File: alpha.c

package info (click to toggle)
polylib 5.22.5-4.2%2Bdfsg
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 14,464 kB
  • sloc: ansic: 16,346; sh: 10,134; makefile: 506
file content (665 lines) | stat: -rw-r--r-- 19,690 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
/*
    This file is part of PolyLib.

    PolyLib is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    PolyLib is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with PolyLib.  If not, see <http://www.gnu.org/licenses/>.
*/

/* polytest.c */
#include <stdio.h>
#include <polylib/polylib.h>

/* alpha.c
     COPYRIGHT
          Both this software and its documentation are

              Copyright 1993 by IRISA /Universite de Rennes I - France,
              Copyright 1995,1996 by BYU, Provo, Utah
                         all rights reserved.

          Permission is granted to copy, use, and distribute
          for any commercial or noncommercial purpose under the terms
          of the GNU General Public license, version 2, June 1991
          (see file : LICENSING).
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/*---------------------------------------------------------------------*/
/* int exist_points(pos,P,context)                                     */
/*    pos : index position of current loop index (0..hdim-1)           */
/*    P: loop domain                                                   */
/*    context : context values for fixed indices                       */
/* recursive procedure, recurs for each imbriquation                   */
/* returns 1 if there exists any integer points in this polyhedron     */
/* returns 0 if there are none                                         */
/*---------------------------------------------------------------------*/
static int exist_points(int pos,Polyhedron *Pol,Value *context) {
  
  Value LB, UB, k,tmp;
  
  value_init(LB); value_init(UB); 
  value_init(k);  value_init(tmp);
  value_set_si(LB,0);
  value_set_si(UB,0);
  
  /* Problem if UB or LB is INFINITY */
  if (lower_upper_bounds(pos,Pol,context,&LB,&UB) !=0) {
    errormsg1("exist_points", "infdom", "infinite domain");
    value_clear(LB);
    value_clear(UB);
    value_clear(k);
    value_clear(tmp);
    return -1;
  }
  value_set_si(context[pos],0);
  if(value_lt(UB,LB)) {
    value_clear(LB); 
    value_clear(UB);
    value_clear(k);
    value_clear(tmp);
    return 0;
  }  
  if (!Pol->next) {
    value_subtract(tmp,UB,LB);
    value_increment(tmp,tmp);
    value_clear(UB);
    value_clear(LB);
    value_clear(k);
    return (value_pos_p(tmp));
  }
  
  for (value_assign(k,LB);value_le(k,UB);value_increment(k,k)) {
    
    /* insert k in context */
    value_assign(context[pos],k);    
    if (exist_points(pos+1,Pol->next,context) > 0 ) {
      value_clear(LB); value_clear(UB);
      value_clear(k); value_clear(tmp);
      return 1;
    }
  }   
  /* Reset context */
  value_set_si(context[pos],0);
  value_clear(UB); value_clear(LB);
  value_clear(k); value_clear(tmp);
  return 0;
}
    
/*--------------------------------------------------------------*/
/* Test to see if there are any integral points in a polyhedron */
/*--------------------------------------------------------------*/
int Polyhedron_Not_Empty(Polyhedron *P,Polyhedron *C,int MAXRAYS) {

  int res,i;
  Value *context;
  Polyhedron *L;
  
  POL_ENSURE_FACETS(P);
  POL_ENSURE_VERTICES(P);
  POL_ENSURE_FACETS(C);
  POL_ENSURE_VERTICES(C);

  /* Create a context vector size dim+2 and set it to all zeros */
  context = (Value *) malloc((P->Dimension+2)*sizeof(Value));
  
  /* Initialize array 'context' */
  for (i=0;i<(P->Dimension+2);i++) 
    value_init(context[i]);
  
  Vector_Set(context,0,(P->Dimension+2));
  
  /* Set context[P->Dimension+1] = 1  (the constant) */
  value_set_si(context[P->Dimension+1],1);
  
  L = Polyhedron_Scan(P,C,MAXRAYS);
  res = exist_points(1,L,context);
  Domain_Free(L);
  
  /* Clear array 'context' */
  for (i=0;i<(P->Dimension+2);i++) 
    value_clear(context[i]);
  free(context);
  return res;
}

/* PolyhedronLTQ ( P1, P2 ) */
/* P1 and P2 must be simple polyhedra */
/* result =  0 --> not comparable */
/* result = -1 --> P1 < P2        */
/* result =  1 --> P1 > P2        */
/* INDEX  = 1 .... Dimension      */
int PolyhedronLTQ (Polyhedron *Pol1,Polyhedron *Pol2,int INDEX, int PDIM, int NbMaxConstrs) { 
  
  int res, dim, i, j, k;
  Polyhedron *Q1, *Q2, *Q3, *Q4, *Q;
  Matrix *Mat;

  if (Pol1->next || Pol2->next) {
    errormsg1("PolyhedronLTQ", "compoly", "Can only compare polyhedra");
    return 0;
  }
  if (Pol1->Dimension != Pol2->Dimension) {
    errormsg1("PolyhedronLTQ","diffdim","Polyhedra are not same dimension");
    return 0;
  }
  dim = Pol1->Dimension+2;

  POL_ENSURE_FACETS(Pol1);
  POL_ENSURE_VERTICES(Pol1);
  POL_ENSURE_FACETS(Pol2);
  POL_ENSURE_VERTICES(Pol2);
  
#ifdef DEBUG
  fprintf(stdout, "P1\n");
  Polyhedron_Print(stdout,P_VALUE_FMT,Pol1);
  fprintf(stdout, "P2\n");
  Polyhedron_Print(stdout,P_VALUE_FMT,Pol2);
#endif
  
  /* Create the Line to add */
  k = Pol1->Dimension-INDEX+1-PDIM;
  Mat = Matrix_Alloc(k,dim);
  Vector_Set(Mat->p_Init,0,dim*k);
  for(j=0,i=INDEX;j<k;i++,j++)
    value_set_si(Mat->p[j][i],1);
  
  Q1 = AddRays(Mat->p[0],k,Pol1,NbMaxConstrs);
  Q2 = AddRays(Mat->p[0],k,Pol2,NbMaxConstrs);

#ifdef DEBUG
  fprintf(stdout, "Q1\n");
  Polyhedron_Print(stdout,P_VALUE_FMT,Q1);
  fprintf(stdout, "Q2\n");
  Polyhedron_Print(stdout,P_VALUE_FMT,Q2);
#endif
  
  Matrix_Free(Mat);
  Q  = DomainIntersection(Q1,Q2,NbMaxConstrs);
  
#ifdef DEBUG
  fprintf(stdout, "Q\n");
  Polyhedron_Print(stdout,P_VALUE_FMT,Q);
#endif
  
  Domain_Free(Q1);
  Domain_Free(Q2);
  
  if (emptyQ(Q)) res = 0;	/* not comparable */
  else {
    Q1 = DomainIntersection(Pol1,Q,NbMaxConstrs);
    Q2 = DomainIntersection(Pol2,Q,NbMaxConstrs);
    
#ifdef DEBUG
    fprintf(stdout, "Q1\n");
    Polyhedron_Print(stdout,P_VALUE_FMT,Q1);
    fprintf(stdout, "Q2\n");
    Polyhedron_Print(stdout,P_VALUE_FMT,Q2);
#endif

    k = Q1->NbConstraints + Q2->NbConstraints;
    Mat = Matrix_Alloc(k, dim);
    Vector_Set(Mat->p_Init,0,k*dim);
    
    /* First compute surrounding polyhedron */    
    j=0;
    for (i=0; i<Q1->NbConstraints; i++) {
      if ((value_one_p(Q1->Constraint[i][0])) && (value_pos_p(Q1->Constraint[i][INDEX]))) {
	
	/* keep Q1's lower bounds */
	for (k=0; k<dim; k++) 
	  value_assign(Mat->p[j][k],Q1->Constraint[i][k]);
	j++;
      }
    }
    for (i=0; i<Q2->NbConstraints; i++) {
      if ((value_one_p(Q2->Constraint[i][0])) && (value_neg_p(Q2->Constraint[i][INDEX]))) {
	
	/* and keep Q2's upper bounds */
	for (k=0; k<dim; k++) 
	  value_assign(Mat->p[j][k],Q2->Constraint[i][k]);
	j++;
      }
    }
    Q4 = AddConstraints(Mat->p[0], j, Q, NbMaxConstrs);
    Matrix_Free(Mat);
    
#ifdef debug
    fprintf(stderr, "Q4 surrounding polyhedron\n");
    Polyhderon_Print(stderr,P_VALUE_FMT, Q4);
#endif

    /* if surrounding polyhedron is empty, D1>D2 */
    if (emptyQ(Q4)) {
      res = 1;
      
#ifdef debug
      fprintf(stderr, "Surrounding polyhedron is empty\n");
#endif
      goto LTQdone2; 
    }
    
    /* Test if Q1 < Q2 */      
    /* Build a constraint array for >= Q1 and <= Q2 */
    Mat = Matrix_Alloc(2,dim);
    Vector_Set(Mat->p_Init,0,2*dim);
    
    /* Choose a contraint from Q1 */
    for (i=0; i<Q1->NbConstraints; i++) {
      if (value_zero_p(Q1->Constraint[i][0])) {
	
	/* Equality */
	if (value_zero_p(Q1->Constraint[i][INDEX])) {
	  
	  /* Ignore side constraint (they are in Q) */
	  continue;
	}
	else if (value_neg_p(Q1->Constraint[i][INDEX])) {
	  
	  /* copy -constraint to Mat */
	  value_set_si(Mat->p[0][0],1);
	  for (k=1; k<dim; k++)
	    value_oppose(Mat->p[0][k],Q1->Constraint[i][k]);
	}
	else {
	  
	  /* Copy constraint to Mat */
	  
	  value_set_si(Mat->p[0][0],1);
	  for (k=1; k<dim; k++)
	    value_assign(Mat->p[0][k],Q1->Constraint[i][k]);
	}
      }
      else if(value_neg_p(Q1->Constraint[i][INDEX])) {
	
	/* Upper bound -- make a lower bound from it */
	value_set_si(Mat->p[0][0],1);
	for (k=1; k<dim; k++)
	  value_oppose(Mat->p[0][k],Q1->Constraint[i][k]);
      }
      else {	
	
	/* Lower or side bound -- ignore it */
	continue;
      }
      
      /* Choose a constraint from Q2 */
      for (j=0; j<Q2->NbConstraints; j++) {
	if (value_zero_p(Q2->Constraint[j][0])) {   /* equality */
	  if (value_zero_p(Q2->Constraint[j][INDEX])) {
	    
	    /* Ignore side constraint (they are in Q) */
	    continue;
	  }
	  else if (value_pos_p(Q2->Constraint[j][INDEX])) {
	    
	    /* Copy -constraint to Mat */
	    value_set_si(Mat->p[1][0],1);
	    for (k=1; k<dim; k++)
	      value_oppose(Mat->p[1][k],Q2->Constraint[j][k]);
	  }
	  else {
	    
	    /* Copy constraint to Mat */
	    value_set_si(Mat->p[1][0],1);
	    for (k=1; k<dim; k++)
	      value_assign(Mat->p[1][k],Q2->Constraint[j][k]);
	  };
	}
	else if (value_pos_p(Q2->Constraint[j][INDEX])) {
	  
	  /* Lower bound -- make an upper bound from it */
	  value_set_si(Mat->p[1][0],1);
	  for(k=1;k<dim;k++)
	    value_oppose(Mat->p[1][k],Q2->Constraint[j][k]);
	}
	else {
	  
	  /* Upper or side bound -- ignore it */
	  continue;
	};
	
#ifdef DEBUG
	fprintf(stdout, "i=%d j=%d M=\n", i+1, j+1);
	Matrix_Print(stdout,P_VALUE_FMT,Mat);
#endif
	
	/* Add Mat to Q and see if anything is made */
	Q3 = AddConstraints(Mat->p[0],2,Q,NbMaxConstrs);

#ifdef DEBUG
	fprintf(stdout, "Q3\n");
	Polyhedron_Print(stdout,P_VALUE_FMT,Q3);
#endif
	
	if (!emptyQ(Q3)) { 
	  Domain_Free(Q3);
	  
#ifdef DEBUG
	  fprintf(stdout, "not empty\n");
#endif
	  res = -1;
	  goto LTQdone;
	}
#ifdef DEBUG
	fprintf(stdout,"empty\n");	
#endif
	Domain_Free(Q3);
      } /* end for j */
    } /* end for i */
    res = 1;
LTQdone:
    Matrix_Free(Mat);
LTQdone2: 
    Domain_Free(Q4);
    Domain_Free(Q1);
    Domain_Free(Q2);
  }
  Domain_Free(Q);
  
#ifdef DEBUG
  fprintf(stdout, "res = %d\n", res);
#endif
  
  return res;
} /* PolyhedronLTQ */

/* GaussSimplify --
   Given Mat1, a matrix of equalities, performs Gaussian elimination.
   Find a minimum basis, Returns the rank.
   Mat1 is context, Mat2 is reduced in context of Mat1
*/
int GaussSimplify(Matrix *Mat1,Matrix *Mat2) {
  
  int NbRows = Mat1->NbRows;
  int NbCols = Mat1->NbColumns;
  int *column_index;
  int i, j, k, n, t, pivot, Rank; 
  Value gcd, tmp, *cp; 
  
  column_index=(int *)malloc(NbCols * sizeof(int));
  if (!column_index) {
    errormsg1("GaussSimplify", "outofmem", "out of memory space\n");
    Pol_status = 1;
    return 0;
  }
  
  /* Initialize all the 'Value' variables */
  value_init(gcd); value_init(tmp);
  
  Rank=0;
  for (j=0; j<NbCols; j++) {		  /* for each column starting at */ 
    for (i=Rank; i<NbRows; i++)		  /* diagonal, look down to find */
      if (value_notzero_p(Mat1->p[i][j])) /* the first non-zero entry    */
	break;	                         
    if (i!=NbRows) {			  /* was one found ? */
      if (i!=Rank)			  /* was it found below the diagonal?*/
	Vector_Exchange(Mat1->p[Rank],Mat1->p[i],NbCols);
      
      /* Normalize the pivot row */
      Vector_Gcd(Mat1->p[Rank],NbCols,&gcd);
      
      /* If (gcd >= 2) */
      value_set_si(tmp,2);
      if (value_ge(gcd,tmp)) {
	cp = Mat1->p[Rank];
        for (k=0; k<NbCols; k++,cp++)
          value_division(*cp,*cp,gcd);		
      }
      if (value_neg_p(Mat1->p[Rank][j])) {
	cp = Mat1->p[Rank];
	for (k=0; k<NbCols; k++,cp++)
	  value_oppose(*cp,*cp);
      }
      /* End of normalize */
      pivot=i;
      for (i=0;i<NbRows;i++)	/* Zero out the rest of the column */
	if (i!=Rank) {
	  if (value_notzero_p(Mat1->p[i][j])) {
	    Value a, a1, a2, a1abs, a2abs;
	    value_init(a); value_init(a1); value_init(a2);
            value_init(a1abs); value_init(a2abs);
            value_assign(a1,Mat1->p[i][j]);
            value_absolute(a1abs,a1);
            value_assign(a2,Mat1->p[Rank][j]); 
            value_absolute(a2abs,a2);
            value_gcd(a, a1abs, a2abs);
	    value_divexact(a1, a1, a);
	    value_divexact(a2, a2, a);
	    value_oppose(a1,a1);
	    Vector_Combine(Mat1->p[i],Mat1->p[Rank],Mat1->p[i],a2, 
			   a1,NbCols);
	    Vector_Normalize(Mat1->p[i],NbCols);
	    value_clear(a); value_clear(a1); value_clear(a2);
            value_clear(a1abs); value_clear(a2abs);
          }
	}
      column_index[Rank]=j;
      Rank++;
    }
  } /* end of Gauss elimination */


  if (Mat2) {  /* Mat2 is a transformation matrix  (i,j->f(i,j))....
		  can't scale it because can't scale both sides of -> */
    /* normalizes an affine transformation        */
    /* priority of forms                          */
    /*    1. i' -> i                (identity)    */
    /*    2. i' -> i + constant     (uniform)     */
    /*    3. i' -> constant         (broadcast)   */
    /*    4. i' -> j                (permutation) */
    /*    5. i' -> j + constant     (      )      */
    /*    6. i' -> i + j + constant (non-uniform) */
    for (k=0; k<Rank; k++) {
      j = column_index[k];
      for (i=0; i<(Mat2->NbRows-1);i++) {   /* all but the last row 0...0 1 */
	if ((i!=j) && value_notzero_p(Mat2->p[i][j])) {
	  
	  /* Remove dependency of i' on j */
          Value a, a1, a1abs, a2, a2abs;
	  value_init(a); value_init(a1); value_init(a2);
          value_init(a1abs); value_init(a2abs);
	  value_assign(a1,Mat2->p[i][j]);
	  value_absolute(a1abs,a1);
	  value_assign(a2,Mat1->p[k][j]);
	  value_absolute(a2abs,a2);
	  value_gcd(a, a1abs, a2abs);
	  value_divexact(a1, a1, a);
	  value_divexact(a2, a2, a);
	  value_oppose(a1,a1);
	  if (value_one_p(a2)) {
            Vector_Combine(Mat2->p[i],Mat1->p[k],Mat2->p[i],a2,
			   a1,NbCols);
	    
	    /* Vector_Normalize(Mat2->p[i],NbCols); -- can't do T        */
	  } /* otherwise, can't do it without mult lhs prod (2i,3j->...) */
	  value_clear(a); value_clear(a1); value_clear(a2);
          value_clear(a1abs); value_clear(a2abs);
                
	}
        else if ((i==j) && value_zero_p(Mat2->p[i][j])) {
	  
	  /* 'i' does not depend on j */
	  for (n=j+1; n < (NbCols-1); n++) {
	    if (value_notzero_p(Mat2->p[i][n])) { /* i' depends on some n */
	      value_set_si(tmp,1);
              Vector_Combine(Mat2->p[i],Mat1->p[k],Mat2->p[i],tmp,
			     tmp,NbCols);
	      break;
	    }  /* if 'i' depends on just a constant, then leave it alone.*/
	  }
        }
      }
    }
    
    /* Check last row of transformation Mat2 */
    for (j=0; j<(NbCols-1); j++)
      if (value_notzero_p(Mat2->p[Mat2->NbRows-1][j])) {
	errormsg1("GaussSimplify", "corrtrans", "Corrupted transformation\n");
	break;
      }
    
    if (value_notone_p(Mat2->p[Mat2->NbRows-1][NbCols-1])) {
      errormsg1("GaussSimplify", "corrtrans", "Corrupted transformation\n");
    }
  }
  value_clear(gcd); value_clear(tmp);
  free(column_index);
  return Rank;
} /* GaussSimplify */

/* 
 * Topologically sort 'n' polyhdera and return 0 on failure, otherwise return 
 * 1 on success. Here 'L' is a an array of pointers to polyhedra, 'n' is the 
 * number of polyhedra, 'index' is the level to consider for partial ordering
 * 'pdim' is the parameter space dimension, 'time' is an array of 'n' integers
 * to store logical time values, 'pvect', if not NULL, is an array of 'n' 
 * integers that contains a permutation specification after call and MAXRAYS is
 * the workspace size for polyhedra operations. 
 */
int PolyhedronTSort (Polyhedron **L,unsigned int n,unsigned int index,unsigned int pdim,int *time,int *pvect,unsigned int MAXRAYS) {
 
  unsigned int const nbcells = ((n*(n-1))>>1);    /* Number of memory cells 
						     to allocate, see below */
  int *dag;  /* The upper triangular matrix */
  int **p;   /* Array of matrix row addresses */
  unsigned int i, j, k;
  unsigned int t, nb, isroot;

  if (n<2) return 0;

  /* we need an upper triangular matrix (example with n=4):

     . o o o
     . . o o     . are unuseful cells, o are useful cells
     . . . o
     . . . .
     
     so we need to allocate (n)(n-1)/2 cells
     - dag will point to this memory.
     - p[i] will point to row i of the matrix
     p[0] = dag - 1 (such that p[0][1] == dag[0])
     p[1] = dag - 1 + (n-1)
     p[2] = dag - 1 + (n-1) + (n-2)
     ...
     p[i] = p[i-1] + (n-1-i)
  */

  /* malloc n(n-1)/2 for dag and n-1 for p (node n does not have any row) */
  dag = (int *) malloc(nbcells*sizeof(int));
  if (!dag) return 0;
  p = (int **) malloc ((n-1) * sizeof(int *));
  if (!p) { 
    free(dag); return 0; 
  }

  /* Initialize 'p' and 'dag' */
  p[0] = dag-1;
  for (i=1; i<n-1; i++)
    p[i] = p[i-1] + (n-1)-i;
  for (i=0; i<nbcells; i++)
    dag[i] = -2;      /* -2 means 'not computed yet' */
  for (i=0; i<n; i++) time[i] = -1;

  /* Compute the dag using transitivity to reduce the number of */
  /*   PolyhedronLTQ calls.                                     */
  for (i=0; i<n-1; i++) {
    POL_ENSURE_FACETS(L[i]);
    POL_ENSURE_VERTICES(L[i]);
    for (j=i+1; j<n; j++) {
      if (p[i][j] == -2) /* not computed yes */
	p[i][j] = PolyhedronLTQ(L[i], L[j], index, pdim, MAXRAYS);
      if (p[i][j] != 0) {
	
	/* if p[i][j] is 1 or -1, look for -p[i][j] on the same row:
	   p[i][j] == -p[i][k] ==> p[j][k] = p[i][k] (transitivity)
	   note: p[r][c] == -p[c][r], use this to avoid reading or writing
	   under the matrix diagonal
	*/  
	   
	/* first, k<i so look for p[i][j] == p[k][i] (i.e. -p[i][k]) */
	for (k=0; k<i; k++)
	  if (p[k][i] == p[i][j]) p[k][j] = p[k][i];
	
	/* then, i<k<j so look for p[i][j] == -p[i][k] */
	for (k=i+1; k<j; k++)
	  if (p[i][k] == -p[i][j]) p[k][j] = -p[i][k];
	
	/* last, k>j same search but */
	for (k=j+1; k<n; k++)
	  if (p[i][k] == -p[i][j]) p[j][k] = p[i][k];
      }
    }
  }
  
  /* walk thru the dag to compute the partial order (and optionally
     the permutation)
     Note: this is not the fastest way to do it but it takes
     negligible time compared to a single call of PolyhedronLTQ !
     Each macro-step (while loop) gives the same logical time to all
     found roots and optionally add these nodes in the permutation vector
  */ 
  
  t = 0; /* current logical time, assigned to current roots and
	    increased by 1 at the end of each step */
  nb = 0; /* number of processed nodes (have been given a time) */
  while (nb<n) {
    for (i=0; i<n; i++) { /* search for roots */
      /* for any node, if it's not already been given a logical time
	 then walk thru the node row; if we find a 1 at some column j,
	 it means that node j preceeds the current node, so it is not
	 a root */
      if (time[i]<0) {
	isroot = 1; /* assume that it is until it is definitely not */
	/* first search on a column */
	for (j=0; j<i; j++) {
	  if (p[j][i]==-1) { /* found a node lower than it */
	    isroot = 0; break;
	  }
	}
	if /*still*/ (isroot)
	  for (j=i+1; j<n; j++) {
	    if (p[i][j]==1) { /* greater than this node */
	      isroot = 0; break;
	    }
	  }
	if (isroot) { /* then it definitely is */
	  time[i] = t; /* this node gets current logical time */
	  if (pvect)
	    pvect[nb] = i+1; /* nodes will be numbered from 1 to n */
	  nb++; /* one more node processed */
	}
      }
    }
    /* now make roots become neutral, i.e. non comparable with all other nodes */
    for (i=0; i<n; i++) {
      if (time[i]==t) {
	for (j=0; j<i; j++)
	  p[j][i] = 0;
	for (j=i+1; j<n; j++)
	  p[i][j] = 0;
      }
    }
    t++; /* ready for next set of root nodes */
  }
  
  free (p);   /* let's be clean, collect the garbage */
  free (dag);
  return 1;
} /* PolyhedronTSort */