1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
/*
This file is part of PolyLib.
PolyLib is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
PolyLib is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with PolyLib. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* Tools to compute the ranking function of an iteration J: the number of
* integer points in P that are lexicographically inferior to J
* B. Meister
* 6/2005
* LSIIT-ICPS, UMR 7005 CNRS Universite Louis Pasteur
* HiPEAC Network
*/
#include <polylib/polylib.h>
#include <polylib/ranking.h>
/**
* Returns a list of polytopes needed to compute
* the number of points in P that are lexicographically
* smaller than a given point in D.
* Only the first dim dimensions are taken into account
* for computing the lexsmaller relation.
* The remaining variables are assumed to be extra
* existential/control variables.
* When P == D, this is the conventional ranking function.
* P and D are assumed to have the same parameter domain C.
*
* The first polyhedron in the list returned is the
* updated context: a combination of D and C or an extended C.
*
* The order of the variables in the remaining polyhedra is
* - first dim variables of P
* - existential variables of P
* - existential variables of D
* - first dim variables of D
* - the parameters
*/
Polyhedron *LexSmaller(Polyhedron *P, Polyhedron *D, unsigned dim,
Polyhedron *C, unsigned MAXRAYS)
{
unsigned i, j, k, r;
unsigned nb_parms = C->Dimension;
unsigned nb_vars = dim;
unsigned P_extra = P->Dimension - nb_vars - nb_parms;
unsigned D_extra = D->Dimension - nb_vars - nb_parms;
unsigned nb_new_parms;
unsigned ncons;
Matrix * cur_element, * C_times_J, * Klon;
Polyhedron * P1, *C1;
Polyhedron * lexico_lesser_union = NULL;
POL_ENSURE_INEQUALITIES(C);
POL_ENSURE_INEQUALITIES(D);
POL_ENSURE_INEQUALITIES(P);
assert(P->Dimension >= C->Dimension + dim);
assert(D->Dimension >= C->Dimension + dim);
nb_new_parms = nb_vars;
/* the number of variables must be positive */
if (nb_vars<=0) {
printf("\nRanking > No variables, returning NULL.\n");
return NULL;
}
/*
* if D has extra variables, then we can't squeeze the contraints
* of D in the new context, so we simply add them to each element.
*/
if (D_extra)
cur_element = Matrix_Alloc(P->NbConstraints+D->NbConstraints+nb_new_parms,
P->Dimension+D_extra+nb_new_parms+2);
else
cur_element = Matrix_Alloc(P->NbConstraints+nb_new_parms,
P->Dimension+D_extra+nb_new_parms+2);
/* 0- Put P in the first rows of cur_element */
for (i=0; i < P->NbConstraints; i++) {
Vector_Copy(P->Constraint[i], cur_element->p[i], nb_vars+P_extra+1);
Vector_Copy(P->Constraint[i]+1+nb_vars+P_extra,
cur_element->p[i]+1+nb_vars+P_extra+D_extra+nb_new_parms,
nb_parms+1);
}
ncons = P->NbConstraints;
if (D_extra) {
for (i=0; i < D->NbConstraints; i++) {
r = P->NbConstraints + i;
Vector_Copy(D->Constraint[i], cur_element->p[r], 1);
Vector_Copy(D->Constraint[i]+1,
cur_element->p[r]+1+nb_vars+P_extra+D_extra, nb_new_parms);
Vector_Copy(D->Constraint[i]+1+nb_new_parms,
cur_element->p[r]+1+nb_vars+P_extra, D_extra);
Vector_Copy(D->Constraint[i]+1+nb_new_parms+D_extra,
cur_element->p[r]+1+nb_vars+P_extra+D_extra+nb_new_parms,
nb_parms+1);
}
ncons += D->NbConstraints;
}
/* 1- compute the Ehrhart polynomial of each disjoint polyhedron defining the
lexicographic order */
for (k=0, r = ncons; k < nb_vars; k++, r++) {
/* a- build the corresponding matrix
* the nb of rows of cur_element is fake, so that we do not have to
* re-allocate it. */
cur_element->NbRows = r+1;
/* convert the previous (strict) inequality into an equality */
if (k>=1) {
value_set_si(cur_element->p[r-1][0], 0);
value_set_si(cur_element->p[r-1][cur_element->NbColumns-1], 0);
}
/* build the k-th inequality from P */
value_set_si(cur_element->p[r][0], 1);
value_set_si(cur_element->p[r][k+1], -1);
value_set_si(cur_element->p[r][nb_vars+P_extra+D_extra+k+1], 1);
/* we want a strict inequality */
value_set_si(cur_element->p[r][cur_element->NbColumns-1], -1);
#ifdef ERDEBUG
show_matrix(cur_element);
#endif
/* b- add it to the current union
as Constraints2Polyhedron modifies its input, we must clone cur_element */
Klon = Matrix_Copy(cur_element);
P1 = Constraints2Polyhedron(Klon, MAXRAYS);
Matrix_Free(Klon);
P1->next = lexico_lesser_union;
lexico_lesser_union = P1;
}
/* 2- as we introduce n parameters, we must introduce them into the context
* as well.
* The added constraints are P.M.(J N 1 )^T >=0 */
if (D_extra)
C_times_J = Matrix_Alloc(C->NbConstraints, nb_new_parms+nb_parms+2);
else
C_times_J = Matrix_Alloc(C->NbConstraints + D->NbConstraints, D->Dimension+2);
/* copy the initial context while adding the new parameters */
for (i = 0; i < C->NbConstraints; i++) {
value_assign(C_times_J->p[i][0], C->Constraint[i][0]);
Vector_Copy(C->Constraint[i]+1, C_times_J->p[i]+1+nb_new_parms, nb_parms+1);
}
/* copy constraints from evaluation domain */
if (!D_extra)
for (i = 0; i < D->NbConstraints; i++)
Vector_Copy(D->Constraint[i], C_times_J->p[C->NbConstraints+i],
D->Dimension+2);
#ifdef ERDEBUG
show_matrix(C_times_J);
#endif
C1 = Constraints2Polyhedron(C_times_J, POL_NO_DUAL);
/* 4- clean up */
Matrix_Free(cur_element);
Matrix_Free(C_times_J);
C1->next = P1;
return C1;
} /* LexSmaller */
/**
* Returns the number of points in P that are lexicographically
* smaller than a given point in D.
* Only the first dim dimensions are taken into account
* for computing the lexsmaller relation.
* The remaining variables are assumed to be extra
* existential/control variables.
* When P == D, this is the conventional ranking function.
* P and D are assumed to have the same parameter domain C.
* The variables in the Enumeration correspond to the first dim variables
* in D followed by the parameters of D (the variables of C).
*/
Enumeration *Polyhedron_LexSmallerEnumerate(Polyhedron *P, Polyhedron *D,
unsigned dim,
Polyhedron *C, unsigned MAXRAYS)
{
Enumeration * ranking;
Polyhedron *RC, *RD;
RC = LexSmaller(P, D, dim, C, MAXRAYS);
RD = RC->next;
RC->next = NULL;
/* Compute the ranking, which is the sum of the Ehrhart polynomials of the n
disjoint polyhedra we just put in P1. */
/* OPT : our polyhdera are (already) disjoint, so Domain_Enumerate does
probably too much work uselessly */
ranking = Domain_Enumerate(RD, RC, MAXRAYS, NULL);
Domain_Free(RD);
Polyhedron_Free(RC);
return ranking;
}
/*
* Returns a function that assigns a unique number to each point in the
* polytope P ranging from zero to (number of points in P)-1.
* The order of the numbers corresponds to the lexicographical order.
*
* C is the parameter context of the polytope
*/
Enumeration *Polyhedron_Ranking(Polyhedron *P, Polyhedron *C, unsigned MAXRAYS)
{
return Polyhedron_LexSmallerEnumerate(P, P, P->Dimension-C->Dimension,
C, MAXRAYS);
}
|