File: matrix_addon.c

package info (click to toggle)
polylib 5.22.5-4.2%2Bdfsg
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 14,464 kB
  • sloc: ansic: 16,346; sh: 10,134; makefile: 506
file content (416 lines) | stat: -rw-r--r-- 13,382 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
/*
    This file is part of PolyLib.

    PolyLib is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    PolyLib is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with PolyLib.  If not, see <http://www.gnu.org/licenses/>.
*/

/** 
 * $Id: matrix_addon.c,v 1.17 2007/03/18 18:49:08 skimo Exp $
 * 
 * Polylib matrix addons
 * Mainly, deals with polyhedra represented as a matrix (implicit form)
 * @author Benoit Meister <meister@icps.u-strasbg.fr>
 * 
 */

#include <stdlib.h>
#include<polylib/polylib.h>
#include <polylib/matrix_addon.h>

/** Creates a view of the constraints of a polyhedron as a Matrix * */
Matrix * constraintsView(Polyhedron * P) {
  Matrix * view = (Matrix *)malloc(sizeof(Matrix));
  view->NbRows = P->NbConstraints;
  view->NbColumns = P->Dimension+2;
  view->p = P->Constraint;
  return view;
}

/** "Frees" a view of the constraints of a polyhedron */
void constraintsView_Free(Matrix * M) {
  free(M);
}

/** 
 * splits a matrix of constraints M into a matrix of equalities Eqs and a
 *  matrix of inequalities Ineqs allocs the new matrices. 
 * Allocates Eqs and Ineqs.
*/
void split_constraints(Matrix const * M, Matrix ** Eqs, Matrix **Ineqs) {
  unsigned int i, j, k_eq, k_ineq, nb_eqs=0;

  /* 1- count the number of equations */
  for (i=0; i< M->NbRows; i++)     
    if (value_zero_p(M->p[i][0])) nb_eqs++;

  /* 2- extract the two matrices of equations */
  (*Eqs) = Matrix_Alloc(nb_eqs, M->NbColumns);
  (*Ineqs) = Matrix_Alloc(M->NbRows-nb_eqs, M->NbColumns);

  k_eq = k_ineq = 0;
  for(i=0; i< M->NbRows; i++) {
    if (value_zero_p(M->p[i][0])) 
      {
	for(j=0; j< M->NbColumns; j++)
	  value_assign((*Eqs)->p[k_eq][j], M->p[i][j]);
	k_eq++;
      }
    else
       {
	for(j=0; j< M->NbColumns; j++)
	  value_assign((*Ineqs)->p[k_ineq][j], M->p[i][j]);
	k_ineq++;
      }
  }
}


/* returns the dim-dimensional identity matrix */
Matrix * Identity_Matrix(unsigned int dim) {
  Matrix * ret = Matrix_Alloc(dim, dim);
  unsigned int i,j;
  for (i=0; i< dim; i++) {
    for (j=0; j< dim; j++) {
      if (i==j) 
	{ value_set_si(ret->p[i][j], 1); } 
      else value_set_si(ret->p[i][j], 0);
    }
  }
  return ret;
} /* Identity_Matrix */


/** 
 * returns the dim-dimensional identity matrix. 
 * If I is set to NULL, allocates it first. 
 * Else, assumes an existing, allocated Matrix.
*/
void Matrix_identity(unsigned int dim, Matrix ** I) {
  int i,j;
  if (*I==NULL) {
    (*I) = Identity_Matrix(dim);
  }
  else {
    assert((*I)->NbRows>=dim && (*I)->NbColumns>=dim);
    for (i=0; i< dim; i++) {
      for (j=0; j< dim; j++) {
	if (i==j) { 
	    value_set_si((*I)->p[i][j], 1); 
	  } 
	else {
	  value_set_si((*I)->p[i][j], 0);
	}
      }
    }
  }
} /* Matrix_identity */


/** given a n x n integer transformation matrix transf, compute its inverse
    M/g, where M is a nxn integer matrix.  g is a common denominator for
    elements of (transf^{-1}) */
void mtransformation_inverse(Matrix * transf, Matrix ** inverse, Value * g) {
  Value factor;
  unsigned int i,j;
  Matrix *tmp, *inv;

  value_init(*g);
  value_set_si(*g,1);

  /* a - compute the inverse as usual (n x (n+1) matrix) */
  tmp = Matrix_Copy(transf);
  inv = Matrix_Alloc(transf->NbRows, transf->NbColumns+1);
  MatInverse(tmp, inv);
  Matrix_Free(tmp);

  /* b - as it is rational, put it to the same denominator*/
  (*inverse) = Matrix_Alloc(transf->NbRows, transf->NbRows);
  for (i=0; i< inv->NbRows; i++) 
    value_lcm(*g, *g, inv->p[i][inv->NbColumns-1]);
  for (i=0; i< inv->NbRows; i++) {
    value_division(factor, *g, inv->p[i][inv->NbColumns-1]);
    for (j=0; j< (*inverse)->NbColumns; j++) 
      value_multiply((*inverse)->p[i][j], inv->p[i][j],  factor);
  }

  /* c- clean up */
  value_clear(factor);
  Matrix_Free(inv);
} /* mtransformation_inverse */


/** takes a transformation matrix, and expands it to a higher dimension with
    the identity matrix regardless of it homogeneousness */
Matrix * mtransformation_expand_left_to_dim(Matrix * M, int new_dim) {
  Matrix * ret = Identity_Matrix(new_dim);
  int offset = new_dim-M->NbRows;
  unsigned int i,j;

  assert(new_dim>=M->NbColumns);
  assert(M->NbRows==M->NbColumns);

  for (i=0; i< M->NbRows; i++)
    for (j=0; j< M->NbRows; j++)
      value_assign(ret->p[offset+i][offset+j], M->p[i][j]);
  return ret;
} /* mtransformation_expand_left_to_dim */


/** simplify a matrix seen as a polyhedron, by dividing its rows by the gcd of
   their elements. */
void mpolyhedron_simplify(Matrix * polyh) {
  int i, j;
  Value cur_gcd;
  value_init(cur_gcd);
  for (i=0; i< polyh->NbRows; i++) {
    Vector_Gcd(polyh->p[i]+1, polyh->NbColumns-1, &cur_gcd);
    printf(" gcd[%d] = ", i); 
    value_print(stdout, VALUE_FMT, cur_gcd);printf("\n");
    Vector_AntiScale(polyh->p[i]+1, polyh->p[i]+1, cur_gcd, polyh->NbColumns-1);
  }
  value_clear(cur_gcd);
} /* mpolyhedron_simplify */


/** inflates a polyhedron (represented as a matrix) P, so that the apx of its
    Ehrhart Polynomial is an upper bound of the Ehrhart polynomial of P
    WARNING: this inflation is supposed to be applied on full-dimensional
    polyhedra. */
void mpolyhedron_inflate(Matrix * polyh, unsigned int nb_parms) {
  unsigned int i,j;
  unsigned nb_vars = polyh->NbColumns-nb_parms-2;
  Value infl;
  value_init(infl);
  /* subtract the sum of the negative coefficients of each inequality */
  for (i=0; i< polyh->NbRows; i++) {
    value_set_si(infl, 0);
    for (j=0; j< nb_vars; j++) {
      if (value_neg_p(polyh->p[i][1+j]))
	value_addto(infl, infl, polyh->p[i][1+j]);
    }
    /* here, we subtract a negative value */
    value_subtract(polyh->p[i][polyh->NbColumns-1], 
		   polyh->p[i][polyh->NbColumns-1], infl);
  }
  value_clear(infl);
} /* mpolyhedron_inflate */


/** deflates a polyhedron (represented as a matrix) P, so that the apx of its
    Ehrhart Polynomial is a lower bound of the Ehrhart polynomial of P WARNING:
    this deflation is supposed to be applied on full-dimensional polyhedra. */
void mpolyhedron_deflate(Matrix * polyh, unsigned int nb_parms) {
  unsigned int i,j;
  unsigned nb_vars = polyh->NbColumns-nb_parms-2;
  Value defl;
  value_init(defl);
  /* substract the sum of the negative coefficients of each inequality */
  for (i=0; i< polyh->NbRows; i++) {
    value_set_si(defl, 0);
    for (j=0; j< nb_vars; j++) {
      if (value_pos_p(polyh->p[i][1+j]))
	value_addto(defl, defl, polyh->p[i][1+j]);
    }
    /* here, we substract a negative value */
    value_subtract(polyh->p[i][polyh->NbColumns-1], 
		   polyh->p[i][polyh->NbColumns-1], defl);
  }
  value_clear(defl);
} /* mpolyhedron_deflate */


/** use an eliminator row to eliminate a variable in a victim row (without
 * changing the sign of the victim row -> important if it is an inequality).
 * @param Eliminator the matrix containing the eliminator row
 * @param eliminator_row the index of the eliminator row in <tt>Eliminator</tt>
 * @param Victim the matrix containing the row to be eliminated
 * @param victim_row the row to be eliminated in <tt>Victim</tt>
 * @param var_to_elim the variable to be eliminated.
 */
void eliminate_var_with_constr(Matrix * Eliminator, 
			       unsigned int eliminator_row, Matrix * Victim, 
			       unsigned int victim_row, 
			       unsigned int var_to_elim) {
  Value cur_lcm, mul_a, mul_b;
  Value tmp, tmp2;
  int k; 

  value_init(cur_lcm); 
  value_init(mul_a); 
  value_init(mul_b); 
  value_init(tmp); 
  value_init(tmp2);
  /* if the victim coefficient is not zero */
  if (value_notzero_p(Victim->p[victim_row][var_to_elim+1])) {
    value_lcm(cur_lcm, Eliminator->p[eliminator_row][var_to_elim+1], 
	      Victim->p[victim_row][var_to_elim+1]);
    /* multiplication factors */
    value_division(mul_a, cur_lcm, 
		   Eliminator->p[eliminator_row][var_to_elim+1]);
    value_division(mul_b, cur_lcm, 
		   Victim->p[victim_row][var_to_elim+1]);
    /* the multiplicator for the vitim row has to be positive */
    if (value_pos_p(mul_b)) {
      value_oppose(mul_a, mul_a);
    }
    else {
      value_oppose(mul_b, mul_b);
    }
    value_clear(cur_lcm); 
    /* now we have a.mul_a = -(b.mul_b) and mul_a > 0 */
    for (k=1; k<Victim->NbColumns; k++) {
      value_multiply(tmp, Eliminator->p[eliminator_row][k], mul_a);
      value_multiply(tmp2, Victim->p[victim_row][k], mul_b);
      value_addto(Victim->p[victim_row][k], tmp, tmp2);
    }
  }
  value_clear(mul_a); 
  value_clear(mul_b); 
  value_clear(tmp); 
  value_clear(tmp2);
}
/* eliminate_var_with_constr */


/* STUFF WITH PARTIAL MAPPINGS (Mappings to a subset of the
   variables/parameters) : on the first or last variables/parameters */

/** compress the last vars/pars of the polyhedron M expressed as a polylib
    matrix
 - adresses the full-rank compressions only
 - modfies M */
void mpolyhedron_compress_last_vars(Matrix * M, Matrix * compression) {
  unsigned int i, j, k;
  unsigned int offset = M->NbColumns - compression->NbRows; 
  /* the computations on M will begin on column "offset" */

  Matrix * M_tmp = Matrix_Alloc(1, M->NbColumns);
  assert(compression->NbRows==compression->NbColumns);
  /* basic matrix multiplication (using a temporary row instead of a whole
     temporary matrix), but with a column offset */
  for(i=0; i< M->NbRows; i++) {
    for (j=0; j< compression->NbRows; j++) {
      value_set_si(M_tmp->p[0][j], 0);
      for (k=0; k< compression->NbRows; k++) {
	value_addmul(M_tmp->p[0][j], M->p[i][k+offset],compression->p[k][j]);
      }
    }
    for (j=0; j< compression->NbRows; j++) 
      value_assign(M->p[i][j+offset], M_tmp->p[0][j]);
  }
  Matrix_Free(M_tmp);
} /* mpolyhedron_compress_last_vars */


/** use a set of m equalities Eqs to eliminate m variables in the polyhedron
    Ineqs represented as a matrix
 eliminates the m first variables
 - assumes that Eqs allow to eliminate the m equalities
 - modifies Eqs and Ineqs */
unsigned int mpolyhedron_eliminate_first_variables(Matrix * Eqs, 
						   Matrix *Ineqs) {
  unsigned int i, j, k;
  /* eliminate one variable (index i) after each other */
  for (i=0; i< Eqs->NbRows; i++) {
    /* find j, the first (non-marked) row of Eqs with a non-zero coefficient */
    for (j=0; j<Eqs->NbRows && (Eqs->p[j][i+1]==0 || 
				( !value_cmp_si(Eqs->p[j][0],2) )); 
	 j++);
    /* if no row is found in Eqs that allows to eliminate variable i, return an
       error code (0) */
    if (j==Eqs->NbRows) return 0;
    /* else, eliminate variable i in Eqs and Ineqs with the j^th row of Eqs
       (and mark this row so we don't use it again for an elimination) */
    for (k=j+1; k<Eqs->NbRows; k++)
      eliminate_var_with_constr(Eqs, j, Eqs, k, i);
    for (k=0; k< Ineqs->NbRows; k++)
      eliminate_var_with_constr(Eqs, j, Ineqs, k, i);
    /* mark the row */
    value_set_si(Eqs->p[j][0],2);
  }
  /* un-mark all the rows */
  for (i=0; i< Eqs->NbRows; i++) value_set_si(Eqs->p[i][0],0);
  return 1;
} /* mpolyhedron_eliminate_first_variables */


/** returns a contiguous submatrix of a matrix.
 * @param M the input matrix
 * @param sr the index of the starting row
 * @param sc the index of the starting column
 * @param er the index ofthe ending row (excluded)
 * @param ec the ined of the ending colummn (excluded)
 * @param sub (returned), the submatrix. Allocated if set to NULL, assumed to
 * be already allocated else.
 */
void Matrix_subMatrix(Matrix * M, unsigned int sr, unsigned int sc, 
			  unsigned int er, unsigned int ec, Matrix ** sub) {
  int i;
  int nbR = er-sr;
  int nbC = ec-sc;
  assert (er<=M->NbRows && ec<=M->NbColumns);
  if ((*sub)==NULL) {
    (*sub) = Matrix_Alloc(nbR, nbC);
  }
  if (nbR==0 || nbC==0) return;
  for (i=0; i< nbR; i++) {
    Vector_Copy(&(M->p[i+sr][sc]), (*sub)->p[i], nbC);
  }
}/* Matrix_subMatrix */


/**
 * Cloning function. Similar to Matrix_Copy() but allocates the target matrix
 * if it is set to NULL.
 */
void Matrix_clone(Matrix * M, Matrix ** Cl) {
  Matrix_subMatrix(M, 0,0, M->NbRows, M->NbColumns, Cl);
} 


/**
 * Copies a contiguous submatrix of M1 into M2, at the indicated position.
 * M1 and M2 are assumed t be allocated already.
 * @param M1 the source matrix
 * @param sr1 the starting source row
 * @param sc1 the starting source column
 * @param nbR the number of rows
 * @param nbC the number of columns
 * @param M2 the target matrix
 * @param sr2 the starting target row
 * @param sc2 the starting target column
*/
void Matrix_copySubMatrix(Matrix *M1,
			  unsigned int sr1, unsigned int sc1,
			  unsigned int nbR, unsigned int nbC,
			  Matrix * M2,
			  unsigned int sr2, unsigned int sc2) {
  int i;
  for (i=0; i< nbR; i++) {
    Vector_Copy(&(M1->p[i+sr1][sc1]), &(M2->p[i+sr2][sc2]), nbC);
  }
} /* Matrix_copySubMatrix */


/** 
 * transforms a matrix M into -M
 */
void Matrix_oppose(Matrix * M) {
  int i,j;
  for (i=0; i<M->NbRows; i++) {
    for (j=0; j< M->NbColumns; j++) {
      value_oppose(M->p[i][j], M->p[i][j]);
    }
  }
}