1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
|
/*
This file is part of PolyLib.
PolyLib is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
PolyLib is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with PolyLib. If not, see <http://www.gnu.org/licenses/>.
*/
/* polytest.c */
#include <stdio.h>
#include <polylib/polylib.h>
/* alpha.c
COPYRIGHT
Both this software and its documentation are
Copyright 1993 by IRISA /Universite de Rennes I - France,
Copyright 1995,1996 by BYU, Provo, Utah
all rights reserved.
Permission is granted to copy, use, and distribute
for any commercial or noncommercial purpose under the terms
of the GNU General Public license, version 2, June 1991
(see file : LICENSING).
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/*---------------------------------------------------------------------*/
/* int exist_points(pos,P,context) */
/* pos : index position of current loop index (0..hdim-1) */
/* P: loop domain */
/* context : context values for fixed indices */
/* recursive procedure, recurs for each imbriquation */
/* returns 1 if there exists any integer points in this polyhedron */
/* returns 0 if there are none */
/*---------------------------------------------------------------------*/
static int exist_points(int pos,Polyhedron *Pol,Value *context) {
Value LB, UB, k,tmp;
value_init(LB); value_init(UB);
value_init(k); value_init(tmp);
value_set_si(LB,0);
value_set_si(UB,0);
/* Problem if UB or LB is INFINITY */
if (lower_upper_bounds(pos,Pol,context,&LB,&UB) !=0) {
errormsg1("exist_points", "infdom", "infinite domain");
value_clear(LB);
value_clear(UB);
value_clear(k);
value_clear(tmp);
return -1;
}
value_set_si(context[pos],0);
if(value_lt(UB,LB)) {
value_clear(LB);
value_clear(UB);
value_clear(k);
value_clear(tmp);
return 0;
}
if (!Pol->next) {
value_subtract(tmp,UB,LB);
value_increment(tmp,tmp);
value_clear(UB);
value_clear(LB);
value_clear(k);
return (value_pos_p(tmp));
}
for (value_assign(k,LB);value_le(k,UB);value_increment(k,k)) {
/* insert k in context */
value_assign(context[pos],k);
if (exist_points(pos+1,Pol->next,context) > 0 ) {
value_clear(LB); value_clear(UB);
value_clear(k); value_clear(tmp);
return 1;
}
}
/* Reset context */
value_set_si(context[pos],0);
value_clear(UB); value_clear(LB);
value_clear(k); value_clear(tmp);
return 0;
}
/*--------------------------------------------------------------*/
/* Test to see if there are any integral points in a polyhedron */
/*--------------------------------------------------------------*/
int Polyhedron_Not_Empty(Polyhedron *P,Polyhedron *C,int MAXRAYS) {
int res,i;
Value *context;
Polyhedron *L;
POL_ENSURE_FACETS(P);
POL_ENSURE_VERTICES(P);
POL_ENSURE_FACETS(C);
POL_ENSURE_VERTICES(C);
/* Create a context vector size dim+2 and set it to all zeros */
context = (Value *) malloc((P->Dimension+2)*sizeof(Value));
/* Initialize array 'context' */
for (i=0;i<(P->Dimension+2);i++)
value_init(context[i]);
Vector_Set(context,0,(P->Dimension+2));
/* Set context[P->Dimension+1] = 1 (the constant) */
value_set_si(context[P->Dimension+1],1);
L = Polyhedron_Scan(P,C,MAXRAYS);
res = exist_points(1,L,context);
Domain_Free(L);
/* Clear array 'context' */
for (i=0;i<(P->Dimension+2);i++)
value_clear(context[i]);
free(context);
return res;
}
/* PolyhedronLTQ ( P1, P2 ) */
/* P1 and P2 must be simple polyhedra */
/* result = 0 --> not comparable */
/* result = -1 --> P1 < P2 */
/* result = 1 --> P1 > P2 */
/* INDEX = 1 .... Dimension */
int PolyhedronLTQ (Polyhedron *Pol1,Polyhedron *Pol2,int INDEX, int PDIM, int NbMaxConstrs) {
int res, dim, i, j, k;
Polyhedron *Q1, *Q2, *Q3, *Q4, *Q;
Matrix *Mat;
if (Pol1->next || Pol2->next) {
errormsg1("PolyhedronLTQ", "compoly", "Can only compare polyhedra");
return 0;
}
if (Pol1->Dimension != Pol2->Dimension) {
errormsg1("PolyhedronLTQ","diffdim","Polyhedra are not same dimension");
return 0;
}
dim = Pol1->Dimension+2;
POL_ENSURE_FACETS(Pol1);
POL_ENSURE_VERTICES(Pol1);
POL_ENSURE_FACETS(Pol2);
POL_ENSURE_VERTICES(Pol2);
#ifdef DEBUG
fprintf(stdout, "P1\n");
Polyhedron_Print(stdout,P_VALUE_FMT,Pol1);
fprintf(stdout, "P2\n");
Polyhedron_Print(stdout,P_VALUE_FMT,Pol2);
#endif
/* Create the Line to add */
k = Pol1->Dimension-INDEX+1-PDIM;
Mat = Matrix_Alloc(k,dim);
Vector_Set(Mat->p_Init,0,dim*k);
for(j=0,i=INDEX;j<k;i++,j++)
value_set_si(Mat->p[j][i],1);
Q1 = AddRays(Mat->p[0],k,Pol1,NbMaxConstrs);
Q2 = AddRays(Mat->p[0],k,Pol2,NbMaxConstrs);
#ifdef DEBUG
fprintf(stdout, "Q1\n");
Polyhedron_Print(stdout,P_VALUE_FMT,Q1);
fprintf(stdout, "Q2\n");
Polyhedron_Print(stdout,P_VALUE_FMT,Q2);
#endif
Matrix_Free(Mat);
Q = DomainIntersection(Q1,Q2,NbMaxConstrs);
#ifdef DEBUG
fprintf(stdout, "Q\n");
Polyhedron_Print(stdout,P_VALUE_FMT,Q);
#endif
Domain_Free(Q1);
Domain_Free(Q2);
if (emptyQ(Q)) res = 0; /* not comparable */
else {
Q1 = DomainIntersection(Pol1,Q,NbMaxConstrs);
Q2 = DomainIntersection(Pol2,Q,NbMaxConstrs);
#ifdef DEBUG
fprintf(stdout, "Q1\n");
Polyhedron_Print(stdout,P_VALUE_FMT,Q1);
fprintf(stdout, "Q2\n");
Polyhedron_Print(stdout,P_VALUE_FMT,Q2);
#endif
k = Q1->NbConstraints + Q2->NbConstraints;
Mat = Matrix_Alloc(k, dim);
Vector_Set(Mat->p_Init,0,k*dim);
/* First compute surrounding polyhedron */
j=0;
for (i=0; i<Q1->NbConstraints; i++) {
if ((value_one_p(Q1->Constraint[i][0])) && (value_pos_p(Q1->Constraint[i][INDEX]))) {
/* keep Q1's lower bounds */
for (k=0; k<dim; k++)
value_assign(Mat->p[j][k],Q1->Constraint[i][k]);
j++;
}
}
for (i=0; i<Q2->NbConstraints; i++) {
if ((value_one_p(Q2->Constraint[i][0])) && (value_neg_p(Q2->Constraint[i][INDEX]))) {
/* and keep Q2's upper bounds */
for (k=0; k<dim; k++)
value_assign(Mat->p[j][k],Q2->Constraint[i][k]);
j++;
}
}
Q4 = AddConstraints(Mat->p[0], j, Q, NbMaxConstrs);
Matrix_Free(Mat);
#ifdef debug
fprintf(stderr, "Q4 surrounding polyhedron\n");
Polyhderon_Print(stderr,P_VALUE_FMT, Q4);
#endif
/* if surrounding polyhedron is empty, D1>D2 */
if (emptyQ(Q4)) {
res = 1;
#ifdef debug
fprintf(stderr, "Surrounding polyhedron is empty\n");
#endif
goto LTQdone2;
}
/* Test if Q1 < Q2 */
/* Build a constraint array for >= Q1 and <= Q2 */
Mat = Matrix_Alloc(2,dim);
Vector_Set(Mat->p_Init,0,2*dim);
/* Choose a contraint from Q1 */
for (i=0; i<Q1->NbConstraints; i++) {
if (value_zero_p(Q1->Constraint[i][0])) {
/* Equality */
if (value_zero_p(Q1->Constraint[i][INDEX])) {
/* Ignore side constraint (they are in Q) */
continue;
}
else if (value_neg_p(Q1->Constraint[i][INDEX])) {
/* copy -constraint to Mat */
value_set_si(Mat->p[0][0],1);
for (k=1; k<dim; k++)
value_oppose(Mat->p[0][k],Q1->Constraint[i][k]);
}
else {
/* Copy constraint to Mat */
value_set_si(Mat->p[0][0],1);
for (k=1; k<dim; k++)
value_assign(Mat->p[0][k],Q1->Constraint[i][k]);
}
}
else if(value_neg_p(Q1->Constraint[i][INDEX])) {
/* Upper bound -- make a lower bound from it */
value_set_si(Mat->p[0][0],1);
for (k=1; k<dim; k++)
value_oppose(Mat->p[0][k],Q1->Constraint[i][k]);
}
else {
/* Lower or side bound -- ignore it */
continue;
}
/* Choose a constraint from Q2 */
for (j=0; j<Q2->NbConstraints; j++) {
if (value_zero_p(Q2->Constraint[j][0])) { /* equality */
if (value_zero_p(Q2->Constraint[j][INDEX])) {
/* Ignore side constraint (they are in Q) */
continue;
}
else if (value_pos_p(Q2->Constraint[j][INDEX])) {
/* Copy -constraint to Mat */
value_set_si(Mat->p[1][0],1);
for (k=1; k<dim; k++)
value_oppose(Mat->p[1][k],Q2->Constraint[j][k]);
}
else {
/* Copy constraint to Mat */
value_set_si(Mat->p[1][0],1);
for (k=1; k<dim; k++)
value_assign(Mat->p[1][k],Q2->Constraint[j][k]);
};
}
else if (value_pos_p(Q2->Constraint[j][INDEX])) {
/* Lower bound -- make an upper bound from it */
value_set_si(Mat->p[1][0],1);
for(k=1;k<dim;k++)
value_oppose(Mat->p[1][k],Q2->Constraint[j][k]);
}
else {
/* Upper or side bound -- ignore it */
continue;
};
#ifdef DEBUG
fprintf(stdout, "i=%d j=%d M=\n", i+1, j+1);
Matrix_Print(stdout,P_VALUE_FMT,Mat);
#endif
/* Add Mat to Q and see if anything is made */
Q3 = AddConstraints(Mat->p[0],2,Q,NbMaxConstrs);
#ifdef DEBUG
fprintf(stdout, "Q3\n");
Polyhedron_Print(stdout,P_VALUE_FMT,Q3);
#endif
if (!emptyQ(Q3)) {
Domain_Free(Q3);
#ifdef DEBUG
fprintf(stdout, "not empty\n");
#endif
res = -1;
goto LTQdone;
}
#ifdef DEBUG
fprintf(stdout,"empty\n");
#endif
Domain_Free(Q3);
} /* end for j */
} /* end for i */
res = 1;
LTQdone:
Matrix_Free(Mat);
LTQdone2:
Domain_Free(Q4);
Domain_Free(Q1);
Domain_Free(Q2);
}
Domain_Free(Q);
#ifdef DEBUG
fprintf(stdout, "res = %d\n", res);
#endif
return res;
} /* PolyhedronLTQ */
/* GaussSimplify --
Given Mat1, a matrix of equalities, performs Gaussian elimination.
Find a minimum basis, Returns the rank.
Mat1 is context, Mat2 is reduced in context of Mat1
*/
int GaussSimplify(Matrix *Mat1,Matrix *Mat2) {
int NbRows = Mat1->NbRows;
int NbCols = Mat1->NbColumns;
int *column_index;
int i, j, k, n, t, pivot, Rank;
Value gcd, tmp, *cp;
column_index=(int *)malloc(NbCols * sizeof(int));
if (!column_index) {
errormsg1("GaussSimplify", "outofmem", "out of memory space\n");
Pol_status = 1;
return 0;
}
/* Initialize all the 'Value' variables */
value_init(gcd); value_init(tmp);
Rank=0;
for (j=0; j<NbCols; j++) { /* for each column starting at */
for (i=Rank; i<NbRows; i++) /* diagonal, look down to find */
if (value_notzero_p(Mat1->p[i][j])) /* the first non-zero entry */
break;
if (i!=NbRows) { /* was one found ? */
if (i!=Rank) /* was it found below the diagonal?*/
Vector_Exchange(Mat1->p[Rank],Mat1->p[i],NbCols);
/* Normalize the pivot row */
Vector_Gcd(Mat1->p[Rank],NbCols,&gcd);
/* If (gcd >= 2) */
value_set_si(tmp,2);
if (value_ge(gcd,tmp)) {
cp = Mat1->p[Rank];
for (k=0; k<NbCols; k++,cp++)
value_division(*cp,*cp,gcd);
}
if (value_neg_p(Mat1->p[Rank][j])) {
cp = Mat1->p[Rank];
for (k=0; k<NbCols; k++,cp++)
value_oppose(*cp,*cp);
}
/* End of normalize */
pivot=i;
for (i=0;i<NbRows;i++) /* Zero out the rest of the column */
if (i!=Rank) {
if (value_notzero_p(Mat1->p[i][j])) {
Value a, a1, a2, a1abs, a2abs;
value_init(a); value_init(a1); value_init(a2);
value_init(a1abs); value_init(a2abs);
value_assign(a1,Mat1->p[i][j]);
value_absolute(a1abs,a1);
value_assign(a2,Mat1->p[Rank][j]);
value_absolute(a2abs,a2);
value_gcd(a, a1abs, a2abs);
value_divexact(a1, a1, a);
value_divexact(a2, a2, a);
value_oppose(a1,a1);
Vector_Combine(Mat1->p[i],Mat1->p[Rank],Mat1->p[i],a2,
a1,NbCols);
Vector_Normalize(Mat1->p[i],NbCols);
value_clear(a); value_clear(a1); value_clear(a2);
value_clear(a1abs); value_clear(a2abs);
}
}
column_index[Rank]=j;
Rank++;
}
} /* end of Gauss elimination */
if (Mat2) { /* Mat2 is a transformation matrix (i,j->f(i,j))....
can't scale it because can't scale both sides of -> */
/* normalizes an affine transformation */
/* priority of forms */
/* 1. i' -> i (identity) */
/* 2. i' -> i + constant (uniform) */
/* 3. i' -> constant (broadcast) */
/* 4. i' -> j (permutation) */
/* 5. i' -> j + constant ( ) */
/* 6. i' -> i + j + constant (non-uniform) */
for (k=0; k<Rank; k++) {
j = column_index[k];
for (i=0; i<(Mat2->NbRows-1);i++) { /* all but the last row 0...0 1 */
if ((i!=j) && value_notzero_p(Mat2->p[i][j])) {
/* Remove dependency of i' on j */
Value a, a1, a1abs, a2, a2abs;
value_init(a); value_init(a1); value_init(a2);
value_init(a1abs); value_init(a2abs);
value_assign(a1,Mat2->p[i][j]);
value_absolute(a1abs,a1);
value_assign(a2,Mat1->p[k][j]);
value_absolute(a2abs,a2);
value_gcd(a, a1abs, a2abs);
value_divexact(a1, a1, a);
value_divexact(a2, a2, a);
value_oppose(a1,a1);
if (value_one_p(a2)) {
Vector_Combine(Mat2->p[i],Mat1->p[k],Mat2->p[i],a2,
a1,NbCols);
/* Vector_Normalize(Mat2->p[i],NbCols); -- can't do T */
} /* otherwise, can't do it without mult lhs prod (2i,3j->...) */
value_clear(a); value_clear(a1); value_clear(a2);
value_clear(a1abs); value_clear(a2abs);
}
else if ((i==j) && value_zero_p(Mat2->p[i][j])) {
/* 'i' does not depend on j */
for (n=j+1; n < (NbCols-1); n++) {
if (value_notzero_p(Mat2->p[i][n])) { /* i' depends on some n */
value_set_si(tmp,1);
Vector_Combine(Mat2->p[i],Mat1->p[k],Mat2->p[i],tmp,
tmp,NbCols);
break;
} /* if 'i' depends on just a constant, then leave it alone.*/
}
}
}
}
/* Check last row of transformation Mat2 */
for (j=0; j<(NbCols-1); j++)
if (value_notzero_p(Mat2->p[Mat2->NbRows-1][j])) {
errormsg1("GaussSimplify", "corrtrans", "Corrupted transformation\n");
break;
}
if (value_notone_p(Mat2->p[Mat2->NbRows-1][NbCols-1])) {
errormsg1("GaussSimplify", "corrtrans", "Corrupted transformation\n");
}
}
value_clear(gcd); value_clear(tmp);
free(column_index);
return Rank;
} /* GaussSimplify */
/*
* Topologically sort 'n' polyhdera and return 0 on failure, otherwise return
* 1 on success. Here 'L' is a an array of pointers to polyhedra, 'n' is the
* number of polyhedra, 'index' is the level to consider for partial ordering
* 'pdim' is the parameter space dimension, 'time' is an array of 'n' integers
* to store logical time values, 'pvect', if not NULL, is an array of 'n'
* integers that contains a permutation specification after call and MAXRAYS is
* the workspace size for polyhedra operations.
*/
int PolyhedronTSort (Polyhedron **L,unsigned int n,unsigned int index,unsigned int pdim,int *time,int *pvect,unsigned int MAXRAYS) {
unsigned int const nbcells = ((n*(n-1))>>1); /* Number of memory cells
to allocate, see below */
int *dag; /* The upper triangular matrix */
int **p; /* Array of matrix row addresses */
unsigned int i, j, k;
unsigned int t, nb, isroot;
if (n<2) return 0;
/* we need an upper triangular matrix (example with n=4):
. o o o
. . o o . are unuseful cells, o are useful cells
. . . o
. . . .
so we need to allocate (n)(n-1)/2 cells
- dag will point to this memory.
- p[i] will point to row i of the matrix
p[0] = dag - 1 (such that p[0][1] == dag[0])
p[1] = dag - 1 + (n-1)
p[2] = dag - 1 + (n-1) + (n-2)
...
p[i] = p[i-1] + (n-1-i)
*/
/* malloc n(n-1)/2 for dag and n-1 for p (node n does not have any row) */
dag = (int *) malloc(nbcells*sizeof(int));
if (!dag) return 0;
p = (int **) malloc ((n-1) * sizeof(int *));
if (!p) {
free(dag); return 0;
}
/* Initialize 'p' and 'dag' */
p[0] = dag-1;
for (i=1; i<n-1; i++)
p[i] = p[i-1] + (n-1)-i;
for (i=0; i<nbcells; i++)
dag[i] = -2; /* -2 means 'not computed yet' */
for (i=0; i<n; i++) time[i] = -1;
/* Compute the dag using transitivity to reduce the number of */
/* PolyhedronLTQ calls. */
for (i=0; i<n-1; i++) {
POL_ENSURE_FACETS(L[i]);
POL_ENSURE_VERTICES(L[i]);
for (j=i+1; j<n; j++) {
if (p[i][j] == -2) /* not computed yes */
p[i][j] = PolyhedronLTQ(L[i], L[j], index, pdim, MAXRAYS);
if (p[i][j] != 0) {
/* if p[i][j] is 1 or -1, look for -p[i][j] on the same row:
p[i][j] == -p[i][k] ==> p[j][k] = p[i][k] (transitivity)
note: p[r][c] == -p[c][r], use this to avoid reading or writing
under the matrix diagonal
*/
/* first, k<i so look for p[i][j] == p[k][i] (i.e. -p[i][k]) */
for (k=0; k<i; k++)
if (p[k][i] == p[i][j]) p[k][j] = p[k][i];
/* then, i<k<j so look for p[i][j] == -p[i][k] */
for (k=i+1; k<j; k++)
if (p[i][k] == -p[i][j]) p[k][j] = -p[i][k];
/* last, k>j same search but */
for (k=j+1; k<n; k++)
if (p[i][k] == -p[i][j]) p[j][k] = p[i][k];
}
}
}
/* walk thru the dag to compute the partial order (and optionally
the permutation)
Note: this is not the fastest way to do it but it takes
negligible time compared to a single call of PolyhedronLTQ !
Each macro-step (while loop) gives the same logical time to all
found roots and optionally add these nodes in the permutation vector
*/
t = 0; /* current logical time, assigned to current roots and
increased by 1 at the end of each step */
nb = 0; /* number of processed nodes (have been given a time) */
while (nb<n) {
for (i=0; i<n; i++) { /* search for roots */
/* for any node, if it's not already been given a logical time
then walk thru the node row; if we find a 1 at some column j,
it means that node j preceeds the current node, so it is not
a root */
if (time[i]<0) {
isroot = 1; /* assume that it is until it is definitely not */
/* first search on a column */
for (j=0; j<i; j++) {
if (p[j][i]==-1) { /* found a node lower than it */
isroot = 0; break;
}
}
if /*still*/ (isroot)
for (j=i+1; j<n; j++) {
if (p[i][j]==1) { /* greater than this node */
isroot = 0; break;
}
}
if (isroot) { /* then it definitely is */
time[i] = t; /* this node gets current logical time */
if (pvect)
pvect[nb] = i+1; /* nodes will be numbered from 1 to n */
nb++; /* one more node processed */
}
}
}
/* now make roots become neutral, i.e. non comparable with all other nodes */
for (i=0; i<n; i++) {
if (time[i]==t) {
for (j=0; j<i; j++)
p[j][i] = 0;
for (j=i+1; j<n; j++)
p[i][j] = 0;
}
}
t++; /* ready for next set of root nodes */
}
free (p); /* let's be clean, collect the garbage */
free (dag);
return 1;
} /* PolyhedronTSort */
|