l00105"></a>00105     <span class="keywordflow">for</span> (j = 0; j &lt; A-&gt;<a class="code" href="structmatrix.html#a68858fd3b57684ef38bdfce13c65d182">NbColumns</a>-1; j++)
<a name="l00106"></a>00106       <a class="code" href="source_2arith_2arithmetique_8h.html#a864613888dc46f15679aa4f63e468f89">value_assign</a>(temp-&gt;<a class="code" href="structmatrix.html#a2c6d840d8d911ae95c2ae4fc96f4b5ba">p</a>[i][j],A-&gt;<a class="code" href="structmatrix.html#a2c6d840d8d911ae95c2ae4fc96f4b5ba">p</a>[i][j]);
<a name="l00107"></a>00107   
<a name="l00108"></a>00108   <span class="comment">/* Copying C into a temp, ignoring the Homogeneous part */</span> 
<a name="l00109"></a>00109   C = (Value *) malloc (<span class="keyword">sizeof</span>(Value) * (A-&gt;<a class="code" href="structmatrix.html#a16ad614d15c6e81c0041e877b623c72d">NbRows</a>-1));
<a name="l00110"></a>00110   k1 = A-&gt;<a class="code" href="structmatrix.html#a16ad614d15c6e81c0041e877b623c72d">NbRows</a>-1;
<a name="l00111"></a>00111   
<a name="l00112"></a>00112   <span class="keywordflow">for</span> (i = 0; i &lt; k1; i++) {
<a name="l00113"></a>00113     <a class="code" href="source_2arith_2arithmetique_8h.html#af71a2ca0294a19cff0cdcbdcc052ee27">value_init</a>(C[i]);
<a name="l00114"></a>00114     <a class="code" href="source_2arith_2arithmetique_8h.html#a0daf9a8ecdc14e7a274832b0d2add830">value_oppose</a>(C[i],A-&gt;<a class="code" href="structmatrix.html#a2c6d840d8d911ae95c2ae4fc96f4b5ba">p</a>[i][A-&gt;<a class="code" href="structmatrix.html#a68858fd3b57684ef38bdfce13c65d182">NbColumns</a>-1]);
<a name="l00115"></a>00115   }
<a name="l00116"></a>00116   <a class="code" href="matrix_8c.html#afcb312b7c12a6997cd66964ecc34e1a6">Matrix_Free</a> (A); 
<a name="l00117"></a>00117   
<a name="l00118"></a>00118   <span class="comment">/* Finding the HNF of temp */</span>  
<a name="l00119"></a>00119   <a class="code" href="NormalForms_8c.html#acd4e00bd353920b83e3f27a76909b2ed" title="Hermite : This function takes a Matrix as its input and finds its HNF ( Left form...">Hermite</a>(temp, &amp;hermi, &amp;unimod);
<a name="l00120"></a>00120   
<a name="l00121"></a>00121   <span class="comment">/* Testing for existence of a Solution */</span>
<a name="l00122"></a>00122   
<a name="l00123"></a>00123   min=(hermi-&gt;<a class="code" href="structmatrix.html#a16ad614d15c6e81c0041e877b623c72d">NbRows</a> &lt;= hermi-&gt;<a class="code" href="structmatrix.html#a68858fd3b57684ef38bdfce13c65d182">NbColumns</a> ) ? hermi-&gt;<a class="code" href="structmatrix.html#a16ad614d15c6e81c0041e877b623c72d">NbRows</a> : hermi-&gt;<a class="code" href="structmatrix.html#a68858fd3b57684ef38bdfce13c65d182">NbColumns</a> ;
<a name="l00124"></a>00124   rank = 0;
<a name="l00125"></a>00125   for (i = 0; i &lt; min ; i++) {
<a name="l00126"></a>00126     <span class="keywordflow">if</span> (<a class="code" href="source_2arith_2arithmetique_8h.html#a47d32925340d2dc99ef2d4215080a60d">value_notzero_p</a>(hermi-&gt;<a class="code" href="structmatrix.html#a2c6d840d8d911ae95c2ae4fc96f4b5ba">p</a>[i][i]))
<a name="l00127"></a>00127       rank ++;
<a name="l00128"></a>00128     <span class="keywordflow">else</span>
<a name="l00129"></a>00129       break ;
<a name="l00130"></a>00130   }
<a name="l00131"></a>00131   
<a name="l00132"></a>00132   <span class="comment">/* Solving the Equation using Gaussian Elimination*/</span>
<a name="l00133"></a>00133   
<a name="l00134"></a>00134   T = (Value *) malloc(<span class="keyword">sizeof</span>(Value) * temp-&gt;<a class="code" href="structmatrix.html#a68858fd3b57684ef38bdfce13c65d182">NbColumns</a>);
<a name="l00135"></a>00135   k2 = temp-&gt;<a class="code" href="structmatrix.html#a68858fd3b57684ef38bdfce13c65d182">NbColumns</a>;
<a name="l00136"></a>00136   <span class="keywordflow">for</span>(i=0;i&lt; k2; i++) 
<a name="l00137"></a>00137     <a class="code" href="source_2arith_2arithmetique_8h.html#af71a2ca0294a19cff0cdcbdcc052ee27">value_init</a>(T[i]);
<a name="l00138"></a>00138 
<a name="l00139"></a>00139   <span class="keywordflow">for</span> (i = 0; i &lt; rank ; i++) {
<a name="l00140"></a>00140     <a class="code" href="source_2arith_2arithmetique_8h.html#a8cc56567a4a29271559ac0fd5f6c5bfa">value_set_si</a>(sum,0);
<a name="l00141"></a>00141     <span class="keywordflow">for</span> (j = 0; j &lt; i; j++) {
<a name="l00142"></a>00142       <a class="code" href="source_2arith_2arithmetique_8h.html#a9900fbd029b36f5887e587642a064a52">value_addmul</a>(sum, T[j], hermi-&gt;<a class="code" href="structmatrix.html#a2c6d840d8d911ae95c2ae4fc96f4b5ba">p</a>[i][j]);
<a name="l00143"></a>00143     } 
<a name="l00144"></a>00144     <a class="code" href="source_2arith_2arithmetique_8h.html#ae92a58eee3b6f5c6a99e6837e68407e1">value_subtract</a>(tmp,C[i],sum);
<a name="l00145"></a>00145     <a class="code" href="source_2arith_2arithmetique_8h.html#ae77f928488d756f77270649775dbdc1d">value_modulus</a>(tmp,tmp,hermi-&gt;<a class="code" href="structmatrix.html#a2c6d840d8d911ae95c2ae4fc96f4b5ba">p</a>[i][i]);
<a name="l00146"></a>00146     <span class="keywordflow">if</span> (<a class="code" href="source_2arith_2arithmetique_8h.html#a47d32925340d2dc99ef2d4215080a60d">value_notzero_p</a>(tmp)) { <span class="comment">/* no solution to the equation */</span>
<a name="l00147"></a>00147       *U = <a class="code" href="matrix_8c.html#ac0b29e1d99a2823ad00b5f2157879d80">Matrix_Alloc</a>(0,0);
<a name="l00148"></a>00148       *X = <a class="code" href="vector_8c.html#a358c545236f58b1001479e4a69d318aa">Vector_Alloc</a> (0);
<a name="l00149"></a>00149       <a class="code" href="source_2arith_2arithmetique_8h.html#ab9b282921e85a0527d462d331533d619">value_clear</a>(sum); <a class="code" href="source_2arith_2arithmetique_8h.html#ab9b282921e85a0527d462d331533d619">value_clear</a>(tmp);
<a name="l00150"></a>00150       <span class="keywordflow">for</span> (i = 0; i &lt; k1; i++) 
<a name="l00151"></a>00151         <a class="code" href="source_2arith_2arithmetique_8h.html#ab9b282921e85a0527d462d331533d619">value_clear</a>(C[i]);
<a name="l00152"></a>00152       <span class="keywordflow">for</span> (i = 0; i &lt; k2; i++) 
<a name="l00153"></a>00153         <a class="code" href="source_2arith_2arithmetique_8h.html#ab9b282921e85a0527d462d331533d619">value_clear</a>(T[i]);
<a name="l00154"></a>00154       free(C);
<a name="l00155"></a>00155       free(T);
<a name="l00156"></a>00156       <span class="keywordflow">return</span> (-1);
<a name="l00157"></a>00157     };
<a name="l00158"></a>00158     <a class="code" href="source_2arith_2arithmetique_8h.html#ae92a58eee3b6f5c6a99e6837e68407e1">value_subtract</a>(tmp,C[i],sum);
<a name="l00159"></a>00159     <a class="code" href="source_2arith_2arithmetique_8h.html#ac633e4bcd9ed1d8412c67cda6d8ddb11">value_division</a>(T[i],tmp,hermi-&gt;<a class="code" href="structmatrix.html#a2c6d840d8d911ae95c2ae4fc96f4b5ba">p</a>[i][i]);
<a name="l00160"></a>00160   }
<a name="l00161"></a>00161   <span class="comment"></span>
<a name="l00162"></a>00162 <span class="comment">  /** Case when rank &lt; Number of Columns; **/</span>
<a name="l00163"></a>00163   
<a name="l00164"></a>00164   <span class="keywordflow">for</span> (i = rank; i &lt; hermi-&gt;<a class="code" href="structmatrix.html#a68858fd3b57684ef38bdfce13c65d182">NbColumns</a>; i++)
<a name="l00165"></a>00165     <a class="code" href="source_2arith_2arithmetique_8h.html#a8cc56567a4a29271559ac0fd5f6c5bfa">value_set_si</a>(T[i],0);
<a name="l00166"></a>00166   <span class="comment"></span>
<a name="l00167"></a>00167 <span class="comment">  /** Solved the equtions **/</span><span class="comment"></span>
<a name="l00168"></a>00168 <span class="comment">  /** When rank &lt; hermi-&gt;NbRows; Verifying whether the solution agrees </span>
<a name="l00169"></a>00169 <span class="comment">      with the remaining n-rank rows as well. **/</span>
<a name="l00170"></a>00170   
<a name="l00171"></a>00171   <span class="keywordflow">for</span> (i = rank; i &lt; hermi-&gt;<a class="code" href="structmatrix.html#a16ad614d15c6e81c0041e877b623c72d">NbRows</a>; i++) {
<a name="l00172"></a>00172     <a class="code" href="source_2arith_2arithmetique_8h.html#a8cc56567a4a29271559ac0fd5f6c5bfa">value_set_si</a>(sum,0);
<a name="l00173"></a>00173     <span class="keywordflow">for</span> (j = 0; j &lt; hermi-&gt;<a class="code" href="structmatrix.html#a68858fd3b57684ef38bdfce13c65d182">NbColumns</a>; j++) {
<a name="l00174"></a>00174       <a class="code" href="source_2arith_2arithmetique_8h.html#a9900fbd029b36f5887e587642a064a52">value_addmul</a>(sum, T[j], hermi-&gt;<a class="code" href="structmatrix.html#a2c6d840d8d911ae95c2ae4fc96f4b5ba">p</a>[i][j]);
<a name="l00175"></a>00175     }  
<a name="l00176"></a>00176     <span class="keywordflow">if</span> (<a class="code" href="source_2arith_2arithmetique_8h.html#a8092395b58522bbac9f2c8a1ee14c10c">value_ne</a>(sum,C[i])) {
<a name="l00177"></a>00177       *U = <a class="code" href="matrix_8c.html#ac0b29e1d99a2823ad00b5f2157879d80">Matrix_Alloc</a>(0,0);
<a name="l00178"></a>00178       *X = <a class="code" href="vector_8c.html#a358c545236f58b1001479e4a69d318aa">Vector_Alloc</a> (0);
<a name="l00179"></a>00179       <a class="code" href="source_2arith_2arithmetique_8h.html#ab9b282921e85a0527d462d331533d619">value_clear</a>(sum); <a class="code" href="source_2arith_2arithmetique_8h.html#ab9b282921e85a0527d462d331533d619">value_clear</a>(tmp);
<a name="l00180"></a>00180       <span class="keywordflow">for</span> (i = 0; i &lt; k1; i++) 
<a name="l00181"></a>00181         <a class="code" href="source_2arith_2arithmetique_8h.html#ab9b282921e85a0527d462d331533d619">value_clear</a>(C[i]);
<a name="l00182"></a>00182       <span class="keywordflow">for</span> (i = 0; i &lt; k2; i++) 
<a name="l00183"></a>00183         <a class="code" href="source_2arith_2arithmetique_8h.html#ab9b282921e85a0527d462d331533d619">value_clear</a>(T[i]);
<a name="l00184"></a>00184       free(C);
<a name="l00185"></a>00185       free(T);
<a name="l00186"></a>00186       <span class="keywordflow">return</span> (-1);
<a name="l00187"></a>00187     }
<a name="l00188"></a>00188   }     
<a name="l00189"></a>00189   unimodinv = <a class="code" href="matrix_8c.html#ac0b29e1d99a2823ad00b5f2157879d80">Matrix_Alloc</a>(unimod-&gt;<a class="code" href="structmatrix.html#a16ad614d15c6e81c0041e877b623c72d">NbRows</a>, unimod-&gt;<a class="code" href="structmatrix.html#a68858fd3b57684ef38bdfce13c65d182">NbColumns</a>);
<a name="l00190"></a>00190   <a class="code" href="matrix_8c.html#a97aa755c011357ce2146d71ddb88ded6">Matrix_Inverse</a>(unimod, unimodinv);
<a name="l00191"></a>00191   <a class="code" href="matrix_8c.html#afcb312b7c12a6997cd66964ecc34e1a6">Matrix_Free</a>(unimod);
<a name="l00192"></a>00192   *X = <a class="code" href="vector_8c.html#a358c545236f58b1001479e4a69d318aa">Vector_Alloc</a>(M-&gt;<a class="code" href="structmatrix.html#a68858fd3b57684ef38bdfce13c65d182">NbColumns</a>-1);
<a name="l00193"></a>00193   
<a name="l00194"></a>00194   <span class="keywordflow">if</span> (rank == hermi-&gt;<a class="code" href="structmatrix.html#a68858fd3b57684ef38bdfce13c65d182">NbColumns</a>)
<a name="l00195"></a>00195     *U = <a class="code" href="matrix_8c.html#ac0b29e1d99a2823ad00b5f2157879d80">Matrix_Alloc</a>(0,0);
<a name="l00196"></a>00196   <span class="keywordflow">else</span> { <span class="comment">/* Extracting the General solution form U(inverse) */</span>
<a name="l00197"></a>00197     
<a name="l00198"></a>00198     *U = <a class="code" href="matrix_8c.html#ac0b29e1d99a2823ad00b5f2157879d80">Matrix_Alloc</a>(hermi-&gt;<a class="code" href="structmatrix.html#a68858fd3b57684ef38bdfce13c65d182">NbColumns</a>, hermi-&gt;<a class="code" href="structmatrix.html#a68858fd3b57684ef38bdfce13c65d182">NbColumns</a>-rank);   
<a name="l00199"></a>00199     <span class="keywordflow">for</span> (i = 0; i &lt; U[0]-&gt;<a class="code" href="structmatrix.html#a16ad614d15c6e81c0041e877b623c72d">NbRows</a>; i++)
<a name="l00200"></a>00200       <span class="keywordflow">for</span> (j = 0; j &lt; U[0]-&gt;<a class="code" href="structmatrix.html#a68858fd3b57684ef38bdfce13c65d182">NbColumns</a>; j++)
<a name="l00201"></a>00201         <a class="code" href="source_2arith_2arithmetique_8h.html#a864613888dc46f15679aa4f63e468f89">value_assign</a>(U[0]-&gt;<a class="code" href="vector_8c.html#aa45b2e3dcf291527c5aedc420819adfc">p</a>[i][j],unimodinv-&gt;<a class="code" href="structmatrix.html#a2c6d840d8d911ae95c2ae4fc96f4b5ba">p</a>[i][j+rank]);
<a name="l00202"></a>00202   }
<a name="l00203"></a>00203   
<a name="l00204"></a>00204   <span class="keywordflow">for</span> (i = 0; i &lt; unimodinv-&gt;<a class="code" href="structmatrix.html#a16ad614d15c6e81c0041e877b623c72d">NbRows</a>; i++) { 
<a name="l00205"></a>00205     
<a name="l00206"></a>00206     <span class="comment">/* Calculating the vector X = Uinv * T */</span>
<a name="l00207"></a>00207     <a class="code" href="source_2arith_2arithmetique_8h.html#a8cc56567a4a29271559ac0fd5f6c5bfa">value_set_si</a>(sum,0);
<a name="l00208"></a>00208     <span class="keywordflow">for</span> (j = 0; j &lt; unimodinv-&gt;<a class="code" href="structmatrix.html#a68858fd3b57684ef38bdfce13c65d182">NbColumns</a>; j++) {
<a name="l00209"></a>00209       <a class="code" href="source_2arith_2arithmetique_8h.html#a9900fbd029b36f5887e587642a064a52">value_addmul</a>(sum, unimodinv-&gt;<a class="code" href="structmatrix.html#a2c6d840d8d911ae95c2ae4fc96f4b5ba">p</a>[i][j], T[j]);
<a name="l00210"></a>00210     }  
<a name="l00211"></a>00211     <a class="code" href="source_2arith_2arithmetique_8h.html#a864613888dc46f15679aa4f63e468f89">value_assign</a>(X[0]-&gt;<a class="code" href="vector_8c.html#aa45b2e3dcf291527c5aedc420819adfc">p</a>[i],sum);
<a name="l00212"></a>00212   }
<a name="l00213"></a>00213   
<a name="l00214"></a>00214   <span class="comment">/*</span>
<a name="l00215"></a>00215 <span class="comment">    for (i = rank; i &lt; A-&gt;NbColumns; i ++)</span>
<a name="l00216"></a>00216 <span class="comment">    X[0]-&gt;p[i] = 0;</span>
<a name="l00217"></a>00217 <span class="comment">  */</span>
<a name="l00218"></a>00218   <a class="code" href="matrix_8c.html#afcb312b7c12a6997cd66964ecc34e1a6">Matrix_Free</a> (unimodinv);
<a name="l00219"></a>00219   <a class="code" href="matrix_8c.html#afcb312b7c12a6997cd66964ecc34e1a6">Matrix_Free</a> (hermi);
<a name="l00220"></a>00220   <a class="code" href="matrix_8c.html#afcb312b7c12a6997cd66964ecc34e1a6">Matrix_Free</a> (temp);
<a name="l00221"></a>00221   <a class="code" href="source_2arith_2arithmetique_8h.html#ab9b282921e85a0527d462d331533d619">value_clear</a>(sum); <a class="code" href="source_2arith_2arithmetique_8h.html#ab9b282921e85a0527d462d331533d619">value_clear</a>(tmp);
<a name="l00222"></a>00222   <span class="keywordflow">for</span> (i = 0; i &lt; k1; i++) 
<a name="l00223"></a>00223     <a class="code" href="source_2arith_2arithmetique_8h.html#ab9b282921e85a0527d462d331533d619">value_clear</a>(C[i]);
<a name="l00224"></a>00224   <span class="keywordflow">for</span> (i = 0; i &lt; k2; i++) 
<a name="l00225"></a>00225     <a class="code" href="source_2arith_2arithmetique_8h.html#ab9b282921e85a0527d462d331533d619">value_clear</a>(T[i]);
<a name="l00226"></a>00226   free(C);
<a name="l00227"></a>00227   free(T);
<a name="l00228"></a>00228   <span class="keywordflow">return</span> (rank);  
<a name="l00229"></a>00229 } <span class="comment">/* SolveDiophantine */</span>
<a name="l00230"></a>00230 
<a name="l00231"></a>00231 <span class="comment">/*</span>
<a name="l00232"></a>00232 <span class="comment"> * Rearrange :</span>
<a name="l00233"></a>00233 <span class="comment"> *            This function takes as input a matrix M (pointer to it)</span>
<a name="l00234"></a>00234 <span class="comment"> *            and it returns the tranformed matrix M, such that the first</span>
<a name="l00235"></a>00235 <span class="comment"> *            &apos;rank&apos; rows of the new matrix M are the ones which contribute</span>
<a name="l00236"></a>00236 <span class="comment"> *            to the rank of the matrix M. </span>
<a name="l00237"></a>00237 <span class="comment"> *          </span>
<a name="l00238"></a>00238 <span class="comment"> *            1) For a start we try to put all the zero rows at the end.</span>
<a name="l00239"></a>00239 <span class="comment"> *            2) Then cur = 1st row of the remaining matrix.</span>
<a name="l00240"></a>00240 <span class="comment"> *            3) nextrow = 2ndrow of M.</span>
<a name="l00241"></a>00241 <span class="comment"> *            4) temp = cur + nextrow</span>
<a name="l00242"></a>00242 <span class="comment"> *            5) If (rank(temp) == temp-&gt;NbRows.) {cur = temp;nextrow ++}</span>
<a name="l00243"></a>00243 <span class="comment"> *            6) Else (Exchange the nextrow of M with the currentlastrow.</span>
<a name="l00244"></a>00244 <span class="comment"> *                     and currentlastrow --).</span>
<a name="l00245"></a>00245 <span class="comment"> *            7) Repeat steps 4,5,6 till it is no longer possible.</span>
<a name="l00246"></a>00246 <span class="comment"> *            </span>
<a name="l00247"></a>00247 <span class="comment"> */</span>
<a name="l00248"></a><a class="code" href="SolveDio_8c.html#a43985b3ec6d9d36c531222181045b68f">00248</a> <span class="keyword">static</span> <span class="keywordtype">void</span> <a class="code" href="SolveDio_8c.html#a43985b3ec6d9d36c531222181045b68f">RearrangeMatforSolveDio</a>(<a class="code" href="structmatrix.html">Matrix</a> *M) {
<a name="l00249"></a>00249   
<a name="l00250"></a>00250   <span class="keywordtype">int</span> i, j, curend, curRow, <a class="code" href="verif__ehrhart_8c.html#a1c0ed9242a98f138b59c76f8454cfaa6">min</a>, rank=1;
<a name="l00251"></a>00251   <a class="code" href="types_8h.html#a39db6982619d623273fad8a383489309">Bool</a> add = <a class="code" href="types_8h.html#a39db6982619d623273fad8a383489309a6d32c34708a0a3507c4bdb89219d650b">True</a>;
<a name="l00252"></a>00252   <a class="code" href="structmatrix.html">Matrix</a> *A, *L, *H, *U;
<a name="l00253"></a>00253   
<a name="l00254"></a>00254   <span class="comment">/* Though I could have used the Lattice function</span>
<a name="l00255"></a>00255 <span class="comment">        Extract Linear Part, I chose not to use it so that</span>
<a name="l00256"></a>00256 <span class="comment">        this function can be independent of Lattice Operations */</span>
<a name="l00257"></a>00257 
<a name="l00258"></a>00258   L = <a class="code" href="matrix_8c.html#ac0b29e1d99a2823ad00b5f2157879d80">Matrix_Alloc</a>(M-&gt;<a class="code" href="structmatrix.html#a16ad614d15c6e81c0041e877b623c72d">NbRows</a>-1,M-&gt;<a class="code" href="structmatrix.html#a68858fd3b57684ef38bdfce13c65d182">NbColumns</a>-1);
<a name="l00259"></a>00259   <span class="keywordflow">for</span> (i = 0; i &lt; L-&gt;<a class="code" href="structmatrix.html#a16ad614d15c6e81c0041e877b623c72d">NbRows</a>; i++)
<a name="l00260"></a>00260     <span class="keywordflow">for</span> (j = 0; j &lt; L-&gt;<a class="code" href="structmatrix.html#a68858fd3b57684ef38bdfce13c65d182">NbColumns</a>; j++)
<a name="l00261"></a>00261       <a class="code" href="source_2arith_2arithmetique_8h.html#a864613888dc46f15679aa4f63e468f89">value_assign</a>(L-&gt;<a class="code" href="structmatrix.html#a2c6d840d8d911ae95c2ae4fc96f4b5ba">p</a>[i][j],M-&gt;<a class="code" href="structmatrix.html#a2c6d840d8d911ae95c2ae4fc96f4b5ba">p</a>[i][j]);
<a name="l00262"></a>00262   
<a name="l00263"></a>00263   <span class="comment">/* Putting the zero rows at the end */</span>
<a name="l00264"></a>00264   curend = L-&gt;<a class="code" href="structmatrix.html#a16ad614d15c6e81c0041e877b623c72d">NbRows</a>-1;
<a name="l00265"></a>00265   <span class="keywordflow">for</span> (i = 0; i &lt; curend; i++) {
<a name="l00266"></a>00266     <span class="keywordflow">for</span> (j = 0; j &lt; L-&gt;<a class="code" href="structmatrix.html#a68858fd3b57684ef38bdfce13c65d182">NbColumns</a>; j++) 
<a name="l00267"></a>00267       <span class="keywordflow">if</span> (<a class="code" href="source_2arith_2arithmetique_8h.html#a47d32925340d2dc99ef2d4215080a60d">value_notzero_p</a>(L-&gt;<a class="code" href="structmatrix.html#a2c6d840d8d911ae95c2ae4fc96f4b5ba">p</a>[i][j]))
<a name="l00268"></a>00268         <span class="keywordflow">break</span>;
<a name="l00269"></a>00269     <span class="keywordflow">if</span> (j == L-&gt;<a class="code" href="structmatrix.html#a68858fd3b57684ef38bdfce13c65d182">NbColumns</a>) {
<a name="l00270"></a>00270       <a class="code" href="Matop_8c.html#acf8ce28d22ae1fabdf97ac6c4e86341a">ExchangeRows</a>(M,i,curend);
<a name="l00271"></a>00271       curend --;
<a name="l00272"></a>00272     }
<a name="l00273"></a>00273   } 
<a name="l00274"></a>00274   
<a name="l00275"></a>00275   <span class="comment">/* Trying to put the redundant rows at the end */</span>
<a name="l00276"></a>00276   
<a name="l00277"></a>00277   <span class="keywordflow">if</span> (curend &gt; 0) { <span class="comment">/* there are some useful rows */</span>
<a name="l00278"></a>00278     
<a name="l00279"></a>00279     <a class="code" href="structmatrix.html">Matrix</a> *temp;
<a name="l00280"></a>00280     A = <a class="code" href="matrix_8c.html#ac0b29e1d99a2823ad00b5f2157879d80">Matrix_Alloc</a>(1, L-&gt;<a class="code" href="structmatrix.html#a68858fd3b57684ef38bdfce13c65d182">NbColumns</a>); 
<a name="l00281"></a>00281     
<a name="l00282"></a>00282     <span class="keywordflow">for</span> (i = 0; i &lt;L-&gt;<a class="code" href="structmatrix.html#a68858fd3b57684ef38bdfce13c65d182">NbColumns</a>; i++) 
<a name="l00283"></a>00283       <a class="code" href="source_2arith_2arithmetique_8h.html#a864613888dc46f15679aa4f63e468f89">value_assign</a>(A-&gt;<a class="code" href="structmatrix.html#a2c6d840d8d911ae95c2ae4fc96f4b5ba">p</a>[0][i],L-&gt;<a class="code" href="structmatrix.html#a2c6d840d8d911ae95c2ae4fc96f4b5ba">p</a>[0][i]);     
<a name="l00284"></a>00284     curRow = 1;    
<a name="l00285"></a>00285     <span class="keywordflow">while</span> (add == <a class="code" href="types_8h.html#a39db6982619d623273fad8a383489309a6d32c34708a0a3507c4bdb89219d650b">True</a> ) {
<a name="l00286"></a>00286       temp= <a class="code" href="Matop_8c.html#a76461087aa1a40441a3dc174e8359b97">AddANullRow</a>(A);
<a name="l00287"></a>00287       <span class="keywordflow">for</span> (i = 0;i &lt;A-&gt;<a class="code" href="structmatrix.html#a68858fd3b57684ef38bdfce13c65d182">NbColumns</a>; i++)
<a name="l00288"></a>00288         <a class="code" href="source_2arith_2arithmetique_8h.html#a864613888dc46f15679aa4f63e468f89">value_assign</a>(temp-&gt;<a class="code" href="structmatrix.html#a2c6d840d8d911ae95c2ae4fc96f4b5ba">p</a>[curRow][i],L-&gt;<a class="code" href="structmatrix.html#a2c6d840d8d911ae95c2ae4fc96f4b5ba">p</a>[curRow][i]);      
<a name="l00289"></a>00289       <a class="code" href="NormalForms_8c.html#acd4e00bd353920b83e3f27a76909b2ed" title="Hermite : This function takes a Matrix as its input and finds its HNF ( Left form...">Hermite</a>(temp, &amp;H, &amp;U);
<a name="l00290"></a>00290       <span class="keywordflow">for</span> (i = 0; i &lt; H-&gt;<a class="code" href="structmatrix.html#a16ad614d15c6e81c0041e877b623c72d">NbRows</a>; i++)
<a name="l00291"></a>00291         <span class="keywordflow">if</span> (<a class="code" href="source_2arith_2arithmetique_8h.html#a827532f2140ae2aa96e46baebae09723">value_zero_p</a>(H-&gt;<a class="code" href="structmatrix.html#a2c6d840d8d911ae95c2ae4fc96f4b5ba">p</a>[i][i]))
<a name="l00292"></a>00292           <span class="keywordflow">break</span>;
<a name="l00293"></a>00293       <span class="keywordflow">if</span> (i != H-&gt;<a class="code" href="structmatrix.html#a16ad614d15c6e81c0041e877b623c72d">NbRows</a>) {
<a name="l00294"></a>00294         <a class="code" href="Matop_8c.html#acf8ce28d22ae1fabdf97ac6c4e86341a">ExchangeRows</a>(M, curRow, curend);
<a name="l00295"></a>00295         curend --;
<a name="l00296"></a>00296       }
<a name="l00297"></a>00297       <span class="keywordflow">else</span> {
<a name="l00298"></a>00298         curRow ++;
<a name="l00299"></a>00299         rank ++;
<a name="l00300"></a>00300         <a class="code" href="matrix_8c.html#afcb312b7c12a6997cd66964ecc34e1a6">Matrix_Free</a> (A);
<a name="l00301"></a>00301         A = <a class="code" href="Matop_8c.html#a9d027e9fc6b85e6fa37fc284bf1b5e06">Matrix_Copy</a> (temp);
<a name="l00302"></a>00302         <a class="code" href="matrix_8c.html#afcb312b7c12a6997cd66964ecc34e1a6">Matrix_Free</a> (temp);
<a name="l00303"></a>00303       }      
<a name="l00304"></a>00304       <a class="code" href="matrix_8c.html#afcb312b7c12a6997cd66964ecc34e1a6">Matrix_Free</a> (H);
<a name="l00305"></a>00305       <a class="code" href="matrix_8c.html#afcb312b7c12a6997cd66964ecc34e1a6">Matrix_Free</a> (U);
<a name="l00306"></a>00306       min = (curend &gt;= L-&gt;<a class="code" href="structmatrix.html#a68858fd3b57684ef38bdfce13c65d182">NbColumns</a>) ? L-&gt;<a class="code" href="structmatrix.html#a68858fd3b57684ef38bdfce13c65d182">NbColumns</a> : curend ;
<a name="l00307"></a>00307       if (rank==min || curRow &gt;= curend)
<a name="l00308"></a>00308         <span class="keywordflow">break</span>;
<a name="l00309"></a>00309     }
<a name="l00310"></a>00310     <a class="code" href="matrix_8c.html#afcb312b7c12a6997cd66964ecc34e1a6">Matrix_Free</a> (A);
<a name="l00311"></a>00311   }
<a name="l00312"></a>00312   <a class="code" href="matrix_8c.html#afcb312b7c12a6997cd66964ecc34e1a6">Matrix_Free</a> (L);
<a name="l00313"></a>00313   <span class="keywordflow">return</span>;
<a name="l00314"></a>00314 } <span class="comment">/* RearrangeMatforSolveDio */</span>
</pre></div></div>
<hr size="1"/><address style="text-align: right;"><small>Generated on Wed Nov 25 17:45:26 2009 for polylib by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>