File: homogenization.c

package info (click to toggle)
polylib 5.22.5-3%2Bdfsg
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd, stretch, wheezy
  • size: 14,444 kB
  • ctags: 52,958
  • sloc: ansic: 16,342; sh: 10,134; makefile: 560
file content (181 lines) | stat: -rw-r--r-- 5,199 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
/*
    This file is part of PolyLib.

    PolyLib is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    PolyLib is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with PolyLib.  If not, see <http://www.gnu.org/licenses/>.
*/

/** homogenization.c 
    copyright 2004-2005 Bavo Nootaert
**/

#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <polylib/polylib.h>
#include <polylib/homogenization.h>

static evalue *dehomogenize_periodic(enode *en);
static evalue *dehomogenize_polynomial(enode *en);

Polyhedron *homogenize(Polyhedron *P, unsigned MAXRAYS)
{
    Matrix M, *M2;
    /* Pretend P is a Matrix for a second */
    M.NbRows = P->NbConstraints;
    M.NbColumns = P->Dimension+2;
    M.p_Init = P->p_Init;
    M.p = P->Constraint;
    M2 = AddANullColumn(&M);
    P = Constraints2Polyhedron(M2, MAXRAYS);
    Matrix_Free(M2);
    return P;
}

/** dehomogenize an evalue. The last parameter (nb_param) is replaced by 1.
    This function is mutually recursive with dehomogenize_enode.
**/
void dehomogenize_evalue(evalue *ep, int nb_param){
  evalue *w;

  /** cannot dehomogenize rationals **/
  if (value_zero_p(ep->d)){

    /** we need to replace the last parameter **/
    if (ep->x.p->pos == nb_param){
      if (ep->x.p->type == periodic && ep->x.p->size > 1){
	w = dehomogenize_periodic(ep->x.p); 
      }
      else{
	w = dehomogenize_polynomial(ep->x.p);
      }
      free_evalue_refs(ep);
      memcpy(ep, w, sizeof(evalue));
      free(w);
    }
    else{
      /** Not the last parameter. Recurse **/
      dehomogenize_enode(ep->x.p, nb_param);
    }

  }
}

/** dehomogenize all evalues in an enode. 
    This function is mutually recursive with dehomogenize_evalue.
**/
void dehomogenize_enode(enode *p, int nb_param){
  evalue *temp;
  int i;
  for (i = 0; i < p->size; i++){
    dehomogenize_evalue(&p->arr[i], nb_param);
  }
}


/** return the 1st element of an enode representing a periodic **/
static evalue *dehomogenize_periodic(enode *en){
  evalue *w;
  assert(en->type == periodic);
  assert(en->size > 1);
  assert(value_notzero_p(en->arr[1].d));
  w = (evalue*)malloc(sizeof(evalue));
  value_init(w->d); value_init(w->x.n);
  value_assign(w->d, en->arr[1].d); value_assign(w->x.n, en->arr[1].x.n);
  return w;
}

/** dehomogenize a polynomial. Assume the enode contains a polynomial in 
    one variable, the homogenous parameter. 
    Returns an new evalue, representing a rational.
 **/
static evalue *dehomogenize_polynomial(enode *en){
  evalue *enn;
  evalue *ev;
  int i;
  double som;
  Value num, den, gcd, f1, f2;
  assert(en->type == polynomial);
  som = 0;
  value_init(num); value_init(den); value_init(gcd);
  value_init(f1); value_init(f2);
  value_set_si(den, 1);

  /** enumerate over all coefficients (which are either periodic or rational,
      but not polynomial) **/
  for (i = 0; i < en->size; i++){
    if (value_zero_p(en->arr[i].d)){
      if (en->arr[i].x.p->size > 1)
	ev = &en->arr[i].x.p->arr[1];
      else
	ev = &en->arr[i].x.p->arr[0];
    }
    else{
      ev = &en->arr[i];
    }
    /** add ev (fraction) to num/den **/
    value_multiply(f1, den, ev->x.n);
    value_multiply(f2, num, ev->d);
    value_addto(num, f1, f2);
    value_multiply(den, den, ev->d);
  }
  
  /** simplify num/den **/
  value_gcd(gcd, num, den);
  value_divexact(num, num, gcd);
  value_divexact(den, den, gcd);

  /** create new evalue representing num/den**/
  enn = (evalue*)malloc(sizeof(evalue));
  value_init(enn->d); value_init(enn->x.n);
  value_assign(enn->d, den);
  value_assign(enn->x.n, num);

  /** cleanup **/
  value_clear(gcd);
  value_clear(f1); value_clear(f2); 
  value_clear(num); value_clear(den);

  return enn;
}

/** dehomogenize a polyhedron. Assume the polyhedron p is homogenous.
    Returns a new polyhedron.
**/
Polyhedron *dehomogenize_polyhedron(Polyhedron *p, int maxRays){
  Matrix *constr, *constrh;
  Polyhedron *ph;
  int i;
  constr = Polyhedron2Constraints(p);
  constrh = Matrix_Alloc(constr->NbRows, constr->NbColumns - 1);
  for (i = 0; i < constr->NbRows; i++){
    Vector_Copy(constr->p[i], constrh->p[i], constr->NbColumns - 1);
  }
  ph = Constraints2Polyhedron(constrh, maxRays);
  Matrix_Free(constr); Matrix_Free(constrh);
  return ph;
}

/** dehomogenize an enumeration. Replaces each validity domain and 
    Ehrhart polynomial in the Enumeration en with the dehomogenized form.
 **/
void dehomogenize_enumeration(Enumeration* en, int nb_params, int maxRays){
  Enumeration *en2;
  Polyhedron *vd;
  for (en2 = en; en2; en2 = en2->next) {
    vd = dehomogenize_polyhedron(en2->ValidityDomain, maxRays);
    Polyhedron_Free(en2->ValidityDomain);
    en2->ValidityDomain = vd;
    dehomogenize_evalue(&en2->EP, nb_params);
  }
}