File: compress_parms.c

package info (click to toggle)
polylib 5.22.5-4.2%2Bdfsg
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 14,464 kB
  • sloc: ansic: 16,346; sh: 10,134; makefile: 506
file content (1000 lines) | stat: -rw-r--r-- 32,162 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
    This file is part of PolyLib.

    PolyLib is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    PolyLib is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with PolyLib.  If not, see <http://www.gnu.org/licenses/>.
*/

/** 
 * $Id: compress_parms.c,v 1.32 2006/11/03 17:34:26 skimo Exp $
 *
 * The integer points in a parametric linear subspace of Q^n are generally
 * lying on a sub-lattice of Z^n.  
 * Functions here use and compute validity lattices, i.e. lattices induced on a
 * set of variables by such equalities involving another set of integer
 * variables.
 * @author B. Meister 12/2003-2006 meister@icps.u-strasbg.fr
 * LSIIT -ICPS 
 * UMR 7005 CNRS
 * Louis Pasteur University (ULP), Strasbourg, France 
*/

#include <stdlib.h>
#include <polylib/polylib.h>

/** 
 * debug flags (2 levels)
 */
#define dbgCompParm 0
#define dbgCompParmMore 0

#define dbgStart(a) if (dbgCompParmMore) { printf(" -- begin "); \
                                           printf(#a);        \
					   printf(" --\n"); }   \
                                           while(0)
#define dbgEnd(a) if (dbgCompParmMore) { printf(" -- end "); \
                                         printf(#a);      \
					 printf(" --\n"); } \
                                         while(0)


/** 
 * Given a full-row-rank nxm matrix M made of m row-vectors), computes the
 * basis K (made of n-m column-vectors) of the integer kernel of the rows of M
 * so we have: M.K = 0
*/
Matrix * int_ker(Matrix * M) {
  Matrix *U, *Q, *H, *H2, *K=NULL;
  int i, j, rk;

  if (dbgCompParm)
    show_matrix(M);
  /* eliminate redundant rows : UM = H*/
  right_hermite(M, &H, &Q, &U);
  for (rk=H->NbRows-1; (rk>=0) && Vector_IsZero(H->p[rk], H->NbColumns); rk--);
  rk++;
  if (dbgCompParmMore) {
    printf("rank = %d\n", rk);
  }
    
  /* there is a non-null kernel if and only if the dimension m of 
     the space spanned by the rows 
     is inferior to the number n of variables */
  if (M->NbColumns <= rk) {
    Matrix_Free(H);
    Matrix_Free(Q);
    Matrix_Free(U);
    K = Matrix_Alloc(M->NbColumns, 0);
    return K;
  }
  Matrix_Free(U); 
  Matrix_Free(Q);
  /* fool left_hermite  by giving NbRows =rank of M*/
  H->NbRows=rk;
  /* computes MU = [H 0] */
  left_hermite(H, &H2, &Q, &U); 
   if (dbgCompParmMore) {
    printf("-- Int. Kernel -- \n");
    show_matrix(M);
    printf(" = \n");
    show_matrix(H2);
    show_matrix(U); 
  }
  H->NbRows==M->NbRows;
  Matrix_Free(H);
  /* the Integer Kernel is made of the last n-rk columns of U */
  Matrix_subMatrix(U, 0, rk, U->NbRows, U->NbColumns, &K);

  /* clean up */
  Matrix_Free(H2);
  Matrix_Free(U);
  Matrix_Free(Q);
  return K;
} /* int_ker */


/** 
 * Computes the intersection of two linear lattices, whose base vectors are
 * respectively represented in A and B.
 * If I and/or Lb is set to NULL, then the matrix is allocated. 
 * Else, the matrix is assumed to be allocated already. 
 * I and Lb are rk x rk, where rk is the rank of A (or B).
 * @param A the full-row rank matrix whose column-vectors are the basis for the
 * first linear lattice.
 * @param B the matrix whose column-vectors are the basis for the second linear
 * lattice.
 * @param Lb the matrix such that B.Lb = I, where I is the intersection.
 * @return their intersection.
 */
static void linearInter(Matrix * A, Matrix * B, Matrix ** I, Matrix **Lb) {
  Matrix * AB=NULL;
  int rk = A->NbRows;
  int a = A->NbColumns;
  int b = B->NbColumns;
  int i,j, z=0;

  Matrix * H, *U, *Q;
  /* ensure that the spanning vectors are in the same space */
  assert(B->NbRows==rk);
  /* 1- build the matrix 
   * (A 0 1)
   * (0 B 1)
   */
  AB = Matrix_Alloc(2*rk, a+b+rk);
  Matrix_copySubMatrix(A, 0, 0, rk, a, AB, 0, 0);
  Matrix_copySubMatrix(B, 0, 0, rk, b, AB, rk, a);
  for (i=0; i< rk; i++) {
      value_set_si(AB->p[i][a+b+i], 1);
      value_set_si(AB->p[i+rk][a+b+i], 1);
  }
  if (dbgCompParm) {
    show_matrix(AB);
  }

  /* 2- Compute its left Hermite normal form. AB.U = [H 0] */
  left_hermite(AB, &H, &Q, &U);
  Matrix_Free(AB);
  Matrix_Free(Q);
  /* count the number of non-zero colums in H */ 
  for (z=H->NbColumns-1; value_zero_p(H->p[H->NbRows-1][z]); z--);
  z++;
  if (dbgCompParm) {
    show_matrix(H);
    printf("z=%d\n", z);
  }
  Matrix_Free(H);
  /* if you split U in 9 submatrices, you have: 
   * A.U_13 = -U_33
   * B.U_23 = -U_33,
   * where the nb of cols of U_{*3} equals the nb of zero-cols of H
   * U_33 is a (the smallest) combination of col-vectors of A and B at the same
   * time: their intersection.
  */
  Matrix_subMatrix(U, a+b, z, U->NbColumns, U->NbColumns, I);
  Matrix_subMatrix(U, a, z, a+b, U->NbColumns, Lb);
  if (dbgCompParm) {
    show_matrix(U);
  }
  Matrix_Free(U);
} /* linearInter */


/** 
 * Given a system of equalities, looks if it has an integer solution in the
 * combined space, and if yes, returns one solution.
 * <p>pre-condition: the equalities are full-row rank (without the constant
 * part)</p>
 * @param Eqs the system of equations (as constraints)
 * @param I a feasible integer solution if it exists, else NULL. Allocated if
 * initially set to NULL, else reused.
 */
void Equalities_integerSolution(Matrix * Eqs, Matrix **I) {
  Matrix * Hm, *H=NULL, *U, *Q, *M=NULL, *C=NULL, *Hi;
  Matrix *Ip;
  int i;
  Value mod;
  unsigned int rk;
  if (Eqs==NULL){
    if ((*I)!=NULL) Matrix_Free(*I);
    I = NULL;
    return;
  }
  /* we use: AI = C = (Ha 0).Q.I = (Ha 0)(I' 0)^T */
  /* with I = Qinv.I' = U.I'*/
  /* 1- compute I' = Hainv.(-C) */
  /* HYP: the equalities are full-row rank */
  rk = Eqs->NbRows;
  Matrix_subMatrix(Eqs, 0, 1, rk, Eqs->NbColumns-1, &M);
  left_hermite(M, &Hm, &Q, &U);
  Matrix_Free(M);
  Matrix_subMatrix(Hm, 0, 0, rk, rk, &H);
  if (dbgCompParmMore) {
    show_matrix(Hm);
    show_matrix(H);
    show_matrix(U);
  }
  Matrix_Free(Q);
  Matrix_Free(Hm);
  Matrix_subMatrix(Eqs, 0, Eqs->NbColumns-1, rk, Eqs->NbColumns, &C);
  Matrix_oppose(C);
  Hi = Matrix_Alloc(rk, rk+1);
  MatInverse(H, Hi);
  if (dbgCompParmMore) {
    show_matrix(C);
    show_matrix(Hi);
  }
  /* put the numerator of Hinv back into H */
  Matrix_subMatrix(Hi, 0, 0, rk, rk, &H);
  Ip = Matrix_Alloc(Eqs->NbColumns-2, 1);
  /* fool Matrix_Product on the size of Ip */
  Ip->NbRows = rk;
  Matrix_Product(H, C, Ip);
  Ip->NbRows = Eqs->NbColumns-2;
  Matrix_Free(H);
  Matrix_Free(C);
  value_init(mod);
  for (i=0; i< rk; i++) {
    /* if Hinv.C is not integer, return NULL (no solution) */
    value_pmodulus(mod, Ip->p[i][0], Hi->p[i][rk]);
    if (value_notzero_p(mod)) { 
      if ((*I)!=NULL) Matrix_Free(*I);
      value_clear(mod);
      Matrix_Free(U);
      Matrix_Free(Ip);
      Matrix_Free(Hi);
      I = NULL;
      return;
    }
    else {
      value_pdivision(Ip->p[i][0], Ip->p[i][0], Hi->p[i][rk]);
    }
  }
  /* fill the rest of I' with zeros */
  for (i=rk; i< Eqs->NbColumns-2; i++) {
    value_set_si(Ip->p[i][0], 0);
  }
  value_clear(mod);
  Matrix_Free(Hi);
  /* 2 - Compute the particular solution I = U.(I' 0) */
  ensureMatrix((*I), Eqs->NbColumns-2, 1);
  Matrix_Product(U, Ip, (*I));
  Matrix_Free(U);
  Matrix_Free(Ip);
  if (dbgCompParm) {
    show_matrix(*I);
  }
}


/** 
 * Computes the validity lattice of a set of equalities. I.e., the lattice
 * induced on the last <tt>b</tt> variables by the equalities involving the
 * first <tt>a</tt> integer existential variables.  The submatrix of Eqs that
 * concerns only the existential variables (so the first a columns) is assumed
 * to be full-row rank.
 * @param Eqs the equalities
 * @param a the number of existential integer variables, placed as first
 * variables
 * @param vl the (returned) validity lattice, in homogeneous form. It is
 * allocated if initially set to null, or reused if already allocated.
 */
void Equalities_validityLattice(Matrix * Eqs, int a, Matrix** vl) {
  unsigned int b = Eqs->NbColumns-2-a;
  unsigned int r = Eqs->NbRows;
  Matrix * A=NULL, * B=NULL, *I = NULL, *Lb=NULL, *sol=NULL;
  Matrix *H, *U, *Q;
  unsigned int i;

  if (dbgCompParm) {
    printf("Computing validity lattice induced by the %d first variables of:"
	   ,a);
    show_matrix(Eqs);
  }
  if (b==0) {
    ensureMatrix((*vl), 1, 1);
    value_set_si((*vl)->p[0][0], 1);
    return;
  }

  /* 1- check that there is an integer solution to the equalities */
  /* OPT: could change integerSolution's profile to allocate or not*/
  Equalities_integerSolution(Eqs, &sol);
  /* if there is no integer solution, there is no validity lattice */
  if (sol==NULL) {
    if ((*vl)!=NULL) Matrix_Free(*vl);
    return;
  }
  Matrix_subMatrix(Eqs, 0, 1, r, 1+a, &A);
  Matrix_subMatrix(Eqs, 0, 1+a, r, 1+a+b, &B);
  linearInter(A, B, &I, &Lb);
  Matrix_Free(A);
  Matrix_Free(B);
  Matrix_Free(I);
  if (dbgCompParm) {
    show_matrix(Lb);
  }
  
  /* 2- The linear part of the validity lattice is the left HNF of Lb */
  left_hermite(Lb, &H, &Q, &U);
  Matrix_Free(Lb);
  Matrix_Free(Q);
  Matrix_Free(U);

  /* 3- build the validity lattice */
  ensureMatrix((*vl), b+1, b+1);
  Matrix_copySubMatrix(H, 0, 0, b, b, (*vl), 0,0);
  Matrix_Free(H);
  for (i=0; i< b; i++) {
    value_assign((*vl)->p[i][b], sol->p[0][a+i]);
  }
  Matrix_Free(sol);
  Vector_Set((*vl)->p[b],0, b);
  value_set_si((*vl)->p[b][b], 1);
  
} /* validityLattice */


/**
 * Eliminate the columns corresponding to a list of eliminated parameters.
 * @param M the constraints matrix whose columns are to be removed
 * @param nbVars an offset to be added to the ranks of the variables to be
 * removed
 * @param elimParms the list of ranks of the variables to be removed
 * @param newM (output) the matrix without the removed columns
 */
void Constraints_removeElimCols(Matrix * M, unsigned int nbVars, 
			   unsigned int *elimParms, Matrix ** newM) {
  unsigned int i, j, k;
  if (elimParms[0]==0) {
    Matrix_clone(M, newM);
    return;
  }
  if ((*newM)==NULL) {
    (*newM) = Matrix_Alloc(M->NbRows, M->NbColumns - elimParms[0]);
  }
  else {
    assert ((*newM)->NbColumns==M->NbColumns - elimParms[0]);
  }
  for (i=0; i< M->NbRows; i++) {
    value_assign((*newM)->p[i][0], M->p[i][0]); /* kind of cstr */
    k=0;
    Vector_Copy(&(M->p[i][1]), &((*newM)->p[i][1]), nbVars);
    for (j=0; j< M->NbColumns-2-nbVars; j++) {
      if (j!=elimParms[k+1]) {
	value_assign((*newM)->p[i][j-k+nbVars+1], M->p[i][j+nbVars+1]);
      }
      else {
	k++;
      }
    }
    value_assign((*newM)->p[i][(*newM)->NbColumns-1], 
		 M->p[i][M->NbColumns-1]); /* cst part */
  }
} /* Constraints_removeElimCols */


/**
 * Eliminates all the equalities in a set of constraints and returns the set of
 * constraints defining a full-dimensional polyhedron, such that there is a
 * bijection between integer points of the original polyhedron and these of the
 * resulting (projected) polyhedron).
 * If VL is set to NULL, this funciton allocates it. Else, it assumes that
 * (*VL) points to a matrix of the right size.
 * <p> The following things are done: 
 * <ol>
 * <li> remove equalities involving only parameters, and remove as many
 *      parameters as there are such equalities. From that, the list of
 *      eliminated parameters <i>elimParms</i> is built.
 * <li> remove equalities that involve variables. This requires a compression
 *      of the parameters and of the other variables that are not eliminated.
 *      The affine compresson is represented by matrix VL (for <i>validity
 *      lattice</i>) and is such that (N I 1)^T = VL.(N' I' 1), where N', I'
 *      are integer (they are the parameters and variables after compression).
 *</ol>
 *</p>
 */
void Constraints_fullDimensionize(Matrix ** M, Matrix ** C, Matrix ** VL, 
				  Matrix ** Eqs, Matrix ** ParmEqs, 
				  unsigned int ** elimVars, 
				  unsigned int ** elimParms,
				  int maxRays) {
  unsigned int i, j;
  Matrix * A=NULL, *B=NULL;
  Matrix * Ineqs=NULL;
  unsigned int nbVars = (*M)->NbColumns - (*C)->NbColumns;
  unsigned int nbParms;
  int nbElimVars;
  Matrix * fullDim = NULL;

  /* variables for permutations */
  unsigned int * permutation;
  Matrix * permutedEqs=NULL, * permutedIneqs=NULL;
  
  /* 1- Eliminate the equalities involving only parameters. */
  (*ParmEqs) = Constraints_removeParmEqs(M, C, 0, elimParms);
  /* if the polyehdron is empty, return now. */
  if ((*M)->NbColumns==0) return;
  /* eliminate the columns corresponding to the eliminated parameters */
  if (elimParms[0]!=0) {
    Constraints_removeElimCols(*M, nbVars, (*elimParms), &A);
    Matrix_Free(*M);
    (*M) = A;
    Constraints_removeElimCols(*C, 0, (*elimParms), &B);
    Matrix_Free(*C);
    (*C) = B;
    if (dbgCompParm) {
      printf("After false parameter elimination: \n");
      show_matrix(*M);
      show_matrix(*C);
    }
  }
  nbParms = (*C)->NbColumns-2;

  /* 2- Eliminate the equalities involving variables */
  /*   a- extract the (remaining) equalities from the poyhedron */
  split_constraints((*M), Eqs, &Ineqs);
  nbElimVars = (*Eqs)->NbRows;
  /*    if the polyhedron is already full-dimensional, return */
  if ((*Eqs)->NbRows==0) {
    Matrix_identity(nbParms+1, VL);
    return;
  }
  /*   b- choose variables to be eliminated */
  permutation = find_a_permutation((*Eqs), nbParms);

  if (dbgCompParm) {
    printf("Permuting the vars/parms this way: [ ");
    for (i=0; i< (*Eqs)->NbColumns-2; i++) {
      printf("%d ", permutation[i]);
    }
    printf("]\n");
  }

  Constraints_permute((*Eqs), permutation, &permutedEqs);
  Equalities_validityLattice(permutedEqs, (*Eqs)->NbRows, VL);

  if (dbgCompParm) {
    printf("Validity lattice: ");
    show_matrix(*VL);
  }
  Constraints_compressLastVars(permutedEqs, (*VL));
  Constraints_permute(Ineqs, permutation, &permutedIneqs);
  if (dbgCompParmMore) {
    show_matrix(permutedIneqs);
    show_matrix(permutedEqs);
  }
  Matrix_Free(*Eqs);
  Matrix_Free(Ineqs);
  Constraints_compressLastVars(permutedIneqs, (*VL));
  if (dbgCompParm) {
    printf("After compression: ");
    show_matrix(permutedIneqs);
  }
  /*   c- eliminate the first variables */
  assert(Constraints_eliminateFirstVars(permutedEqs, permutedIneqs));
  if (dbgCompParmMore) {
    printf("After elimination of the variables: ");
    show_matrix(permutedIneqs);
  }

  /*   d- get rid of the first (zero) columns, 
       which are now useless, and put the parameters back at the end */
  fullDim = Matrix_Alloc(permutedIneqs->NbRows,
			 permutedIneqs->NbColumns-nbElimVars);
  for (i=0; i< permutedIneqs->NbRows; i++) {
    value_set_si(fullDim->p[i][0], 1);
    for (j=0; j< nbParms; j++) {
      value_assign(fullDim->p[i][j+fullDim->NbColumns-nbParms-1], 
		   permutedIneqs->p[i][j+nbElimVars+1]);
    }
    for (j=0; j< permutedIneqs->NbColumns-nbParms-2-nbElimVars; j++) {
      value_assign(fullDim->p[i][j+1], 
		   permutedIneqs->p[i][nbElimVars+nbParms+j+1]);
    }
    value_assign(fullDim->p[i][fullDim->NbColumns-1], 
		 permutedIneqs->p[i][permutedIneqs->NbColumns-1]);
  }
  Matrix_Free(permutedIneqs);

} /* Constraints_fullDimensionize */


/**
 * Given a matrix that defines a full-dimensional affine lattice, returns the 
 * affine sub-lattice spanned in the k first dimensions.
 * Useful for instance when you only look for the parameters' validity lattice.
 * @param lat the original full-dimensional lattice
 * @param subLat the sublattice
 */
void Lattice_extractSubLattice(Matrix * lat, unsigned int k, Matrix ** subLat) {
  Matrix * H, *Q, *U, *linLat = NULL;
  unsigned int i;
  dbgStart(Lattice_extractSubLattice);
  /* if the dimension is already good, just copy the initial lattice */
  if (k==lat->NbRows-1) {
    if (*subLat==NULL) {
      (*subLat) = Matrix_Copy(lat);
    }
    else {
      Matrix_copySubMatrix(lat, 0, 0, lat->NbRows, lat->NbColumns, (*subLat), 0, 0);
    }
    return;
  }
  assert(k<lat->NbRows-1);
  /* 1- Make the linear part of the lattice triangular to eliminate terms from 
     other dimensions */
  Matrix_subMatrix(lat, 0, 0, lat->NbRows, lat->NbColumns-1, &linLat);
  /* OPT: any integer column-vector elimination is ok indeed. */
  /* OPT: could test if the lattice is already in triangular form. */
  left_hermite(linLat, &H, &Q, &U);
  if (dbgCompParmMore) {
    show_matrix(H);
  }
  Matrix_Free(Q);
  Matrix_Free(U);
  Matrix_Free(linLat);
  /* if not allocated yet, allocate it */
  if (*subLat==NULL) {
    (*subLat) = Matrix_Alloc(k+1, k+1);
  }
  Matrix_copySubMatrix(H, 0, 0, k, k, (*subLat), 0, 0);
  Matrix_Free(H);
  Matrix_copySubMatrix(lat, 0, lat->NbColumns-1, k, 1, (*subLat), 0, k);
  for (i=0; i<k; i++) {
    value_set_si((*subLat)->p[k][i], 0);
  }
  value_set_si((*subLat)->p[k][k], 1);
  dbgEnd(Lattice_extractSubLattice);
} /* Lattice_extractSubLattice */


/** 
 * Computes the overall period of the variables I for (MI) mod |d|, where M is
 * a matrix and |d| a vector. Produce a diagonal matrix S = (s_k) where s_k is
 * the overall period of i_k 
 * @param M the set of affine functions of I (row-vectors)
 * @param d the column-vector representing the modulos
*/
Matrix * affine_periods(Matrix * M, Matrix * d) {
  Matrix * S;
  unsigned int i,j;
  Value tmp;
  Value * periods = (Value *)malloc(sizeof(Value) * M->NbColumns);
  value_init(tmp);
  for(i=0; i< M->NbColumns; i++) {
    value_init(periods[i]);
    value_set_si(periods[i], 1);
  }
  for (i=0; i<M->NbRows; i++) {
    for (j=0; j< M->NbColumns; j++) {
      value_gcd(tmp, d->p[i][0], M->p[i][j]);
      value_divexact(tmp, d->p[i][0], tmp);
      value_lcm(periods[j], periods[j], tmp);
     }
  }
  value_clear(tmp);

  /* 2- build S */
  S = Matrix_Alloc(M->NbColumns, M->NbColumns);
  for (i=0; i< M->NbColumns; i++) 
    for (j=0; j< M->NbColumns; j++)
      if (i==j) value_assign(S->p[i][j],periods[j]);
      else value_set_si(S->p[i][j], 0);

  /* 3- clean up */
  for(i=0; i< M->NbColumns; i++) value_clear(periods[i]);
  free(periods);
  return S;
} /* affine_periods */


/** 
 * Given an integer matrix B with m rows and integer m-vectors C and d,
 * computes the basis of the integer solutions to (BN+C) mod d = 0 (1).
 * This is an affine lattice (G): (N 1)^T= G(N' 1)^T, forall N' in Z^b.
 * If there is no solution, returns NULL.
 * @param B B, a (m x b) matrix
 * @param C C, a (m x 1) integer matrix
 * @param d d, a (1 x m) integer matrix
 * @param imb the affine (b+1)x(b+1) basis of solutions, in the homogeneous
 * form. Allocated if initially set to NULL, reused if not.
*/
void Equalities_intModBasis(Matrix * B, Matrix * C, Matrix * d, Matrix ** imb) {
  int b = B->NbColumns;
  /* FIXME: treat the case d=0 as a regular equality B_kN+C_k = 0: */
  /* OPT: could keep only equalities for which d>1 */
  int nbEqs = B->NbRows;
  unsigned int i;

  /* 1- buid the problem DI+BN+C = 0 */
  Matrix * eqs = Matrix_Alloc(nbEqs, nbEqs+b+1);
  for (i=0; i< nbEqs; i++) {
    value_assign(eqs->p[i][i], d->p[0][i]);
  }
  Matrix_copySubMatrix(B, 0, 0, nbEqs, b, eqs, 0, nbEqs);
  Matrix_copySubMatrix(C, 0, 0, nbEqs, 1, eqs, 0, nbEqs+b);

  /* 2- the solution is the validity lattice of the equalities */
  Equalities_validityLattice(eqs, nbEqs, imb);
  Matrix_Free(eqs);
} /* Equalities_intModBasis */


/** kept here for backwards compatiblity. Wrapper to Equalities_intModBasis() */
Matrix * int_mod_basis(Matrix * B, Matrix * C, Matrix * d) {
  Matrix * imb = NULL;
  Equalities_intModBasis(B, C, d, &imb);
  return imb;
} /* int_mod_basis */


/**
 * Given a parameterized constraints matrix with m equalities, computes the
 * compression matrix G such that there is an integer solution in the variables
 * space for each value of N', with N = G N' (N are the "nb_parms" parameters)
 * @param E a matrix of parametric equalities @param nb_parms the number of
 * parameters
 * <b>Note: </b>this function is mostly here for backwards
 * compatibility. Prefer the use of <tt>Equalities_validityLattice</tt>.
*/
Matrix * compress_parms(Matrix * E, int nbParms) {
  Matrix * vl=NULL;
  Equalities_validityLattice(E, E->NbColumns-2-nbParms, &vl);
  return vl;
}/* compress_parms */


/** Removes the equalities that involve only parameters, by eliminating some
 * parameters in the polyhedron's constraints and in the context.<p> 
 * <b>Updates M and Ctxt.</b>
 * @param M1 the polyhedron's constraints
 * @param Ctxt1 the constraints of the polyhedron's context
 * @param renderSpace tells if the returned equalities must be expressed in the
 * parameters space (renderSpace=0) or in the combined var/parms space
 * (renderSpace = 1)
 * @param elimParms the list of parameters that have been removed: an array
 * whose 1st element is the number of elements in the list.  (returned)
 * @return the system of equalities that involve only parameters.
 */
Matrix * Constraints_Remove_parm_eqs(Matrix ** M1, Matrix ** Ctxt1, 
				     int renderSpace, 
				     unsigned int ** elimParms) {
  int i, j, k, nbEqsParms =0;
  int nbEqsM, nbEqsCtxt, allZeros, nbTautoM = 0, nbTautoCtxt = 0;
  Matrix * M = (*M1);
  Matrix * Ctxt = (*Ctxt1);
  int nbVars = M->NbColumns-Ctxt->NbColumns;
  Matrix * Eqs;
  Matrix * EqsMTmp;
  
  /* 1- build the equality matrix(ces) */
  nbEqsM = 0;
  for (i=0; i< M->NbRows; i++) {
    k = First_Non_Zero(M->p[i], M->NbColumns);
    /* if it is a tautology, count it as such */
    if (k==-1) {
      nbTautoM++;
    }
    else {
      /* if it only involves parameters, count it */
      if (k>= nbVars+1) nbEqsM++;
    }
  }

  nbEqsCtxt = 0;
  for (i=0; i< Ctxt->NbRows; i++) {
    if (value_zero_p(Ctxt->p[i][0])) {
      if (First_Non_Zero(Ctxt->p[i], Ctxt->NbColumns)==-1) {
	nbTautoCtxt++;
      }
      else {
	nbEqsCtxt ++;
      }
    }
  }
  nbEqsParms = nbEqsM + nbEqsCtxt; 

  /* nothing to do in this case */
  if (nbEqsParms+nbTautoM+nbTautoCtxt==0) {
    (*elimParms) = (unsigned int*) malloc(sizeof(int));
    (*elimParms)[0] = 0;
    if (renderSpace==0) {
      return Matrix_Alloc(0,Ctxt->NbColumns);
    }
    else {
      return Matrix_Alloc(0,M->NbColumns);
    }
  }
  
  Eqs= Matrix_Alloc(nbEqsParms, Ctxt->NbColumns);
  EqsMTmp= Matrix_Alloc(nbEqsParms, M->NbColumns);
  
  /* copy equalities from the context */
  k = 0;
  for (i=0; i< Ctxt->NbRows; i++) {
    if (value_zero_p(Ctxt->p[i][0]) 
		     && First_Non_Zero(Ctxt->p[i], Ctxt->NbColumns)!=-1) {
      Vector_Copy(Ctxt->p[i], Eqs->p[k], Ctxt->NbColumns);
      Vector_Copy(Ctxt->p[i]+1, EqsMTmp->p[k]+nbVars+1, 
		  Ctxt->NbColumns-1);
      k++;
    }
  }
  for (i=0; i< M->NbRows; i++) {
    j=First_Non_Zero(M->p[i], M->NbColumns);
    /* copy equalities that involve only parameters from M */
    if (j>=nbVars+1) {
      Vector_Copy(M->p[i]+nbVars+1, Eqs->p[k]+1, Ctxt->NbColumns-1);
      Vector_Copy(M->p[i]+nbVars+1, EqsMTmp->p[k]+nbVars+1, 
		  Ctxt->NbColumns-1);
      /* mark these equalities for removal */
      value_set_si(M->p[i][0], 2);
      k++;
    }
    /* mark the all-zero equalities for removal */
    if (j==-1) {
      value_set_si(M->p[i][0], 2);
    }
  }

  /* 2- eliminate parameters until all equalities are used or until we find a
  contradiction (overconstrained system) */
  (*elimParms) = (unsigned int *) malloc((Eqs->NbRows+1) * sizeof(int));
  (*elimParms)[0] = 0;
  allZeros = 0;
  for (i=0; i< Eqs->NbRows; i++) {
    /* find a variable that can be eliminated */
    k = First_Non_Zero(Eqs->p[i], Eqs->NbColumns);
    if (k!=-1) { /* nothing special to do for tautologies */

      /* if there is a contradiction, return empty matrices */
      if (k==Eqs->NbColumns-1) {
	printf("Contradiction in %dth row of Eqs: ",k);
	show_matrix(Eqs);
	Matrix_Free(Eqs);
	Matrix_Free(EqsMTmp);
	(*M1) = Matrix_Alloc(0, M->NbColumns);
	Matrix_Free(M);
	(*Ctxt1) = Matrix_Alloc(0,Ctxt->NbColumns);
	Matrix_Free(Ctxt);
	free(*elimParms);
	(*elimParms) = (unsigned int *) malloc(sizeof(int));
	(*elimParms)[0] = 0;
	if (renderSpace==1) {
	  return Matrix_Alloc(0,(*M1)->NbColumns);
	}
	else {
	  return Matrix_Alloc(0,(*Ctxt1)->NbColumns);
	}
      }	
      /* if we have something we can eliminate, do it in 3 places:
	 Eqs, Ctxt, and M */
      else {
	k--; /* k is the rank of the variable, now */
	(*elimParms)[0]++;
	(*elimParms)[(*elimParms[0])]=k;
	for (j=0; j< Eqs->NbRows; j++) {
	  if (i!=j) {
	    eliminate_var_with_constr(Eqs, i, Eqs, j, k);
	    eliminate_var_with_constr(EqsMTmp, i, EqsMTmp, j, k+nbVars);
	  }
	}
	for (j=0; j< Ctxt->NbRows; j++) {
	  if (value_notzero_p(Ctxt->p[i][0])) {
	    eliminate_var_with_constr(Eqs, i, Ctxt, j, k);
	  }
	}
	for (j=0; j< M->NbRows; j++) {
	  if (value_cmp_si(M->p[i][0], 2)) {
	    eliminate_var_with_constr(EqsMTmp, i, M, j, k+nbVars);
	  }
	}
      }
    }
    /* if (k==-1): count the tautologies in Eqs to remove them later */
    else {
      allZeros++;
    }
  }
  
  /* elimParms may have been overallocated. Now we know how many parms have
     been eliminated so we can reallocate the right amount of memory. */
  if (!realloc((*elimParms), ((*elimParms)[0]+1)*sizeof(int))) {
    fprintf(stderr, "Constraints_Remove_parm_eqs > cannot realloc()");
  }

  Matrix_Free(EqsMTmp);

  /* 3- remove the "bad" equalities from the input matrices
     and copy the equalities involving only parameters */
  EqsMTmp = Matrix_Alloc(M->NbRows-nbEqsM-nbTautoM, M->NbColumns);
  k=0;
  for (i=0; i< M->NbRows; i++) {
    if (value_cmp_si(M->p[i][0], 2)) {
      Vector_Copy(M->p[i], EqsMTmp->p[k], M->NbColumns);
      k++;
    }
  }
  Matrix_Free(M);
  (*M1) = EqsMTmp;
  
  EqsMTmp = Matrix_Alloc(Ctxt->NbRows-nbEqsCtxt-nbTautoCtxt, Ctxt->NbColumns);
  k=0;
  for (i=0; i< Ctxt->NbRows; i++) {
    if (value_notzero_p(Ctxt->p[i][0])) {
      Vector_Copy(Ctxt->p[i], EqsMTmp->p[k], Ctxt->NbColumns);
      k++;
    }
  }
  Matrix_Free(Ctxt);
  (*Ctxt1) = EqsMTmp;
  
  if (renderSpace==0) {/* renderSpace=0: equalities in the parameter space */
    EqsMTmp = Matrix_Alloc(Eqs->NbRows-allZeros, Eqs->NbColumns);
    k=0;
    for (i=0; i<Eqs->NbRows; i++) {
      if (First_Non_Zero(Eqs->p[i], Eqs->NbColumns)!=-1) {
	Vector_Copy(Eqs->p[i], EqsMTmp->p[k], Eqs->NbColumns);
	k++;
      }
    }
  }
  else {/* renderSpace=1: equalities rendered in the combined space */
    EqsMTmp = Matrix_Alloc(Eqs->NbRows-allZeros, (*M1)->NbColumns);
    k=0;
    for (i=0; i<Eqs->NbRows; i++) {
      if (First_Non_Zero(Eqs->p[i], Eqs->NbColumns)!=-1) {
	Vector_Copy(Eqs->p[i], &(EqsMTmp->p[k][nbVars]), Eqs->NbColumns);
	k++;
      }
    }
  }
  Matrix_Free(Eqs);
  Eqs = EqsMTmp;

  return Eqs;
} /* Constraints_Remove_parm_eqs */


/** Removes equalities involving only parameters, but starting from a
 * Polyhedron and its context.
 * @param P the polyhedron
 * @param C P's context
 * @param renderSpace: 0 for the parameter space, =1 for the combined space.
 * @maxRays Polylib's usual <i>workspace</i>.
 */
Polyhedron * Polyhedron_Remove_parm_eqs(Polyhedron ** P, Polyhedron ** C, 
					int renderSpace, 
					unsigned int ** elimParms, 
					int maxRays) {
  Matrix * Eqs;
  Polyhedron * Peqs;
  Matrix * M = Polyhedron2Constraints((*P));
  Matrix * Ct = Polyhedron2Constraints((*C));

  /* if the Minkowski representation is not computed yet, do not compute it in
     Constraints2Polyhedron */
  if (F_ISSET((*P), POL_VALID | POL_INEQUALITIES) && 
      (F_ISSET((*C), POL_VALID | POL_INEQUALITIES))) {
    FL_INIT(maxRays, POL_NO_DUAL);
  }
    
  Eqs = Constraints_Remove_parm_eqs(&M, &Ct, renderSpace, elimParms);
  Peqs = Constraints2Polyhedron(Eqs, maxRays);
  Matrix_Free(Eqs);

  /* particular case: no equality involving only parms is found */
  if (Eqs->NbRows==0) {
    Matrix_Free(M);
    Matrix_Free(Ct);
    return Peqs;
  }
  Polyhedron_Free(*P);
  Polyhedron_Free(*C);
  (*P) = Constraints2Polyhedron(M, maxRays);
  (*C) = Constraints2Polyhedron(Ct, maxRays);
  Matrix_Free(M);
  Matrix_Free(Ct);
  return Peqs;
} /* Polyhedron_Remove_parm_eqs */


/**
 * Given a matrix with m parameterized equations, compress the nb_parms
 * parameters and n-m variables so that m variables are integer, and transform
 * the variable space into a n-m space by eliminating the m variables (using
 * the equalities) the variables to be eliminated are chosen automatically by
 * the function.
 * <b>Deprecated.</b> Try to use Constraints_fullDimensionize instead.
 * @param M the constraints 
 * @param the number of parameters
 * @param validityLattice the the integer lattice underlying the integer
 * solutions.
*/
Matrix * full_dimensionize(Matrix const * M, int nbParms, 
			   Matrix ** validityLattice) {
  Matrix * Eqs, * Ineqs;
  Matrix * permutedEqs, * permutedIneqs;
  Matrix * Full_Dim;
  Matrix * WVL; /* The Whole Validity Lattice (vars+parms) */
  unsigned int i,j;
  int nbElimVars;
  unsigned int * permutation, * permutationInv;
  /* 0- Split the equalities and inequalities from each other */
  split_constraints(M, &Eqs, &Ineqs);

  /* 1- if the polyhedron is already full-dimensional, return it */
  if (Eqs->NbRows==0) {
    Matrix_Free(Eqs);
    (*validityLattice) = Identity_Matrix(nbParms+1);
    return Ineqs;
  }
  nbElimVars = Eqs->NbRows;

  /* 2- put the vars to be eliminated at the first positions, 
     and compress the other vars/parms
     -> [ variables to eliminate / parameters / variables to keep ] */
  permutation = find_a_permutation(Eqs, nbParms);
  if (dbgCompParm) {
    printf("Permuting the vars/parms this way: [ ");
    for (i=0; i< Eqs->NbColumns; i++) {
      printf("%d ", permutation[i]);
    }
    printf("]\n");
  }
  permutedEqs = mpolyhedron_permute(Eqs, permutation);
  WVL = compress_parms(permutedEqs, Eqs->NbColumns-2-Eqs->NbRows);
  if (dbgCompParm) {
    printf("Whole validity lattice: ");
    show_matrix(WVL);
  }
  mpolyhedron_compress_last_vars(permutedEqs, WVL);
  permutedIneqs = mpolyhedron_permute(Ineqs, permutation);
  if (dbgCompParm) {
    show_matrix(permutedEqs);
  }
  Matrix_Free(Eqs);
  Matrix_Free(Ineqs);
  mpolyhedron_compress_last_vars(permutedIneqs, WVL);
  if (dbgCompParm) {
    printf("After compression: ");
    show_matrix(permutedIneqs);
  }
  /* 3- eliminate the first variables */
  if (!mpolyhedron_eliminate_first_variables(permutedEqs, permutedIneqs)) {
    fprintf(stderr,"full-dimensionize > variable elimination failed. \n"); 
    return NULL;
  }
  if (dbgCompParm) {
    printf("After elimination of the variables: ");
    show_matrix(permutedIneqs);
  }

  /* 4- get rid of the first (zero) columns, 
     which are now useless, and put the parameters back at the end */
  Full_Dim = Matrix_Alloc(permutedIneqs->NbRows,
			  permutedIneqs->NbColumns-nbElimVars);
  for (i=0; i< permutedIneqs->NbRows; i++) {
    value_set_si(Full_Dim->p[i][0], 1);
    for (j=0; j< nbParms; j++) 
      value_assign(Full_Dim->p[i][j+Full_Dim->NbColumns-nbParms-1], 
		   permutedIneqs->p[i][j+nbElimVars+1]);
    for (j=0; j< permutedIneqs->NbColumns-nbParms-2-nbElimVars; j++) 
      value_assign(Full_Dim->p[i][j+1], 
		   permutedIneqs->p[i][nbElimVars+nbParms+j+1]);
    value_assign(Full_Dim->p[i][Full_Dim->NbColumns-1], 
		 permutedIneqs->p[i][permutedIneqs->NbColumns-1]);
  }
  Matrix_Free(permutedIneqs);
  
  /* 5- Keep only the the validity lattice restricted to the parameters */
  *validityLattice = Matrix_Alloc(nbParms+1, nbParms+1);
  for (i=0; i< nbParms; i++) {
    for (j=0; j< nbParms; j++)
      value_assign((*validityLattice)->p[i][j], 
		   WVL->p[i][j]);
    value_assign((*validityLattice)->p[i][nbParms], 
		 WVL->p[i][WVL->NbColumns-1]);
  }
  for (j=0; j< nbParms; j++) 
    value_set_si((*validityLattice)->p[nbParms][j], 0);
  value_assign((*validityLattice)->p[nbParms][nbParms], 
	       WVL->p[WVL->NbColumns-1][WVL->NbColumns-1]);

  /* 6- Clean up */
  Matrix_Free(WVL);
  return Full_Dim;
} /* full_dimensionize */

#undef dbgCompParm
#undef dbgCompParmMore