1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>polylib: ranking.h Source File</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="main.html"><span>Main Page</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li class="current"><a href="files.html"><span>Files</span></a></li>
</ul>
</div>
<div class="tabs">
<ul>
<li><a href="files.html"><span>File List</span></a></li>
<li><a href="globals.html"><span>File Members</span></a></li>
</ul>
</div>
<h1>ranking.h</h1><a href="ranking_8h.html">Go to the documentation of this file.</a><div class="fragment"><pre class="fragment"><a name="l00001"></a>00001 <span class="comment">/*</span>
<a name="l00002"></a>00002 <span class="comment"> This file is part of PolyLib.</span>
<a name="l00003"></a>00003 <span class="comment"></span>
<a name="l00004"></a>00004 <span class="comment"> PolyLib is free software: you can redistribute it and/or modify</span>
<a name="l00005"></a>00005 <span class="comment"> it under the terms of the GNU General Public License as published by</span>
<a name="l00006"></a>00006 <span class="comment"> the Free Software Foundation, either version 3 of the License, or</span>
<a name="l00007"></a>00007 <span class="comment"> (at your option) any later version.</span>
<a name="l00008"></a>00008 <span class="comment"></span>
<a name="l00009"></a>00009 <span class="comment"> PolyLib is distributed in the hope that it will be useful,</span>
<a name="l00010"></a>00010 <span class="comment"> but WITHOUT ANY WARRANTY; without even the implied warranty of</span>
<a name="l00011"></a>00011 <span class="comment"> MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the</span>
<a name="l00012"></a>00012 <span class="comment"> GNU General Public License for more details.</span>
<a name="l00013"></a>00013 <span class="comment"></span>
<a name="l00014"></a>00014 <span class="comment"> You should have received a copy of the GNU General Public License</span>
<a name="l00015"></a>00015 <span class="comment"> along with PolyLib. If not, see <http://www.gnu.org/licenses/>.</span>
<a name="l00016"></a>00016 <span class="comment">*/</span>
<a name="l00017"></a>00017 <span class="comment"></span>
<a name="l00018"></a>00018 <span class="comment">/**</span>
<a name="l00019"></a>00019 <span class="comment"> * Tools to compute the ranking function of an iteration J: the number of</span>
<a name="l00020"></a>00020 <span class="comment"> * integer points in P that are lexicographically inferior to J </span>
<a name="l00021"></a>00021 <span class="comment"> * @author B. Meister <meister@icps.u-strasbg.fr></span>
<a name="l00022"></a>00022 <span class="comment"> * 6/2005</span>
<a name="l00023"></a>00023 <span class="comment"> * LSIIT-ICPS, UMR 7005 CNRS Universit� Louis Pasteur</span>
<a name="l00024"></a>00024 <span class="comment"> * HiPEAC Network</span>
<a name="l00025"></a>00025 <span class="comment"> */</span>
<a name="l00026"></a>00026
<a name="l00027"></a>00027 <span class="preprocessor">#ifndef __BM_POLYLIB_RANKING_H__</span>
<a name="l00028"></a>00028 <span class="preprocessor"></span><span class="preprocessor">#define __BM_POLYLIB_RANKING_H__</span>
<a name="l00029"></a>00029 <span class="preprocessor"></span><span class="preprocessor">#include <<a class="code" href="polylib_8h.html">polylib/polylib.h</a>></span>
<a name="l00030"></a>00030
<a name="l00031"></a>00031 <span class="comment">/*</span>
<a name="l00032"></a>00032 <span class="comment"> * Returns a list of polytopes needed to compute</span>
<a name="l00033"></a>00033 <span class="comment"> * the number of points in P that are lexicographically</span>
<a name="l00034"></a>00034 <span class="comment"> * smaller than a given point in D.</span>
<a name="l00035"></a>00035 <span class="comment"> * Only the first dim dimensions are taken into account</span>
<a name="l00036"></a>00036 <span class="comment"> * for computing the lexsmaller relation.</span>
<a name="l00037"></a>00037 <span class="comment"> * The remaining variables are assumed to be extra</span>
<a name="l00038"></a>00038 <span class="comment"> * existential/control variables.</span>
<a name="l00039"></a>00039 <span class="comment"> * When P == D, this is the conventional ranking function.</span>
<a name="l00040"></a>00040 <span class="comment"> * P and D are assumed to have the same parameter domain C.</span>
<a name="l00041"></a>00041 <span class="comment"> *</span>
<a name="l00042"></a>00042 <span class="comment"> * The first polyhedron in the list returned is the</span>
<a name="l00043"></a>00043 <span class="comment"> * updated context: a combination of D and C or an extended C.</span>
<a name="l00044"></a>00044 <span class="comment"> *</span>
<a name="l00045"></a>00045 <span class="comment"> * The order of the variables in the remaining polyhedra is</span>
<a name="l00046"></a>00046 <span class="comment"> * - first dim variables of P</span>
<a name="l00047"></a>00047 <span class="comment"> * - existential variables of P</span>
<a name="l00048"></a>00048 <span class="comment"> * - existential variables of D</span>
<a name="l00049"></a>00049 <span class="comment"> * - first dim variables of D</span>
<a name="l00050"></a>00050 <span class="comment"> * - the parameters</span>
<a name="l00051"></a>00051 <span class="comment"> */</span>
<a name="l00052"></a>00052 <a class="code" href="structpolyhedron.html">Polyhedron</a> *<a class="code" href="ranking_8c.html#a1bcb45db9576a3016be0eab5d32f4741" title="Tools to compute the ranking function of an iteration J: the number of integer points...">LexSmaller</a>(<a class="code" href="structpolyhedron.html">Polyhedron</a> *P, <a class="code" href="structpolyhedron.html">Polyhedron</a> *D, <span class="keywordtype">unsigned</span> dim,
<a name="l00053"></a>00053 <a class="code" href="structpolyhedron.html">Polyhedron</a> *C, <span class="keywordtype">unsigned</span> <a class="code" href="verif__ehrhart_8c.html#a89fd83aa168651629c012d8655635588">MAXRAYS</a>);
<a name="l00054"></a>00054
<a name="l00055"></a>00055 <span class="comment">/*</span>
<a name="l00056"></a>00056 <span class="comment"> * Returns the number of points in P that are lexicographically</span>
<a name="l00057"></a>00057 <span class="comment"> * smaller than a given point in D.</span>
<a name="l00058"></a>00058 <span class="comment"> * Only the first dim dimensions are taken into account</span>
<a name="l00059"></a>00059 <span class="comment"> * for computing the lexsmaller relation.</span>
<a name="l00060"></a>00060 <span class="comment"> * The remaining variables are assumed to be extra</span>
<a name="l00061"></a>00061 <span class="comment"> * existential/control variables.</span>
<a name="l00062"></a>00062 <span class="comment"> * When P == D, this is the conventional ranking function.</span>
<a name="l00063"></a>00063 <span class="comment"> * P and D are assumed to have the same parameter domain C.</span>
<a name="l00064"></a>00064 <span class="comment"> * The variables in the Enumeration correspond to the first dim variables</span>
<a name="l00065"></a>00065 <span class="comment"> * in D followed by the parameters of D (the variables of C).</span>
<a name="l00066"></a>00066 <span class="comment"> */</span>
<a name="l00067"></a>00067 <a class="code" href="struct__enumeration.html">Enumeration</a> *<a class="code" href="ranking_8c.html#a89beba033ab097fc0bda2e685d292d0b" title="Returns the number of points in P that are lexicographically smaller than a given...">Polyhedron_LexSmallerEnumerate</a>(<a class="code" href="structpolyhedron.html">Polyhedron</a> *P, <a class="code" href="structpolyhedron.html">Polyhedron</a> *D,
<a name="l00068"></a>00068 <span class="keywordtype">unsigned</span> dim,
<a name="l00069"></a>00069 <a class="code" href="structpolyhedron.html">Polyhedron</a> *C, <span class="keywordtype">unsigned</span> <a class="code" href="verif__ehrhart_8c.html#a89fd83aa168651629c012d8655635588">MAXRAYS</a>);
<a name="l00070"></a>00070
<a name="l00071"></a>00071 <span class="comment">/*</span>
<a name="l00072"></a>00072 <span class="comment"> * Returns a function that assigns a unique number to each point in the</span>
<a name="l00073"></a>00073 <span class="comment"> * polytope P ranging from zero to (number of points in P)-1.</span>
<a name="l00074"></a>00074 <span class="comment"> * The order of the numbers corresponds to the lexicographical order.</span>
<a name="l00075"></a>00075 <span class="comment"> *</span>
<a name="l00076"></a>00076 <span class="comment"> * C is the parameter context of the polytope</span>
<a name="l00077"></a>00077 <span class="comment"> */</span>
<a name="l00078"></a>00078 <a class="code" href="struct__enumeration.html">Enumeration</a> *<a class="code" href="ranking_8c.html#af8c8c703fc5a2eb9572decbce6a8f09b">Polyhedron_Ranking</a>(<a class="code" href="structpolyhedron.html">Polyhedron</a> *P, <a class="code" href="structpolyhedron.html">Polyhedron</a> *C, <span class="keywordtype">unsigned</span> <a class="code" href="verif__ehrhart_8c.html#a89fd83aa168651629c012d8655635588">MAXRAYS</a>);
<a name="l00079"></a>00079
<a name="l00080"></a>00080 <span class="preprocessor">#endif </span><span class="comment">/* __BM_POLYLIB_RANKING_H__ */</span>
</pre></div></div>
<hr size="1"/><address style="text-align: right;"><small>Generated on Wed Nov 25 17:45:26 2009 for polylib by
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>
|