1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
/*
This file is part of PolyLib.
PolyLib is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
PolyLib is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with PolyLib. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdlib.h>
#include <polylib/polylib.h>
static void RearrangeMatforSolveDio(Matrix *M);
/*
* Solve Diophantine Equations :
* This function takes as input a system of equations in the form
* Ax + C = 0 and finds the solution for it, if it exists
*
* Input : The matrix form the system of the equations Ax + C = 0
* ( a pointer to a Matrix. )
* A pointer to the pointer, where the matrix U
* corresponding to the free variables of the equation
* is stored.
* A pointer to the pointer of a vector is a solution to T.
*
*
* Output : The above matrix U and the vector T.
*
* Algorithm :
* Given an integral matrix A, we can split it such that
* A = HU, where H is in HNF (lowr triangular)
* and U is unimodular.
* So Ax = c -> HUx = c -> Ht = c ( where Ux = t).
* Solving for Ht = c is easy.
* Using 't' we find x = U(inverse) * t.
*
* Steps :
* 1) For the above algorithm to work correctly to
* need the condition that the first 'rank' rows are
* the rows which contribute to the rank of the matrix.
* So first we copy Input into a matrix 'A' and
* rearrange the rows of A (if required) such that
* the first rank rows contribute to the rank.
* 2) Extract A and C from the matrix 'A'. A = n * l matrix.
* 3) Find the Hermite normal form of the matrix A.
* ( the matrices the lower tri. H and the unimod U).
* 4) Using H, find the values of T one by one.
* Here we use a sort of Gaussian elimination to find
* the solution. You have a lower triangular matrix
* and a vector,
* [ [a11, 0], [a21, a22, 0] ...,[arank1...a rankrank 0]]
* and the solution vector [t1.. tn] and the vector
* [ c1, c2 .. cl], now as we are traversing down the
* rows one by one, we will have all the information
* needed to calculate the next 't'.
*
* That is to say, when you want to calculate t2,
* you would have already calculated the value of t1
* and similarly if you are calculating t3, you will
* need t1 and t2 which will be available by that time.
* So, we apply a sort of Gaussian Elimination inorder
* to find the vector T.
*
* 5) After finding t_rank, the remaining (l-rank) t's are
* made equal to zero, and we verify, if these values
* agree with the remaining (n-rank) rows of A.
*
* 6) If a solution exists, find the values of X using
* U (inverse) * T.
*/
int SolveDiophantine(Matrix *M, Matrix **U, Vector **X) {
int i, j, k1, k2, min, rank;
Matrix *A, *temp, *hermi, *unimod, *unimodinv ;
Value *C; /* temp storage for the vector C */
Value *T; /* storage for the vector t */
Value sum, tmp;
#ifdef DOMDEBUG
FILE *fp;
fp = fopen("_debug", "a");
fprintf(fp,"\nEntered SOLVEDIOPHANTINE\n");
fclose(fp);
#endif
value_init(sum); value_init(tmp);
/* Ensuring that the first rank row of A contribute to the rank*/
A = Matrix_Copy(M);
RearrangeMatforSolveDio(A);
temp = Matrix_Alloc(A->NbRows-1, A->NbColumns-1);
/* Copying A into temp, ignoring the Homogeneous part */
for (i = 0; i < A->NbRows -1; i++)
for (j = 0; j < A->NbColumns-1; j++)
value_assign(temp->p[i][j],A->p[i][j]);
/* Copying C into a temp, ignoring the Homogeneous part */
C = (Value *) malloc (sizeof(Value) * (A->NbRows-1));
k1 = A->NbRows-1;
for (i = 0; i < k1; i++) {
value_init(C[i]);
value_oppose(C[i],A->p[i][A->NbColumns-1]);
}
Matrix_Free (A);
/* Finding the HNF of temp */
Hermite(temp, &hermi, &unimod);
/* Testing for existence of a Solution */
min=(hermi->NbRows <= hermi->NbColumns ) ? hermi->NbRows : hermi->NbColumns ;
rank = 0;
for (i = 0; i < min ; i++) {
if (value_notzero_p(hermi->p[i][i]))
rank ++;
else
break ;
}
/* Solving the Equation using Gaussian Elimination*/
T = (Value *) malloc(sizeof(Value) * temp->NbColumns);
k2 = temp->NbColumns;
for(i=0;i< k2; i++)
value_init(T[i]);
for (i = 0; i < rank ; i++) {
value_set_si(sum,0);
for (j = 0; j < i; j++) {
value_addmul(sum, T[j], hermi->p[i][j]);
}
value_subtract(tmp,C[i],sum);
value_modulus(tmp,tmp,hermi->p[i][i]);
if (value_notzero_p(tmp)) { /* no solution to the equation */
*U = Matrix_Alloc(0,0);
*X = Vector_Alloc (0);
value_clear(sum); value_clear(tmp);
for (i = 0; i < k1; i++)
value_clear(C[i]);
for (i = 0; i < k2; i++)
value_clear(T[i]);
free(C);
free(T);
return (-1);
};
value_subtract(tmp,C[i],sum);
value_division(T[i],tmp,hermi->p[i][i]);
}
/** Case when rank < Number of Columns; **/
for (i = rank; i < hermi->NbColumns; i++)
value_set_si(T[i],0);
/** Solved the equtions **/
/** When rank < hermi->NbRows; Verifying whether the solution agrees
with the remaining n-rank rows as well. **/
for (i = rank; i < hermi->NbRows; i++) {
value_set_si(sum,0);
for (j = 0; j < hermi->NbColumns; j++) {
value_addmul(sum, T[j], hermi->p[i][j]);
}
if (value_ne(sum,C[i])) {
*U = Matrix_Alloc(0,0);
*X = Vector_Alloc (0);
value_clear(sum); value_clear(tmp);
for (i = 0; i < k1; i++)
value_clear(C[i]);
for (i = 0; i < k2; i++)
value_clear(T[i]);
free(C);
free(T);
return (-1);
}
}
unimodinv = Matrix_Alloc(unimod->NbRows, unimod->NbColumns);
Matrix_Inverse(unimod, unimodinv);
Matrix_Free(unimod);
*X = Vector_Alloc(M->NbColumns-1);
if (rank == hermi->NbColumns)
*U = Matrix_Alloc(0,0);
else { /* Extracting the General solution form U(inverse) */
*U = Matrix_Alloc(hermi->NbColumns, hermi->NbColumns-rank);
for (i = 0; i < U[0]->NbRows; i++)
for (j = 0; j < U[0]->NbColumns; j++)
value_assign(U[0]->p[i][j],unimodinv->p[i][j+rank]);
}
for (i = 0; i < unimodinv->NbRows; i++) {
/* Calculating the vector X = Uinv * T */
value_set_si(sum,0);
for (j = 0; j < unimodinv->NbColumns; j++) {
value_addmul(sum, unimodinv->p[i][j], T[j]);
}
value_assign(X[0]->p[i],sum);
}
/*
for (i = rank; i < A->NbColumns; i ++)
X[0]->p[i] = 0;
*/
Matrix_Free (unimodinv);
Matrix_Free (hermi);
Matrix_Free (temp);
value_clear(sum); value_clear(tmp);
for (i = 0; i < k1; i++)
value_clear(C[i]);
for (i = 0; i < k2; i++)
value_clear(T[i]);
free(C);
free(T);
return (rank);
} /* SolveDiophantine */
/*
* Rearrange :
* This function takes as input a matrix M (pointer to it)
* and it returns the tranformed matrix M, such that the first
* 'rank' rows of the new matrix M are the ones which contribute
* to the rank of the matrix M.
*
* 1) For a start we try to put all the zero rows at the end.
* 2) Then cur = 1st row of the remaining matrix.
* 3) nextrow = 2ndrow of M.
* 4) temp = cur + nextrow
* 5) If (rank(temp) == temp->NbRows.) {cur = temp;nextrow ++}
* 6) Else (Exchange the nextrow of M with the currentlastrow.
* and currentlastrow --).
* 7) Repeat steps 4,5,6 till it is no longer possible.
*
*/
static void RearrangeMatforSolveDio(Matrix *M) {
int i, j, curend, curRow, min, rank=1;
Bool add = True;
Matrix *A, *L, *H, *U;
/* Though I could have used the Lattice function
Extract Linear Part, I chose not to use it so that
this function can be independent of Lattice Operations */
L = Matrix_Alloc(M->NbRows-1,M->NbColumns-1);
for (i = 0; i < L->NbRows; i++)
for (j = 0; j < L->NbColumns; j++)
value_assign(L->p[i][j],M->p[i][j]);
/* Putting the zero rows at the end */
curend = L->NbRows-1;
for (i = 0; i < curend; i++) {
for (j = 0; j < L->NbColumns; j++)
if (value_notzero_p(L->p[i][j]))
break;
if (j == L->NbColumns) {
ExchangeRows(M,i,curend);
curend --;
}
}
/* Trying to put the redundant rows at the end */
if (curend > 0) { /* there are some useful rows */
Matrix *temp;
A = Matrix_Alloc(1, L->NbColumns);
for (i = 0; i <L->NbColumns; i++)
value_assign(A->p[0][i],L->p[0][i]);
curRow = 1;
while (add == True ) {
temp= AddANullRow(A);
for (i = 0;i <A->NbColumns; i++)
value_assign(temp->p[curRow][i],L->p[curRow][i]);
Hermite(temp, &H, &U);
for (i = 0; i < H->NbRows; i++)
if (value_zero_p(H->p[i][i]))
break;
if (i != H->NbRows) {
ExchangeRows(M, curRow, curend);
curend --;
}
else {
curRow ++;
rank ++;
Matrix_Free (A);
A = Matrix_Copy (temp);
Matrix_Free (temp);
}
Matrix_Free (H);
Matrix_Free (U);
min = (curend >= L->NbColumns) ? L->NbColumns : curend ;
if (rank==min || curRow >= curend)
break;
}
Matrix_Free (A);
}
Matrix_Free (L);
return;
} /* RearrangeMatforSolveDio */
|